4fxo Citations

Zinc-mediated allosteric inhibition of caspase-6.

J Biol Chem 287 36000-11 (2012)
Cited: 53 times
EuropePMC logo PMID: 22891250

Abstract

Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation.

Reviews - 4fxo mentioned but not cited (2)

  1. Zinc-binding cysteines: diverse functions and structural motifs. Pace NJ, Weerapana E. Biomolecules 4 419-434 (2014)
  2. Small Molecule Active Site Directed Tools for Studying Human Caspases. Poreba M, Szalek A, Kasperkiewicz P, Rut W, Salvesen GS, Drag M. Chem Rev 115 12546-12629 (2015)

Articles - 4fxo mentioned but not cited (10)

  1. Zinc-mediated allosteric inhibition of caspase-6. Velázquez-Delgado EM, Hardy JA. J Biol Chem 287 36000-36011 (2012)
  2. Inhibitory zinc sites in enzymes. Maret W. Biometals 26 197-204 (2013)
  3. Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8. Eron SJ, MacPherson DJ, Dagbay KB, Hardy JA. ACS Chem Biol 13 1279-1290 (2018)
  4. A multipronged approach for compiling a global map of allosteric regulation in the apoptotic caspases. Dagbay K, Eron SJ, Serrano BP, Velázquez-Delgado EM, Zhao Y, Lin D, Vaidya S, Hardy JA. Methods Enzymol 544 215-249 (2014)
  5. Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis. MacPherson DJ, Mills CL, Ondrechen MJ, Hardy JA. J Biol Chem 294 71-88 (2019)
  6. Caspase-6 Undergoes a Distinct Helix-Strand Interconversion upon Substrate Binding. Dagbay KB, Bolik-Coulon N, Savinov SN, Hardy JA. J Biol Chem 292 4885-4897 (2017)
  7. Identification of Allosteric Inhibitors against Active Caspase-6. Tubeleviciute-Aydin A, Beautrait A, Lynham J, Sharma G, Gorelik A, Deny LJ, Soya N, Lukacs GL, Nagar B, Marinier A, LeBlanc AC. Sci Rep 9 5504 (2019)
  8. (E)-N'-Arylidene-2-(4-oxoquinazolin-4(3H)-yl) acetohydrazides: Synthesis and evaluation of antitumor cytotoxicity and caspase activation activity. Huan LC, Phuong CV, Truc LC, Thanh VN, Pham-The H, Huong LT, Thuan NT, Park EJ, Ji AY, Kang JS, Han SB, Tran PT, Nam NH. J Enzyme Inhib Med Chem 34 465-478 (2019)
  9. Synthesis and biological activity, and molecular modelling studies of potent cytotoxic podophyllotoxin-naphthoquinone compounds. Nguyen HT, Nguyen Thi QG, Nguyen Thi TH, Thi PH, Le-Nhat-Thuy G, Dang Thi TA, Le-Quang B, Pham-The H, Van Nguyen T. RSC Adv 12 22004-22019 (2022)
  10. Design, synthesis, and evaluation of novel N'-substituted-1-(4-chlorobenzyl)-1H-indol-3-carbohydrazides as antitumor agents. Huan LC, Anh DT, Hai PT, Anh LD, Park EJ, Ji AY, Kang JS, Dung DTM, Oanh DTK, Tung TT, Hai DTT, Han SB, Nam NH. J Enzyme Inhib Med Chem 35 1854-1865 (2020)


Reviews citing this publication (13)

  1. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Kambe T, Tsuji T, Hashimoto A, Itsumura N. Physiol Rev 95 749-784 (2015)
  2. Zinc in Infection and Inflammation. Gammoh NZ, Rink L. Nutrients 9 E624 (2017)
  3. Caspase substrates and inhibitors. Poreba M, Strózyk A, Salvesen GS, Drag M. Cold Spring Harb Perspect Biol 5 a008680 (2013)
  4. Zinc in Wound Healing Modulation. Lin PH, Sermersheim M, Li H, Lee PHU, Steinberg SM, Ma J. Nutrients 10 E16 (2017)
  5. Activation and regulation of caspase-6 and its role in neurodegenerative diseases. Wang XJ, Cao Q, Zhang Y, Su XD. Annu Rev Pharmacol Toxicol 55 553-572 (2015)
  6. Caspase-6 as a novel early target in the treatment of Alzheimer's disease. LeBlanc AC. Eur J Neurosci 37 2005-2018 (2013)
  7. Interactions of zinc- and redox-signaling pathways. Hübner C, Haase H. Redox Biol 41 101916 (2021)
  8. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. Boudreau MW, Peh J, Hergenrother PJ. ACS Chem Biol 14 2335-2348 (2019)
  9. Zinc: Multidimensional Effects on Living Organisms. Cuajungco MP, Ramirez MS, Tolmasky ME. Biomedicines 9 208 (2021)
  10. Regulation of zinc-dependent enzymes by metal carrier proteins. Thompson MW. Biometals 35 187-213 (2022)
  11. Recent advances suggest increased influence of selective pressure in allostery. Bhat AS, Dustin Schaeffer R, Kinch L, Medvedev KE, Grishin NV. Curr Opin Struct Biol 62 183-188 (2020)
  12. Aberrance of Zinc Metalloenzymes-Induced Human Diseases and Its Potential Mechanisms. Cheng Y, Chen H. Nutrients 13 4456 (2021)
  13. The Implications of Insufficient Zinc on the Generation of Oxidative Stress Leading to Decreased Oocyte Quality. Camp OG, Bembenek JN, Goud PT, Awonuga AO, Abu-Soud HM. Reprod Sci 30 2069-2078 (2023)

Articles citing this publication (28)

  1. Zinc transporter SLC39A10/ZIP10 facilitates antiapoptotic signaling during early B-cell development. Miyai T, Hojyo S, Ikawa T, Kawamura M, Irié T, Ogura H, Hijikata A, Bin BH, Yasuda T, Kitamura H, Nakayama M, Ohara O, Yoshida H, Koseki H, Mishima K, Fukada T. Proc Natl Acad Sci U S A 111 11780-11785 (2014)
  2. The inhibition of voltage-gated H+ channel (HVCN1) induces acidification of leukemic Jurkat T cells promoting cell death by apoptosis. Asuaje A, Smaldini P, Martín P, Enrique N, Orlowski A, Aiello EA, Gonzalez León C, Docena G, Milesi V. Pflugers Arch 469 251-261 (2017)
  3. Disulfiram-induced cytotoxicity and endo-lysosomal sequestration of zinc in breast cancer cells. Wiggins HL, Wymant JM, Solfa F, Hiscox SE, Taylor KM, Westwell AD, Jones AT. Biochem Pharmacol 93 332-342 (2015)
  4. Dual small-molecule targeting of procaspase-3 dramatically enhances zymogen activation and anticancer activity. Botham RC, Fan TM, Im I, Borst LB, Dirikolu L, Hergenrother PJ. J Am Chem Soc 136 1312-1319 (2014)
  5. The bioinorganic chemistry of apoptosis: potential inhibitory zinc binding sites in caspase-3. Daniel AG, Peterson EJ, Farrell NP. Angew Chem Int Ed Engl 53 4098-4101 (2014)
  6. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection. Maciag JJ, Mackenzie SH, Tucker MB, Schipper JL, Swartz P, Clark AC. Proc Natl Acad Sci U S A 113 E6080-E6088 (2016)
  7. B cell activation and proliferation increase intracellular zinc levels. Ollig J, Kloubert V, Taylor KM, Rink L. J Nutr Biochem 64 72-79 (2019)
  8. Derivatives of Procaspase-Activating Compound 1 (PAC-1) and their Anticancer Activities. Roth HS, Hergenrother PJ. Curr Med Chem 23 201-241 (2016)
  9. Methylene Blue Inhibits Caspases by Oxidation of the Catalytic Cysteine. Pakavathkumar P, Sharma G, Kaushal V, Foveau B, LeBlanc AC. Sci Rep 5 13730 (2015)
  10. Modifications to a common phosphorylation network provide individualized control in caspases. Thomas ME, Grinshpon R, Swartz P, Clark AC. J Biol Chem 293 5447-5461 (2018)
  11. Letter Zinc and its transporter ZIP6 are key mediators of breast cancer cell survival under high glucose conditions. Matsui C, Takatani-Nakase T, Hatano Y, Kawahara S, Nakase I, Takahashi K. FEBS Lett 591 3348-3359 (2017)
  12. Multiple proteolytic events in caspase-6 self-activation impact conformations of discrete structural regions. Dagbay KB, Hardy JA. Proc Natl Acad Sci U S A 114 E7977-E7986 (2017)
  13. Modifying caspase-3 activity by altering allosteric networks. Cade C, Swartz P, MacKenzie SH, Clark AC. Biochemistry 53 7582-7595 (2014)
  14. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms. Matagne A, Bolle L, El Mahyaoui R, Baeyens-Volant D, Azarkan M. Phytochemistry 138 29-51 (2017)
  15. Interdependence of free zinc changes and protein complex assembly - insights into zinc signal regulation. Kocyła A, Adamczyk J, Krężel A. Metallomics 10 120-131 (2018)
  16. Phage display and structural studies reveal plasticity in substrate specificity of caspase-3a from zebrafish. Tucker MB, MacKenzie SH, Maciag JJ, Dirscherl Ackerman H, Swartz P, Yoder JA, Hamilton PT, Clay Clark A. Protein Sci 25 2076-2088 (2016)
  17. Rare human Caspase-6-R65W and Caspase-6-G66R variants identify a novel regulatory region of Caspase-6 activity. Tubeleviciute-Aydin A, Zhou L, Sharma G, Soni IV, Savinov SN, Hardy JA, LeBlanc AC. Sci Rep 8 4428 (2018)
  18. A novel form of ficin from Ficus carica latex: Purification and characterization. Baeyens-Volant D, Matagne A, El Mahyaoui R, Wattiez R, Azarkan M. Phytochemistry 117 154-167 (2015)
  19. Metal-mediated modulation of streptococcal cysteine protease activity and its biological implications. Chella Krishnan K, Mukundan S, Landero Figueroa JA, Caruso JA, Kotb M. Infect Immun 82 2992-3001 (2014)
  20. Removal of Metabolic Liabilities Enables Development of Derivatives of Procaspase-Activating Compound 1 (PAC-1) with Improved Pharmacokinetics. Roth HS, Botham RC, Schmid SC, Fan TM, Dirikolu L, Hergenrother PJ. J Med Chem 58 4046-4065 (2015)
  21. Loss of the dermis zinc transporter ZIP13 promotes the mildness of fibrosarcoma by inhibiting autophagy. Lee MG, Choi MA, Chae S, Kang MA, Jo H, Baek JM, In KR, Park H, Heo H, Jang D, Brito S, Kim ST, Kim DO, Lee JS, Kim JR, Bin BH. Sci Rep 9 15042 (2019)
  22. Chemoproteomics Using Nucleotide Acyl Phosphates Reveals an ATP Binding Site at the Dimer Interface of Procaspase-6. Okerberg ES, Dagbay KB, Green JL, Soni I, Aban A, Nomanbhoy TK, Savinov SN, Hardy JA, Kozarich JW. Biochemistry 58 5320-5328 (2019)
  23. Molecular evidence of Zn chelation of the procaspase activating compound B-PAC-1 in B cell lymphoma. Sarkar A, Balakrishnan K, Chen J, Patel V, Neelapu SS, McMurray JS, Gandhi V. Oncotarget 7 3461-3476 (2016)
  24. Transition metal cation inhibition of Mycobacterium tuberculosis esterase RV0045C. Bowles IE, Pool EH, Lancaster BS, Lawson EK, Savas CP, Kartje ZJ, Severinac L, Cho DH, Macbeth MR, Johnson RJ, Hoops GC. Protein Sci 30 1554-1565 (2021)
  25. Theoretical study on the allosteric regulation of an oligomeric protease from Pyrococcus horikoshii by Cl- Ion. Zhan D, Sun J, Feng Y, Han W. Molecules 19 1828-1842 (2014)
  26. Conformational transitions of caspase-6 in substrate-induced activation process explored by perturbation-response scanning combined with targeted molecular dynamics. Huang S, Mei H, Lu L, Kuang Z, Heng Y, Xu L, Liang X, Qiu M, Pan X. Comput Struct Biotechnol J 19 4156-4164 (2021)
  27. A role and mechanism for redox sensing by SENP1 in β-cell responses to high fat feeding. Lin H, Suzuki K, Smith N, Li X, Nalbach L, Fuentes S, Spigelman AF, Dai XQ, Bautista A, Ferdaoussi M, Aggarwal S, Pepper AR, Roma LP, Ampofo E, Li WH, MacDonald PE. Nat Commun 15 334 (2024)
  28. Zn2+-Induced Conformational Change Affects the SAM Binding in a Mycobacterial SAM-Dependent Methyltransferase. Majumdar S, Gupta U, Chinnasamy HV, Laxmipathy S, Matheshwaran S. ACS Omega 7 35901-35910 (2022)