4dyy Citations

Re-engineering protein interfaces yields copper-inducible ferritin cage assembly.

Nat Chem Biol 9 169-76 (2013)
Related entries: 4dyx, 4dyz, 4dz0

Cited: 77 times
EuropePMC logo PMID: 23340339

Abstract

The ability to chemically control protein-protein interactions would allow the interrogation of dynamic cellular processes and lead to a better understanding and exploitation of self-assembling protein architectures. Here we introduce a new engineering strategy--reverse metal-templated interface redesign (rMeTIR)--that transforms a natural protein-protein interface into one that only engages in selective response to a metal ion. We have applied rMeTIR to render the self-assembly of the cage-like protein ferritin controllable by divalent copper binding, which has allowed the study of the structure and stability of the isolated ferritin monomer, the demonstration of the primary role of conserved hydrogen-bonding interactions in providing geometric specificity for cage assembly and the uniform chemical modification of the cage interior under physiological conditions. Notably, copper acts as a structural template for ferritin assembly in a manner that is highly reminiscent of RNA sequences that template virus capsid formation.

Reviews - 4dyy mentioned but not cited (1)

  1. Strategies to control the binding mode of de novo designed protein interactions. Der BS, Kuhlman B. Curr Opin Struct Biol 23 639-646 (2013)


Reviews citing this publication (17)

  1. Protein design: toward functional metalloenzymes. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem Rev 114 3495-3578 (2014)
  2. Hemoprotein-based supramolecular assembling systems. Oohora K, Hayashi T. Curr Opin Chem Biol 19 154-161 (2014)
  3. Interfacial metal coordination in engineered protein and peptide assemblies. Sontz PA, Song WJ, Tezcan FA. Curr Opin Chem Biol 19 42-49 (2014)
  4. Ferritin Nanocage: A Versatile Nanocarrier Utilized in the Field of Food, Nutrition, and Medicine. Zhang C, Zhang X, Zhao G. Nanomaterials (Basel) 10 E1894 (2020)
  5. Functionalizing Ferritin Nanoparticles for Vaccine Development. Rodrigues MQ, Alves PM, Roldão A. Pharmaceutics 13 1621 (2021)
  6. Design of a confined environment using protein cages and crystals for the development of biohybrid materials. Abe S, Maity B, Ueno T. Chem Commun (Camb) 52 6496-6512 (2016)
  7. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  8. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. García-García JD, Sánchez-Thomas R, Moreno-Sánchez R. Biotechnol Adv 34 859-873 (2016)
  9. Hierarchical Self-Assembly of Proteins Through Rationally Designed Supramolecular Interfaces. Sun H, Li Y, Yu S, Liu J. Front Bioeng Biotechnol 8 295 (2020)
  10. New designed protein assemblies. Božič S, Doles T, Gradišar H, Jerala R. Curr Opin Chem Biol 17 940-945 (2013)
  11. Strategies and perspectives of assembling multi-enzyme systems. Wang SZ, Zhang YH, Ren H, Wang YL, Jiang W, Fang BS. Crit Rev Biotechnol 37 1024-1037 (2017)
  12. Bioinspired nanoscale materials for biomedical and energy applications. Bhattacharya P, Du D, Lin Y. J R Soc Interface 11 20131067 (2014)
  13. Structure-based design of novel polyhedral protein nanomaterials. Khmelinskaia A, Wargacki A, King NP. Curr Opin Microbiol 61 51-57 (2021)
  14. Connectability of protein cages. Majsterkiewicz K, Azuma Y, Heddle JG. Nanoscale Adv 2 2255-2264 (2020)
  15. Proteins as templates for complex synthetic metalloclusters: towards biologically programmed heterogeneous catalysis. Fehl C, Davis BG. Proc Math Phys Eng Sci 472 20160078 (2016)
  16. Ferritin: A Promising Nanoreactor and Nanocarrier for Bionanotechnology. Mohanty A, Parida A, Raut RK, Behera RK. ACS Bio Med Chem Au 2 258-281 (2022)
  17. Ferritin nanocages as efficient nanocarriers and promising platforms for COVID-19 and other vaccines development. Reutovich AA, Srivastava AK, Arosio P, Bou-Abdallah F. Biochim Biophys Acta Gen Subj 1867 130288 (2023)

Articles citing this publication (59)

  1. Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Kell DB, Pretorius E. Metallomics 6 748-773 (2014)
  2. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Kanekiyo M, Bu W, Joyce MG, Meng G, Whittle JR, Baxa U, Yamamoto T, Narpala S, Todd JP, Rao SS, McDermott AB, Koup RA, Rossmann MG, Mascola JR, Graham BS, Cohen JI, Nabel GJ. Cell 162 1090-1100 (2015)
  3. Structure of a designed protein cage that self-assembles into a highly porous cube. Lai YT, Reading E, Hura GL, Tsai KL, Laganowsky A, Asturias FJ, Tainer JA, Robinson CV, Yeates TO. Nat Chem 6 1065-1071 (2014)
  4. Engineering Melanin Nanoparticles as an Efficient Drug-Delivery System for Imaging-Guided Chemotherapy. Zhang R, Fan Q, Yang M, Cheng K, Lu X, Zhang L, Huang W, Cheng Z. Adv Mater 27 5063-5069 (2015)
  5. Exceptionally stable, redox-active supramolecular protein assemblies with emergent properties. Brodin JD, Carr JR, Sontz PA, Tezcan FA. Proc Natl Acad Sci U S A 111 2897-2902 (2014)
  6. Protein nanocages that penetrate airway mucus and tumor tissue. Huang X, Chisholm J, Zhuang J, Xiao Y, Duncan G, Chen X, Suk JS, Hanes J. Proc Natl Acad Sci U S A 114 E6595-E6602 (2017)
  7. Flexible, symmetry-directed approach to assembling protein cages. Sciore A, Su M, Koldewey P, Eschweiler JD, Diffley KA, Linhares BM, Ruotolo BT, Bardwell JC, Skiniotis G, Marsh EN. Proc Natl Acad Sci U S A 113 8681-8686 (2016)
  8. Near-atomic cryo-EM imaging of a small protein displayed on a designed scaffolding system. Liu Y, Gonen S, Gonen T, Yeates TO. Proc Natl Acad Sci U S A 115 3362-3367 (2018)
  9. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Zhang L, Bailey JB, Subramanian RH, Groisman A, Tezcan FA. Nature 557 86-91 (2018)
  10. Enzyme Encapsulation by a Ferritin Cage. Tetter S, Hilvert D. Angew Chem Int Ed Engl 56 14933-14936 (2017)
  11. Iron Oxidation and Core Formation in Recombinant Heteropolymeric Human Ferritins. Mehlenbacher M, Poli M, Arosio P, Santambrogio P, Levi S, Chasteen ND, Bou-Abdallah F. Biochemistry 56 3900-3912 (2017)
  12. Reprogramming an ATP-driven protein machine into a light-gated nanocage. Hoersch D, Roh SH, Chiu W, Kortemme T. Nat Nanotechnol 8 928-932 (2013)
  13. Engineering protein interfaces yields ferritin disassembly and reassembly under benign experimental conditions. Chen H, Zhang S, Xu C, Zhao G. Chem Commun (Camb) 52 7402-7405 (2016)
  14. Ultrasmall endogenous biopolymer nanoparticles for magnetic resonance/photoacoustic dual-modal imaging-guided photothermal therapy. Sun J, Xu W, Li L, Fan B, Peng X, Qu B, Wang L, Li T, Li S, Zhang R. Nanoscale 10 10584-10595 (2018)
  15. Structure of a novel 13 nm dodecahedral nanocage assembled from a redesigned bacterial microcompartment shell protein. Jorda J, Leibly DJ, Thompson MC, Yeates TO. Chem Commun (Camb) 52 5041-5044 (2016)
  16. Self-Assembly of Proteins: Towards Supramolecular Materials. Yang L, Liu A, Cao S, Putri RM, Jonkheijm P, Cornelissen JJ. Chemistry 22 15570-15582 (2016)
  17. Complete and cooperative in vitro assembly of computationally designed self-assembling protein nanomaterials. Wargacki AJ, Wörner TP, van de Waterbeemd M, Ellis D, Heck AJR, King NP. Nat Commun 12 883 (2021)
  18. Ferritin variants: inspirations for rationally designing protein nanocarriers. Jin Y, He J, Fan K, Yan X. Nanoscale 11 12449-12459 (2019)
  19. Thermophilic Ferritin 24mer Assembly and Nanoparticle Encapsulation Modulated by Interdimer Electrostatic Repulsion. Pulsipher KW, Villegas JA, Roose BW, Hicks TL, Yoon J, Saven JG, Dmochowski IJ. Biochemistry 56 3596-3606 (2017)
  20. Metal-dependent assembly of a protein nano-cage. Cristie-David AS, Marsh ENG. Protein Sci 28 1620-1629 (2019)
  21. Engineering protein assemblies with allosteric control via monomer fold-switching. Campos LA, Sharma R, Alvira S, Ruiz FM, Ibarra-Molero B, Sadqi M, Alfonso C, Rivas G, Sanchez-Ruiz JM, Romero Garrido A, Valpuesta JM, Muñoz V. Nat Commun 10 5703 (2019)
  22. Melanin-manganese nanoparticles with ultrahigh efficient clearance in vivo for tumor-targeting T1 magnetic resonance imaging contrast agent. Xu W, Sun J, Li L, Peng X, Zhang R, Wang B. Biomater Sci 6 207-215 (2017)
  23. Conversion of the Native 24-mer Ferritin Nanocage into Its Non-Native 16-mer Analogue by Insertion of Extra Amino Acid Residues. Zhang S, Zang J, Wang W, Chen H, Zhang X, Wang F, Wang H, Zhao G. Angew Chem Int Ed Engl 55 16064-16070 (2016)
  24. Disulfide-mediated conversion of 8-mer bowl-like protein architecture into three different nanocages. Zang J, Chen H, Zhang X, Zhang C, Guo J, Du M, Zhao G. Nat Commun 10 778 (2019)
  25. Change in structure and ligand binding properties of hyperstable cytochrome c555 from Aquifex aeolicus by domain swapping. Yamanaka M, Nagao S, Komori H, Higuchi Y, Hirota S. Protein Sci 24 366-375 (2015)
  26. Controlling gold nanoparticle seeded growth in thermophilic ferritin protein templates. Pulsipher KW, Honig S, Deng S, Dmochowski IJ. J Inorg Biochem 174 169-176 (2017)
  27. Ferritin Assembly in Enterocytes of Drosophila melanogaster. Rosas-Arellano A, Vásquez-Procopio J, Gambis A, Blowes LM, Steller H, Mollereau B, Missirlis F. Int J Mol Sci 17 27 (2016)
  28. First biochemical and crystallographic characterization of a fast-performing ferritin from a marine invertebrate. De Meulenaere E, Bailey JB, Tezcan FA, Deheyn DD. Biochem J 474 4193-4206 (2017)
  29. Metal ion assisted interface re-engineering of a ferritin nanocage for enhanced biofunctions and cancer therapy. Wang Z, Dai Y, Wang Z, Jacobson O, Zhang F, Yung BC, Zhang P, Gao H, Niu G, Liu G, Chen X. Nanoscale 10 1135-1144 (2018)
  30. Programmed Self-Assembly of a Biochemical and Magnetic Scaffold to Trigger and Manipulate Microtubule Structures. Ducasse R, Wang WA, Navarro MG, Debons N, Colin A, Gautier J, Guigner JM, Guyot F, Gueroui Z. Sci Rep 7 11344 (2017)
  31. Designing the structure and folding pathway of modular topological bionanostructures. Ljubetič A, Drobnak I, Gradišar H, Jerala R. Chem Commun (Camb) 52 5220-5229 (2016)
  32. Multiple active zones in hybrid QM/MM molecular dynamics simulations for large biomolecular systems. Torras J. Phys Chem Chem Phys 17 9959-9972 (2015)
  33. Screening and structural and functional investigation of a novel ferritin from Phascolosoma esculenta. Ding H, Zhang D, Chu S, Zhou J, Su X. Protein Sci 26 2039-2050 (2017)
  34. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation. Everman ER, Cloud-Richardson KM, Macdonald SJ. Genetics 217 1-20 (2021)
  35. Chemically induced protein cage assembly with programmable opening and cargo release. Stupka I, Azuma Y, Biela AP, Imamura M, Scheuring S, Pyza E, Woźnicka O, Maskell DP, Heddle JG. Sci Adv 8 eabj9424 (2022)
  36. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites. Munch HK, Nygaard J, Christensen NJ, Engelbrekt C, Østergaard M, Porsgaard T, Hoeg-Jensen T, Zhang J, Arleth L, Thulstrup PW, Jensen KJ. Angew Chem Int Ed Engl 55 2378-2381 (2016)
  37. Construction of an enterobactin analogue with symmetrically arranged monomer subunits of ferritin. Nakajima H, Kondo M, Nakane T, Abe S, Nakao T, Watanabe Y, Ueno T. Chem Commun (Camb) 51 16609-16612 (2015)
  38. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes. Theil EC, Turano P, Ghini V, Allegrozzi M, Bernacchioni C. J Biol Inorg Chem 19 615-622 (2014)
  39. Coordination design of cadmium ions at the 4-fold axis channel of the apo-ferritin cage. Abe S, Ito N, Maity B, Lu C, Lu D, Ueno T. Dalton Trans 48 9759-9764 (2019)
  40. Design and site-directed compartmentalization of gold nanoclusters within the intrasubunit interfaces of ferritin nanocage. Zang J, Zheng B, Zhang X, Arosio P, Zhao G. J Nanobiotechnology 17 79 (2019)
  41. Genetically Modified Ferritin Nanoparticles with Bone-Targeting Peptides for Bone Imaging. Kim JW, Lee KK, Park KW, Kim M, Lee CS. Int J Mol Sci 22 4854 (2021)
  42. A supramolecular assembly based on an engineered hemoprotein exhibiting a thermal stimulus-driven conversion to a new distinct supramolecular structure. Oohora K, Onuma Y, Tanaka Y, Onoda A, Hayashi T. Chem Commun (Camb) 53 6879-6882 (2017)
  43. Disulfide-mediated reversible two-dimensional self-assembly of protein nanocages. Zhou K, Chen H, Zhang S, Wang Y, Zhao G. Chem Commun (Camb) 55 7510-7513 (2019)
  44. Metal induced self-assembly of designed V-shape protein into 2D wavy supramolecular nanostructure. Qiao SP, Lang C, Wang RD, Li XM, Yan TF, Pan TZ, Zhao LL, Fan XT, Zhang X, Hou CX, Luo Q, Xu JY, Liu JQ. Nanoscale 8 333-341 (2016)
  45. article-commentary Metalloenzymes: Cage redesign explains assembly. Theil EC, Turano P. Nat Chem Biol 9 143-144 (2013)
  46. Crystalline protein scaffolds as a defined environment for the synthesis of bioinorganic materials. Künzle M, Lach M, Beck T. Dalton Trans 47 10382-10387 (2018)
  47. Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages. Torras J, Alemán C. Chem Commun (Camb) 54 2118-2121 (2018)
  48. Pulse Dipolar Electron Paramagnetic Resonance Spectroscopy Reveals Buffer-Modulated Cooperativity of Metal-Templated Protein Dimerization. Oranges M, Wort JL, Fukushima M, Fusco E, Ackermann K, Bode BE. J Phys Chem Lett 13 7847-7852 (2022)
  49. Structural Insights Into the Effects of Interactions With Iron and Copper Ions on Ferritin From the Blood Clam Tegillarca granosa. Ming T, Jiang Q, Huo C, Huan H, Wu Y, Su C, Qiu X, Lu C, Zhou J, Li Y, Han J, Zhang Z, Su X. Front Mol Biosci 9 800008 (2022)
  50. Archaeal Lsm rings as stable self-assembling tectons for protein nanofabrication. Wason A, Pearce FG, Gerrard JA, Mabbutt BC. Biochem Biophys Res Commun 489 326-331 (2017)
  51. Conversion of recombinant human ferritin light chain inclusion bodies into uniform nanoparticles in Escherichia coli for facile production. Song X, Zheng Y, Liu Y, Meng H, Yu R, Zhang C. Eng Life Sci 22 453-463 (2022)
  52. Editorial Ferritin-based nanoprobes: promising materials for tumor imaging. Nie G, Zhao Y. Nanomedicine (Lond) 8 1899-1900 (2013)
  53. Production of Recombinant Human Hybrid Ferritin with Heavy Chain and Light Chain in Escherichia coli and its Characterization. Song X, Zheng Y, Liu Y, Meng H, Yu R, Zhang C. Curr Pharm Biotechnol 24 341-349 (2023)
  54. Protein encapsulation within the internal cavity of a bacterioferritin. Bradley JM, Gray E, Richardson J, Moore GR, Le Brun NE. Nanoscale 14 12322-12331 (2022)
  55. Towards production of novel catalyst powders from supported size-selected clusters by multilayer deposition and dicing. Jian N, Bauer K, Palmer RE. Nanotechnology 28 325601 (2017)
  56. A new and efficient procedure to load bioactive molecules within the human heavy-chain ferritin nanocage. Lucignano R, Stanzione I, Ferraro G, Di Girolamo R, Cané C, Di Somma A, Duilio A, Merlino A, Picone D. Front Mol Biosci 10 1008985 (2023)
  57. How stable are the collagen and ferritin proteins for application in bioelectronics? Kolay J, Bera S, Mukhopadhyay R. PLoS One 16 e0246180 (2021)
  58. Rational design of the genetic code expansion toolkit for in vivo encoding of D-amino acids. Jiang HK, Weng JH, Wang YH, Tsou JC, Chen PJ, Ko AA, Söll D, Tsai MD, Wang YS. Front Genet 14 1277489 (2023)
  59. Structural and Biochemical Characterization of Silver/Copper Binding by Dendrorhynchus zhejiangensis Ferritin. Huo C, Ming T, Wu Y, Huan H, Qiu X, Lu C, Li Y, Zhang Z, Han J, Su X. Polymers (Basel) 15 1297 (2023)