4gv7 Citations

PARP inhibitor with selectivity toward ADP-ribosyltransferase ARTD3/PARP3.

Abstract

Inhibiting ADP-ribosyl transferases with PARP-inhibitors is considered a promising strategy for the treatment of many cancers and ischemia, but most of the cellular targets are poorly characterized. Here, we describe an inhibitor of ADP-ribosyltransferase-3/poly(ADP-ribose) polymerase-3 (ARTD3), a regulator of DNA repair and mitotic progression. In vitro profiling against 12 members of the enzyme family suggests selectivity for ARTD3, and crystal structures illustrate the molecular basis for inhibitor selectivity. The compound is active in cells, where it elicits ARTD3-specific effects at submicromolar concentration. Our results show that by targeting the nicotinamide binding site, selective inhibition can be achieved among the closest relatives of the validated clinical target, ADP-ribosyltransferase-1/poly(ADP-ribose) polymerase-1.

Articles - 4gv7 mentioned but not cited (3)

  1. Structural basis for the inhibition of poly(ADP-ribose) polymerases 1 and 2 by BMN 673, a potent inhibitor derived from dihydropyridophthalazinone. Aoyagi-Scharber M, Gardberg AS, Yip BK, Wang B, Shen Y, Fitzpatrick PA. Acta Crystallogr F Struct Biol Commun 70 1143-1149 (2014)
  2. Benchmark Sets for Binding Hot Spot Identification in Fragment-Based Ligand Discovery. Wakefield AE, Yueh C, Beglov D, Castilho MS, Kozakov D, Keserű GM, Whitty A, Vajda S. J Chem Inf Model 60 6612-6623 (2020)
  3. Discovery of novel anti-tumor compounds targeting PARP-1 with induction of autophagy through in silico and in vitro screening. Shi D, Pang Q, Qin Q, Yao X, Yao X, Yu Y. Front Pharmacol 13 1026306 (2022)


Reviews citing this publication (11)

  1. Nuclear ADP-Ribosylation and Its Role in Chromatin Plasticity, Cell Differentiation, and Epigenetics. Hottiger MO. Annu Rev Biochem 84 227-263 (2015)
  2. Poly(ADP-ribose) polymerase inhibition: past, present and future. Curtin NJ, Szabo C. Nat Rev Drug Discov 19 711-736 (2020)
  3. Structural Implications for Selective Targeting of PARPs. Steffen JD, Brody JR, Armen RS, Pascal JM. Front Oncol 3 301 (2013)
  4. Protein dynamics and function from solution state NMR spectroscopy. Kovermann M, Rogne P, Wolf-Watz M. Q Rev Biophys 49 e6 (2016)
  5. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  6. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. Int J Mol Sci 22 5112 (2021)
  7. PARP3 comes to light as a prime target in cancer therapy. Rodriguez-Vargas JM, Nguekeu-Zebaze L, Dantzer F. Cell Cycle 18 1295-1301 (2019)
  8. Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives. Poltronieri P, Celetti A, Palazzo L. Cells 10 128 (2021)
  9. ADP-Ribosylation as Post-Translational Modification of Proteins: Use of Inhibitors in Cancer Control. Poltronieri P, Miwa M, Masutani M. Int J Mol Sci 22 10829 (2021)
  10. Medicinal Chemistry Perspective on Targeting Mono-ADP-Ribosylating PARPs with Small Molecules. Nizi MG, Maksimainen MM, Lehtiö L, Tabarrini O. J Med Chem 65 7532-7560 (2022)
  11. A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Kumar C, Rani N, Velan Lakshmi PT, Arunachalam A. Future Med Chem 9 37-60 (2017)

Articles citing this publication (22)

  1. Engineering the substrate specificity of ADP-ribosyltransferases for identifying direct protein targets. Carter-O'Connell I, Jin H, Morgan RK, David LL, Cohen MS. J Am Chem Soc 136 5201-5204 (2014)
  2. PARP3 affects the relative contribution of homologous recombination and nonhomologous end-joining pathways. Beck C, Boehler C, Guirouilh Barbat J, Bonnet ME, Illuzzi G, Ronde P, Gauthier LR, Magroun N, Rajendran A, Lopez BS, Scully R, Boussin FD, Schreiber V, Dantzer F. Nucleic Acids Res 42 5616-5632 (2014)
  3. PARP3 is a sensor of nicked nucleosomes and monoribosylates histone H2B(Glu2). Grundy GJ, Polo LM, Zeng Z, Rulten SL, Hoch NC, Paomephan P, Xu Y, Sweet SM, Thorne AW, Oliver AW, Matthews SJ, Pearl LH, Caldecott KW. Nat Commun 7 12404 (2016)
  4. PARP3 controls TGFβ and ROS driven epithelial-to-mesenchymal transition and stemness by stimulating a TG2-Snail-E-cadherin axis. Karicheva O, Rodriguez-Vargas JM, Wadier N, Martin-Hernandez K, Vauchelles R, Magroun N, Tissier A, Schreiber V, Dantzer F. Oncotarget 7 64109-64123 (2016)
  5. CRISPR-mediated targeting of HER2 inhibits cell proliferation through a dominant negative mutation. Wang H, Sun W. Cancer Lett 385 137-143 (2017)
  6. Serine-linked PARP1 auto-modification controls PARP inhibitor response. Prokhorova E, Zobel F, Smith R, Zentout S, Gibbs-Seymour I, Schützenhofer K, Peters A, Groslambert J, Zorzini V, Agnew T, Brognard J, Nielsen ML, Ahel D, Huet S, Suskiewicz MJ, Ahel I. Nat Commun 12 4055 (2021)
  7. ADP-ribosylation: from molecular mechanisms to human disease. Hoch NC, Polo LM. Genet Mol Biol 43 e20190075 (2019)
  8. PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA. Day TA, Layer JV, Cleary JP, Guha S, Stevenson KE, Tivey T, Kim S, Schinzel AC, Izzo F, Doench J, Root DE, Hahn WC, Price BD, Weinstock DM. Nat Commun 8 15110 (2017)
  9. AutoGrow4: an open-source genetic algorithm for de novo drug design and lead optimization. Spiegel JO, Durrant JD. J Cheminform 12 25 (2020)
  10. PARP3, a new therapeutic target to alter Rictor/mTORC2 signaling and tumor progression in BRCA1-associated cancers. Beck C, Rodriguez-Vargas JM, Boehler C, Robert I, Heyer V, Hanini N, Gauthier LR, Tissier A, Schreiber V, Elofsson M, Reina San Martin B, Dantzer F. Cell Death Differ 26 1615-1630 (2019)
  11. PARP3 inhibitors ME0328 and olaparib potentiate vinorelbine sensitization in breast cancer cell lines. Sharif-Askari B, Amrein L, Aloyz R, Panasci L. Breast Cancer Res Treat 172 23-32 (2018)
  12. PARP inhibition causes premature loss of cohesion in cancer cells. Kukolj E, Kaufmann T, Dick AE, Zeillinger R, Gerlich DW, Slade D. Oncotarget 8 103931-103951 (2017)
  13. Forced Self-Modification Assays as a Strategy to Screen MonoPARP Enzymes. Wigle TJ, Church WD, Majer CR, Swinger KK, Aybar D, Schenkel LB, Vasbinder MM, Brendes A, Beck C, Prahm M, Wegener D, Chang P, Kuntz KW. SLAS Discov 25 241-252 (2020)
  14. Recurrent chromosome reshuffling and the evolution of neo-sex chromosomes in parrots. Huang Z, De O Furo I, Liu J, Peona V, Gomes AJB, Cen W, Huang H, Zhang Y, Chen D, Xue T, Zhang Q, Yue Z, Wang Q, Yu L, Chen Y, Suh A, de Oliveira EHC, Xu L. Nat Commun 13 944 (2022)
  15. Novel PARP-1 inhibitors based on a 2-propanoyl-3H-quinazolin-4-one scaffold. Giannini G, Battistuzzi G, Vesci L, Milazzo FM, De Paolis F, Barbarino M, Guglielmi MB, Carollo V, Gallo G, Artali R, Dallavalle S. Bioorg Med Chem Lett 24 462-466 (2014)
  16. Design, Synthesis and Molecular Modeling Study of Conjugates of ADP and Morpholino Nucleosides as A Novel Class of Inhibitors of PARP-1, PARP-2 and PARP-3. Sherstyuk YV, Ivanisenko NV, Zakharenko AL, Sukhanova MV, Peshkov RY, Eltsov IV, Kutuzov MM, Kurgina TA, Belousova EA, Ivanisenko VA, Lavrik OI, Silnikov VN, Abramova TV. Int J Mol Sci 21 E214 (2019)
  17. Inhibition of Parp1 by BMN673 Effectively Sensitizes Cells to Radiotherapy by Upsetting the Balance of Repair Pathways Processing DNA Double-Strand Breaks. Soni A, Li F, Wang Y, Grabos M, Krieger LM, Chaudhary S, Hasan MSM, Ahmed M, Coleman CN, Teicher BA, Piekarz RL, Wang D, Iliakis GE. Mol Cancer Ther 17 2206-2216 (2018)
  18. Bioinformatic Analysis of the Nicotinamide Binding Site in Poly(ADP-Ribose) Polymerase Family Proteins. Manasaryan G, Suplatov D, Pushkarev S, Drobot V, Kuimov A, Švedas V, Nilov D. Cancers (Basel) 13 1201 (2021)
  19. PARP inhibition prevents escape from a telomere-driven crisis and inhibits cell immortalisation. Ngo G, Hyatt S, Grimstead J, Jones R, Hendrickson E, Pepper C, Baird D. Oncotarget 9 37549-37563 (2018)
  20. The Development of a Biotinylated NAD+-Applied Human Poly(ADP-Ribose) Polymerase 3 (PARP3) Enzymatic Assay. Ji M, Wang L, Xue N, Lai F, Zhang S, Jin J, Chen X. SLAS Discov 23 545-553 (2018)
  21. PARP3 supervises G9a-mediated repression of adhesion and hypoxia-responsive genes in glioblastoma cells. Nguekeu-Zebaze L, Hanini N, Noll A, Wadier N, Amé JC, Roegel L, Dantzer F. Sci Rep 12 15534 (2022)
  22. Multi-functionalization of reduced graphene oxide nanosheets for tumor theragnosis: Synthesis, characterization, enzyme assay, in-silico study, radiolabeling and in vivo targeting evaluation. Sakr TM, Elsabagh MF, Fayez H, Sarhan MO, Syam YM, Anwar MM, Motaleb MA, Zaghary WA. Daru (2023)