4f01 Citations

Structural studies on the forward and reverse binding modes of peptides to the chaperone DnaK.

J Mol Biol 425 2463-79 (2013)
Related entries: 4ezn, 4ezo, 4ezp, 4ezq, 4ezr, 4ezt, 4ezw, 4ezx, 4ezy, 4ezz, 4f00, 4hy9, 4hyb

Cited: 72 times
EuropePMC logo PMID: 23562829

Abstract

Hsp70 chaperones have been implicated in assisting protein folding of newly synthesized polypeptide chains, refolding of misfolded proteins, and protein trafficking. For these functions, the chaperones need to exhibit a significant promiscuity in binding to different sequences of hydrophobic peptide stretches. To characterize the structural basis of sequence specificity and flexibility of the Escherichia coli Hsp70 chaperone DnaK, we have analyzed crystal structures of the substrate binding domain of the protein in complex with artificially designed peptides as well as small proline-rich antimicrobial peptides. The latter peptides from mammals and insects were identified to target DnaK after cell penetration. Interestingly, the complex crystal structures reveal two different peptide binding modes. The peptides can bind either in a forward or in a reverse direction to the conventional substrate binding cleft of DnaK in an extended conformation. Superposition of the two binding modes shows a remarkable similarity in the side chain orientations and hydrogen bonding pattern despite the reversed peptide orientation. The DnaK chaperone has evolved to bind peptides in both orientations in the substrate binding cleft with comparable energy without rearrangements of the protein. Optimal hydrophobic interactions with binding pockets -2 to 0 appear to be the main determinant for the orientation and sequence position of peptide binding.

Articles - 4f01 mentioned but not cited (6)

  1. De novo transcriptome sequencing and analysis of the cereal cyst nematode, Heterodera avenae. Kumar M, Gantasala NP, Roychowdhury T, Thakur PK, Banakar P, Shukla RN, Jones MG, Rao U. PLoS One 9 e96311 (2014)
  2. Fast and anisotropic flexibility-rigidity index for protein flexibility and fluctuation analysis. Opron K, Xia K, Wei GW. J Chem Phys 140 234105 (2014)
  3. Blind prediction of protein B-factor and flexibility. Bramer D, Wei GW. J Chem Phys 149 134107 (2018)
  4. Screening soybean cyst nematode effectors for their ability to suppress plant immunity. Pogorelko G, Wang J, Juvale PS, Mitchum MG, Baum TJ. Mol Plant Pathol 21 1240-1247 (2020)
  5. Comparison of transcript profiles in different life stages of the nematode Globodera pallida under different host potato genotypes. Palomares-Rius JE, Hedley PE, Cock PJ, Morris JA, Jones JT, Vovlas N, Blok V. Mol Plant Pathol 13 1120-1134 (2012)
  6. Atom-specific persistent homology and its application to protein flexibility analysis. Bramer D, Wei GW. Comput Math Biophys 8 1-35 (2020)


Reviews citing this publication (12)

  1. Hsp70 chaperone dynamics and molecular mechanism. Mayer MP. Trends Biochem Sci 38 507-514 (2013)
  2. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. Clerico EM, Tilitsky JM, Meng W, Gierasch LM. J Mol Biol 427 1575-1588 (2015)
  3. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. Mayer MP, Gierasch LM. J Biol Chem 294 2085-2097 (2019)
  4. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Li W, Tailhades J, O'Brien-Simpson NM, Separovic F, Otvos L, Hossain MA, Wade JD. Amino Acids 46 2287-2294 (2014)
  5. Proline-rich antimicrobial peptides targeting protein synthesis. Graf M, Mardirossian M, Nguyen F, Seefeldt AC, Guichard G, Scocchi M, Innis CA, Wilson DN. Nat Prod Rep 34 702-711 (2017)
  6. Dynamical Structures of Hsp70 and Hsp70-Hsp40 Complexes. Alderson TR, Kim JH, Markley JL. Structure 24 1014-1030 (2016)
  7. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Sarkar T, Chetia M, Chatterjee S. Front Chem 9 691532 (2021)
  8. Hsp70 molecular chaperones: multifunctional allosteric holding and unfolding machines. Clerico EM, Meng W, Pozhidaeva A, Bhasne K, Petridis C, Gierasch LM. Biochem J 476 1653-1677 (2019)
  9. Emerging peptide antibiotics with therapeutic potential. Upert G, Luther A, Obrecht D, Ermert P. Med Drug Discov 9 100078 (2021)
  10. The Hsp70-Chaperone Machines in Bacteria. Mayer MP. Front Mol Biosci 8 694012 (2021)
  11. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. Shagaghi N, Palombo EA, Clayton AHA, Bhave M. World J Microbiol Biotechnol 34 62 (2018)
  12. Cytosolic protein quality control machinery: Interactions of Hsp70 with a network of co-chaperones and substrates. Karunanayake C, Page RC. Exp Biol Med (Maywood) 246 1419-1434 (2021)

Articles citing this publication (54)

  1. Insect-derived proline-rich antimicrobial peptides kill bacteria by inhibiting bacterial protein translation at the 70S ribosome. Krizsan A, Volke D, Weinert S, Sträter N, Knappe D, Hoffmann R. Angew Chem Int Ed Engl 53 12236-12239 (2014)
  2. Application of Antimicrobial Peptides of the Innate Immune System in Combination With Conventional Antibiotics-A Novel Way to Combat Antibiotic Resistance? Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE, Grinchuk TM, Shamova OV. Front Cell Infect Microbiol 9 128 (2019)
  3. The proline-rich antimicrobial peptide Onc112 inhibits translation by blocking and destabilizing the initiation complex. Seefeldt AC, Nguyen F, Antunes S, Pérébaskine N, Graf M, Arenz S, Inampudi KK, Douat C, Guichard G, Wilson DN, Innis CA. Nat Struct Mol Biol 22 470-475 (2015)
  4. The mechanism of inhibition of protein synthesis by the proline-rich peptide oncocin. Roy RN, Lomakin IB, Gagnon MG, Steitz TA. Nat Struct Mol Biol 22 466-469 (2015)
  5. Structures of proline-rich peptides bound to the ribosome reveal a common mechanism of protein synthesis inhibition. Gagnon MG, Roy RN, Lomakin IB, Florin T, Mankin AS, Steitz TA. Nucleic Acids Res 44 2439-2450 (2016)
  6. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J, Twyman RM, Zuchner T, Sadd BM, Regoes RR, Schmid-Hempel P, Vilcinskas A. Proc Biol Sci 282 20150293 (2015)
  7. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. Zhang P, Leu JI, Murphy ME, George DL, Marmorstein R. PLoS One 9 e103518 (2014)
  8. Structure of Hsp90-Hsp70-Hop-GR reveals the Hsp90 client-loading mechanism. Wang RY, Noddings CM, Kirschke E, Myasnikov AG, Johnson JL, Agard DA. Nature 601 460-464 (2022)
  9. Conserved conformational selection mechanism of Hsp70 chaperone-substrate interactions. Sekhar A, Velyvis A, Zoltsman G, Rosenzweig R, Bouvignies G, Kay LE. Elife 7 e32764 (2018)
  10. Super Spy variants implicate flexibility in chaperone action. Quan S, Wang L, Petrotchenko EV, Makepeace KA, Horowitz S, Yang J, Zhang Y, Borchers CH, Bardwell JC. Elife 3 e01584 (2014)
  11. Promiscuous binding by Hsp70 results in conformational heterogeneity and fuzzy chaperone-substrate ensembles. Rosenzweig R, Sekhar A, Nagesh J, Kay LE. Elife 6 e28030 (2017)
  12. Optimization of oncocin for antibacterial activity using a SPOT synthesis approach: extending the pathogen spectrum to Staphylococcus aureus. Knappe D, Ruden S, Langanke S, Tikkoo T, Ritzer J, Mikut R, Martin LL, Hoffmann R, Hilpert K. Amino Acids 48 269-280 (2016)
  13. BiPPred: Combined sequence- and structure-based prediction of peptide binding to the Hsp70 chaperone BiP. Schneider M, Rosam M, Glaser M, Patronov A, Shah H, Back KC, Daake MA, Buchner J, Antes I. Proteins 84 1390-1407 (2016)
  14. Synergy Between Proline-Rich Antimicrobial Peptides and Small Molecule Antibiotics Against Selected Gram-Negative Pathogens in vitro and in vivo. Otvos L, Ostorhazi E, Szabo D, Zumbrun SD, Miller LL, Halasohoris SA, Desai PD, Int Veldt SM, Kraus CN. Front Chem 6 309 (2018)
  15. (Re)Defining the Proline-Rich Antimicrobial Peptide Family and the Identification of Putative New Members. Welch NG, Li W, Hossain MA, Separovic F, O'Brien-Simpson NM, Wade JD. Front Chem 8 607769 (2020)
  16. Bap (Sil1) regulates the molecular chaperone BiP by coupling release of nucleotide and substrate. Rosam M, Krader D, Nickels C, Hochmair J, Back KC, Agam G, Barth A, Zeymer C, Hendrix J, Schneider M, Antes I, Reinstein J, Lamb DC, Buchner J. Nat Struct Mol Biol 25 90-100 (2018)
  17. In vivo Efficacy and Pharmacokinetics of Optimized Apidaecin Analogs. Schmidt R, Knappe D, Wende E, Ostorházi E, Hoffmann R. Front Chem 5 15 (2017)
  18. Multivalent contacts of the Hsp70 Ssb contribute to its architecture on ribosomes and nascent chain interaction. Hanebuth MA, Kityk R, Fries SJ, Jain A, Kriel A, Albanese V, Frickey T, Peter C, Mayer MP, Frydman J, Deuerling E. Nat Commun 7 13695 (2016)
  19. DnaK as Antibiotic Target: Hot Spot Residues Analysis for Differential Inhibition of the Bacterial Protein in Comparison with the Human HSP70. Chiappori F, Fumian M, Milanesi L, Merelli I. PLoS One 10 e0124563 (2015)
  20. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  21. Nanomechanics of the substrate binding domain of Hsp70 determine its allosteric ATP-induced conformational change. Mandal SS, Merz DR, Buchsteiner M, Dima RI, Rief M, Žoldák G. Proc Natl Acad Sci U S A 114 6040-6045 (2017)
  22. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE. Melero R, Moro F, Pérez-Calvo MÁ, Perales-Calvo J, Quintana-Gallardo L, Llorca O, Muga A, Valpuesta JM. J Biol Chem 290 10083-10092 (2015)
  23. Optimization of adiponectin-derived peptides for inhibition of cancer cell growth and signaling. Otvos L, Kovalszky I, Olah J, Coroniti R, Knappe D, Nollmann FI, Hoffmann R, Wade JD, Lovas S, Surmacz E. Biopolymers 104 156-166 (2015)
  24. Effects of Lipidation on a Proline-Rich Antibacterial Peptide. Armas F, Di Stasi A, Mardirossian M, Romani AA, Benincasa M, Scocchi M. Int J Mol Sci 22 7959 (2021)
  25. Structural Insights into Substrate Recognition and Catalysis in Outer Membrane Protein B (OmpB) by Protein-lysine Methyltransferases from Rickettsia. Abeykoon AH, Noinaj N, Choi BE, Wise L, He Y, Chao CC, Wang G, Gucek M, Ching WM, Chock PB, Buchanan SK, Yang DC. J Biol Chem 291 19962-19974 (2016)
  26. Advantage of a Narrow Spectrum Host Defense (Antimicrobial) Peptide Over a Broad Spectrum Analog in Preclinical Drug Development. Ostorhazi E, Hoffmann R, Herth N, Wade JD, Kraus CN, Otvos L. Front Chem 6 359 (2018)
  27. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data. Sekhar A, Nagesh J, Rosenzweig R, Kay LE. Protein Sci 26 2207-2220 (2017)
  28. The ribosome-associated complex RAC serves in a relay that directs nascent chains to Ssb. Zhang Y, Valentín Gesé G, Conz C, Lapouge K, Kopp J, Wölfle T, Rospert S, Sinning I. Nat Commun 11 1504 (2020)
  29. Immunogenicity and pharmacokinetics of short, proline-rich antimicrobial peptides. Holfeld L, Herth N, Singer D, Hoffmann R, Knappe D. Future Med Chem 7 1581-1596 (2015)
  30. Investigation of cationicity and structure of pseudin-2 analogues for enhanced bacterial selectivity and anti-inflammatory activity. Jeon D, Jeong MC, Jacob B, Bang JK, Kim EH, Cheong C, Jung ID, Park Y, Kim Y. Sci Rep 7 1455 (2017)
  31. Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Kopeikin PM, Zharkova MS, Kolobov AA, Smirnova MP, Sukhareva MS, Umnyakova ES, Kokryakov VN, Orlov DS, Milman BL, Balandin SV, Panteleev PV, Ovchinnikova TV, Komlev AS, Tossi A, Shamova OV. Front Cell Infect Microbiol 10 552905 (2020)
  32. Efficacy of ARV-1502, a Proline-Rich Antimicrobial Peptide, in a Murine Model of Bacteremia Caused by Multi-Drug Resistant (MDR) Acinetobacter baumannii. Xiong YQ, Li L, Zhou Y, Kraus CN. Molecules 24 E2820 (2019)
  33. Selective promiscuity in the binding of E. coli Hsp70 to an unfolded protein. Clerico EM, Pozhidaeva AK, Jansen RM, Özden C, Tilitsky JM, Gierasch LM. Proc Natl Acad Sci U S A 118 e2016962118 (2021)
  34. An allosteric inhibitor of bacterial Hsp70 chaperone potentiates antibiotics and mitigates resistance. Hosfelt J, Richards A, Zheng M, Adura C, Nelson B, Yang A, Fay A, Resager W, Ueberheide B, Glickman JF, Lupoli TJ. Cell Chem Biol 29 854-869.e9 (2022)
  35. Ribosomal Target-Binding Sites of Antimicrobial Peptides Api137 and Onc112 Are Conserved among Pathogens Indicating New Lead Structures To Develop Novel Broad-Spectrum Antibiotics. Kolano L, Knappe D, Volke D, Sträter N, Hoffmann R. Chembiochem 21 2628-2634 (2020)
  36. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone. Dalphin MD, Stangl AJ, Liu Y, Cavagnero S. Biochemistry 59 1946-1960 (2020)
  37. The β6/β7 region of the Hsp70 substrate-binding domain mediates heat-shock response and prion propagation. Xu L, Gong W, Cusack SA, Wu H, Loovers HM, Zhang H, Perrett S, Jones GW. Cell Mol Life Sci 75 1445-1459 (2018)
  38. Influence of Substitutions in the Binding Motif of Proline-Rich Antimicrobial Peptide ARV-1502 on 70S Ribosome Binding and Antimicrobial Activity. Brakel A, Krizsan A, Itzenga R, Kraus CN, Otvos L, Hoffmann R. Int J Mol Sci 23 3150 (2022)
  39. Protein polarization driven by nucleoid exclusion of DnaK(HSP70)-substrate complexes. Collet C, Thomassin JL, Francetic O, Genevaux P, Tran Van Nhieu G. Nat Commun 9 2027 (2018)
  40. Ribosomal binding and antibacterial activity of ethylene glycol-bridged apidaecin Api137 and oncocin Onc112 conjugates. Goldbach T, Knappe D, Reinsdorf C, Berg T, Hoffmann R. J Pept Sci 22 592-599 (2016)
  41. An unexpected switch in peptide binding mode: from simulation to substrate specificity. Kahler U, Fuchs JE, Goettig P, Liedl KR. J Biomol Struct Dyn 36 4072-4084 (2018)
  42. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. FEBS Open Bio 4 571-583 (2014)
  43. Physics-based modeling provides predictive understanding of selectively promiscuous substrate binding by Hsp70 chaperones. Nordquist EB, English CA, Clerico EM, Sherman W, Gierasch LM, Chen J. PLoS Comput Biol 17 e1009567 (2021)
  44. A Proteomic Analysis of Discolored Tooth Surfaces after the Use of 0.12% Chlorhexidine (CHX) Mouthwash and CHX Provided with an Anti-Discoloration System (ADS). Bergamini S, Bellei E, Generali L, Tomasi A, Bertoldi C. Materials (Basel) 14 4338 (2021)
  45. Computationally-Aided Modeling of Hsp70-Client Interactions: Past, Present, and Future. Nordquist EB, Clerico EM, Chen J, Gierasch LM. J Phys Chem B 126 6780-6791 (2022)
  46. Energy landscape remodeling mechanism of Hsp70-chaperone-accelerated protein folding. Lu J, Zhang X, Wu Y, Sheng Y, Li W, Wang W. Biophys J 120 1971-1983 (2021)
  47. Functional Effects of ARV-1502 Analogs Against Bacterial Hsp70 and Implications for Antimicrobial Activity. Brakel A, Kolano L, Kraus CN, Otvos L, Hoffmann R. Front Chem 10 798006 (2022)
  48. HSPA8 acts as an amyloidase to suppress necroptosis by inhibiting and reversing functional amyloid formation. Wu E, He W, Wu C, Chen Z, Zhou S, Wu X, Hu Z, Jia K, Pan J, Wang L, Qin J, Liu D, Lu J, Wang H, Li J, Wang S, Sun L. Cell Res 33 851-866 (2023)
  49. Identification of Functional Interactome of Colistin Resistance Protein MCR-1 in Escherichia coli. Li H, Wang Y, Chen Q, Xia X, Shen J, Wang Y, Shao B. Front Microbiol 11 583185 (2020)
  50. Evaluation of Sample Preparation Strategies for Human Milk and Plasma Proteomics. Milkovska-Stamenova S, Wölk M, Hoffmann R. Molecules 26 6816 (2021)
  51. Evaluation of Potential DnaK Modulating Proline-Rich Antimicrobial Peptides Identified by Computational Screening. Handley TNG, Li W, Welch NG, O'Brien-Simpson NM, Hossain MA, Wade JD. Front Chem 10 875233 (2022)
  52. Hsp70/J-protein machinery from Glossina morsitans morsitans, vector of African trypanosomiasis. Bentley SJ, Boshoff A. PLoS One 12 e0183858 (2017)
  53. Modulation of the 20S Proteasome Activity by Porphyrin Derivatives Is Steered through Their Charge Distribution. Persico M, Santoro AM, D'Urso A, Milardi D, Purrello R, Cunsolo A, Gobbo M, Fattorusso R, Diana D, Stefanelli M, Tundo GR, Sbardella D, Coletta M, Fattorusso C. Biomolecules 12 741 (2022)
  54. Structural Mapping of BMP Conformational Epitopes and Bioengineering Design of Osteogenic Peptides to Specifically Target the Epitope-Binding Sites. Chen H, Zhou Y, Dong Q. Cell Mol Bioeng 15 341-352 (2022)