4cmp Citations

Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.

Abstract

Type II CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) systems use an RNA-guided DNA endonuclease, Cas9, to generate double-strand breaks in invasive DNA during an adaptive bacterial immune response. Cas9 has been harnessed as a powerful tool for genome editing and gene regulation in many eukaryotic organisms. We report 2.6 and 2.2 angstrom resolution crystal structures of two major Cas9 enzyme subtypes, revealing the structural core shared by all Cas9 family members. The architectures of Cas9 enzymes define nucleic acid binding clefts, and single-particle electron microscopy reconstructions show that the two structural lobes harboring these clefts undergo guide RNA-induced reorientation to form a central channel where DNA substrates are bound. The observation that extensive structural rearrangements occur before target DNA duplex binding implicates guide RNA loading as a key step in Cas9 activation.

Reviews - 4cmp mentioned but not cited (12)

  1. Classification and evolution of type II CRISPR-Cas systems. Chylinski K, Makarova KS, Charpentier E, Koonin EV. Nucleic Acids Res. 42 6091-6105 (2014)
  2. The structural biology of CRISPR-Cas systems. Jiang F, Doudna JA. Curr. Opin. Struct. Biol. 30 100-111 (2015)
  3. DNA and RNA interference mechanisms by CRISPR-Cas surveillance complexes. Plagens A, Richter H, Charpentier E, Randau L. FEMS Microbiol. Rev. 39 442-463 (2015)
  4. Annotation and Classification of CRISPR-Cas Systems. Makarova KS, Koonin EV. Methods Mol. Biol. 1311 47-75 (2015)
  5. Structure Principles of CRISPR-Cas Surveillance and Effector Complexes. Tsui TK, Li H. Annu Rev Biophys 44 229-255 (2015)
  6. Exploring nano-enabled CRISPR-Cas-powered strategies for efficient diagnostics and treatment of infectious diseases. Dubey AK, Kumar Gupta V, Kujawska M, Orive G, Kim NY, Li CZ, Kumar Mishra Y, Kaushik A. J Nanostructure Chem 12 833-864 (2022)
  7. Allosteric regulation of CRISPR-Cas9 for DNA-targeting and cleavage. Zuo Z, Liu J. Curr Opin Struct Biol 62 166-174 (2020)
  8. Unleashing the Power of Bond Cleavage Chemistry in Living Systems. Wang J, Wang X, Fan X, Chen PR. ACS Cent Sci 7 929-943 (2021)
  9. CRISPR RNA-guided autonomous delivery of Cas9. Wilkinson RA, Martin C, Nemudryi AA, Wiedenheft B. Nat. Struct. Mol. Biol. 26 14-24 (2019)
  10. CRISPR-Cas9: A History of Its Discovery and Ethical Considerations of Its Use in Genome Editing. Gostimskaya I. Biochemistry (Mosc) 87 777-788 (2022)
  11. Insights into the Mechanism of CRISPR/Cas9-Based Genome Editing from Molecular Dynamics Simulations. Bhattacharya S, Satpati P. ACS Omega 8 1817-1837 (2023)
  12. Twisting and swiveling domain motions in Cas9 to recognize target DNA duplexes, make double-strand breaks, and release cleaved duplexes. Wang J, Arantes PR, Ahsan M, Sinha S, Kyro GW, Maschietto F, Allen B, Skeens E, Lisi GP, Batista VS, Palermo G. Front Mol Biosci 9 1072733 (2022)

Articles - 4cmp mentioned but not cited (27)

  1. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E, Doudna JA. Science 343 1247997 (2014)
  2. Conformational control of DNA target cleavage by CRISPR-Cas9. Sternberg SH, LaFrance B, Kaplan M, Doudna JA. Nature 527 110-113 (2015)
  3. Optical Control of CRISPR/Cas9 Gene Editing. Hemphill J, Borchardt EK, Brown K, Asokan A, Deiters A. J. Am. Chem. Soc. 137 5642-5645 (2015)
  4. A Broad-Spectrum Inhibitor of CRISPR-Cas9. Harrington LB, Doxzen KW, Ma E, Liu JJ, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA. Cell 170 1224-1233.e15 (2017)
  5. Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Shibata M, Nishimasu H, Kodera N, Hirano S, Ando T, Uchihashi T, Nureki O. Nat Commun 8 1430 (2017)
  6. Diverse Mechanisms of CRISPR-Cas9 Inhibition by Type IIC Anti-CRISPR Proteins. Zhu Y, Gao A, Zhan Q, Wang Y, Feng H, Liu S, Gao G, Serganov A, Gao P. Mol Cell 74 296-309.e7 (2019)
  7. Engineering of temperature- and light-switchable Cas9 variants. Richter F, Fonfara I, Bouazza B, Schumacher CH, Bratovič M, Charpentier E, Möglich A. Nucleic Acids Res. 44 10003-10014 (2016)
  8. Backbone-independent NMR resonance assignments of methyl probes in large proteins. Nerli S, De Paula VS, McShan AC, Sgourakis NG. Nat Commun 12 691 (2021)
  9. Bridge Helix of Cas9 Modulates Target DNA Cleavage and Mismatch Tolerance. Babu K, Amrani N, Jiang W, Yogesha SD, Nguyen R, Qin PZ, Rajan R. Biochemistry 58 1905-1917 (2019)
  10. Cryo-EM structures reveal coordinated domain motions that govern DNA cleavage by Cas9. Zhu X, Clarke R, Puppala AK, Chittori S, Merk A, Merrill BJ, Simonović M, Subramaniam S. Nat. Struct. Mol. Biol. 26 679-685 (2019)
  11. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets. Kamagata K, Iwaki N, Hazra MK, Kanbayashi S, Banerjee T, Chiba R, Sakomoto S, Gaudon V, Castaing B, Takahashi H, Kimura M, Oikawa H, Takahashi S, Levy Y. Sci Rep 11 19323 (2021)
  12. Recent advances in structural studies of the CRISPR-Cas-mediated genome editing tools. Zhu Y, Huang Z. Natl Sci Rev 6 438-451 (2019)
  13. Active-Site Models of Streptococcus pyogenes Cas9 in DNA Cleavage State. Tang H, Yuan H, Du W, Li G, Xue D, Huang Q. Front Mol Biosci 8 653262 (2021)
  14. Efficient precise integration of large DNA sequences with 3'-overhang dsDNA donors using CRISPR/Cas9. Han W, Li Z, Guo Y, He K, Li W, Xu C, Ge L, He M, Yin X, Zhou J, Li C, Yao D, Bao J, Liang H. Proc Natl Acad Sci U S A 120 e2221127120 (2023)
  15. Electronic Circular Dichroism of the Cas9 Protein and gRNA:Cas9 Ribonucleoprotein Complex. Halat M, Klimek-Chodacka M, Orleanska J, Baranska M, Baranski R. Int J Mol Sci 22 2937 (2021)
  16. Nucleic Acid-Dependent Conformational Changes in CRISPR-Cas9 Revealed by Site-Directed Spin Labeling. Vazquez Reyes C, Tangprasertchai NS, Yogesha SD, Nguyen RH, Zhang X, Rajan R, Qin PZ. Cell Biochem. Biophys. 75 203-210 (2017)
  17. Real-time observation of flexible domain movements in CRISPR-Cas9. Osuka S, Isomura K, Kajimoto S, Komori T, Nishimasu H, Shima T, Nureki O, Uemura S. EMBO J. 37 (2018)
  18. Systematic classification of the His-Me finger superfamily. Jablonska J, Matelska D, Steczkiewicz K, Ginalski K. Nucleic Acids Res. 45 11479-11494 (2017)
  19. The bridge helix of Cas12a imparts selectivity in cis-DNA cleavage and regulates trans-DNA cleavage. Parameshwaran HP, Babu K, Tran C, Guan K, Allen A, Kathiresan V, Qin PZ, Rajan R. FEBS Lett 595 892-912 (2021)
  20. Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. León E, Ortiz V, Pérez A, Téllez J, Díaz GJ, Ramírez H MH, Contreras R LE. ACS Omega 8 33809-33818 (2023)
  21. CRISPR-Cas9 bends and twists DNA to read its sequence. Cofsky JC, Soczek KM, Knott GJ, Nogales E, Doudna JA. Nat Struct Mol Biol 29 395-402 (2022)
  22. Comparative structural and dynamics study of free and gRNA-bound FnCas9 and SpCas9 proteins. Panda G, Ray A. Comput Struct Biotechnol J 20 4172-4184 (2022)
  23. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Ferdosi SR, Ewaisha R, Moghadam F, Krishna S, Park JG, Ebrahimkhani MR, Kiani S, Anderson KS. Nat Commun 10 1842 (2019)
  24. Nucleolus localization of SpyCas9 affects its stability and interferes with host protein translation in mammalian cells. Tan R, Du W, Liu Y, Cong X, Bai M, Jiang C, Li Z, Tan M, Ma DK, Huang Q, Jiang W, Dang Y. Genes Dis 9 731-740 (2022)
  25. Structural and functional insights into the bona fide catalytic state of Streptococcus pyogenes Cas9 HNH nuclease domain. Zuo Z, Zolekar A, Babu K, Lin VJ, Hayatshahi HS, Rajan R, Wang YC, Liu J. Elife 8 (2019)
  26. Structural insights into Cas9 mismatch: promising for development of high-fidelity Cas9 variants. Tang H, Wang D, Shu Y. Signal Transduct Target Ther 7 271 (2022)
  27. Sumoylation of Cas9 at lysine 848 regulates protein stability and DNA binding. Ergünay T, Ayhan Ö, Celen AB, Georgiadou P, Pekbilir E, Abaci YT, Yesildag D, Rettel M, Sobhiafshar U, Ogmen A, Emre NT, Sahin U. Life Sci Alliance 5 e202101078 (2022)


Reviews citing this publication (222)

  1. Development and applications of CRISPR-Cas9 for genome engineering. Hsu PD, Lander ES, Zhang F. Cell 157 1262-1278 (2014)
  2. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Doudna JA, Charpentier E. Science 346 1258096 (2014)
  3. An updated evolutionary classification of CRISPR-Cas systems. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. Nat. Rev. Microbiol. 13 722-736 (2015)
  4. High-throughput functional genomics using CRISPR-Cas9. Shalem O, Sanjana NE, Zhang F. Nat. Rev. Genet. 16 299-311 (2015)
  5. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors. Anzalone AV, Koblan LW, Liu DR. Nat Biotechnol 38 824-844 (2020)
  6. Biology and Applications of CRISPR Systems: Harnessing Nature's Toolbox for Genome Engineering. Wright AV, Nuñez JK, Doudna JA. Cell 164 29-44 (2016)
  7. Unravelling the structural and mechanistic basis of CRISPR-Cas systems. van der Oost J, Westra ER, Jackson RN, Wiedenheft B. Nat. Rev. Microbiol. 12 479-492 (2014)
  8. The CRISPR/Cas9 system for plant genome editing and beyond. Bortesi L, Fischer R. Biotechnol. Adv. 33 41-52 (2015)
  9. Genome engineering with targetable nucleases. Carroll D. Annu Rev Biochem 83 409-439 (2014)
  10. CRISPR-Cas immunity in prokaryotes. Marraffini LA. Nature 526 55-61 (2015)
  11. Expanding the Biologist's Toolkit with CRISPR-Cas9. Sternberg SH, Doudna JA. Mol. Cell 58 568-574 (2015)
  12. CRISPR/Cas9 in Genome Editing and Beyond. Wang H, La Russa M, Qi LS. Annu. Rev. Biochem. 85 227-264 (2016)
  13. Diversity, classification and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS, Zhang F. Curr. Opin. Microbiol. 37 67-78 (2017)
  14. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems. Mohanraju P, Makarova KS, Zetsche B, Zhang F, Koonin EV, van der Oost J. Science 353 aad5147 (2016)
  15. Editing plant genomes with CRISPR/Cas9. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Curr. Opin. Biotechnol. 32 76-84 (2015)
  16. Genome-editing Technologies for Gene and Cell Therapy. Maeder ML, Gersbach CA. Mol. Ther. 24 430-446 (2016)
  17. Defining and improving the genome-wide specificities of CRISPR-Cas9 nucleases. Tsai SQ, Joung JK. Nat. Rev. Genet. 17 300-312 (2016)
  18. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Zhang XH, Tee LY, Wang XG, Huang QS, Yang SH. Mol Ther Nucleic Acids 4 e264 (2015)
  19. A CRISPR view of development. Harrison MM, Jenkins BV, O'Connor-Giles KM, Wildonger J. Genes Dev. 28 1859-1872 (2014)
  20. Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. Charpentier E, Richter H, van der Oost J, White MF. FEMS Microbiol. Rev. 39 428-441 (2015)
  21. CRISPR-Cas9 Structures and Mechanisms. Jiang F, Doudna JA. Annu Rev Biophys 46 505-529 (2017)
  22. Potential pitfalls of CRISPR/Cas9-mediated genome editing. Peng R, Lin G, Li J. FEBS J. 283 1218-1231 (2016)
  23. Making designer mutants in model organisms. Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Development 141 4042-4054 (2014)
  24. Genome editing with engineered nucleases in plants. Osakabe Y, Osakabe K. Plant Cell Physiol. 56 389-400 (2015)
  25. Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith Av. Nucleic Acids Res. 43 3407-3419 (2015)
  26. Small RNAs, 5' UTR elements and RNA-binding proteins in intracellular bacteria: impact on metabolism and virulence. Oliva G, Sahr T, Buchrieser C. FEMS Microbiol. Rev. 39 331-349 (2015)
  27. A decade of discovery: CRISPR functions and applications. Barrangou R, Horvath P. Nat Microbiol 2 17092 (2017)
  28. RNA-based recognition and targeting: sowing the seeds of specificity. Gorski SA, Vogel J, Doudna JA. Nat. Rev. Mol. Cell Biol. 18 215-228 (2017)
  29. Use of designer nucleases for targeted gene and genome editing in plants. Weeks DP, Spalding MH, Yang B. Plant Biotechnol. J. 14 483-495 (2016)
  30. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Bolukbasi MF, Gupta A, Wolfe SA. Nat. Methods 13 41-50 (2016)
  31. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Zischewski J, Fischer R, Bortesi L. Biotechnol. Adv. 35 95-104 (2017)
  32. Genome engineering via TALENs and CRISPR/Cas9 systems: challenges and perspectives. Mahfouz MM, Piatek A, Stewart CN. Plant Biotechnol. J. 12 1006-1014 (2014)
  33. The Bacterial Origins of the CRISPR Genome-Editing Revolution. Sontheimer EJ, Barrangou R. Hum. Gene Ther. 26 413-424 (2015)
  34. Genome modification by CRISPR/Cas9. Ma Y, Zhang L, Huang X. FEBS J. 281 5186-5193 (2014)
  35. Enabling functional genomics with genome engineering. Hilton IB, Gersbach CA. Genome Res. 25 1442-1455 (2015)
  36. The Revolution Continues: Newly Discovered Systems Expand the CRISPR-Cas Toolkit. Murugan K, Babu K, Sundaresan R, Rajan R, Sashital DG. Mol. Cell 68 15-25 (2017)
  37. The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops. Khatodia S, Bhatotia K, Passricha N, Khurana SM, Tuteja N. Front Plant Sci 7 506 (2016)
  38. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS, Grav LM, Lewis NE, Faustrup Kildegaard H. Biotechnol J 10 979-994 (2015)
  39. Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Pattanayak V, Guilinger JP, Liu DR. Meth. Enzymol. 546 47-78 (2014)
  40. Endonucleases: new tools to edit the mouse genome. Wijshake T, Baker DJ, van de Sluis B. Biochim. Biophys. Acta 1842 1942-1950 (2014)
  41. CRISPR-Cas systems: new players in gene regulation and bacterial physiology. Sampson TR, Weiss DS. Front Cell Infect Microbiol 4 37 (2014)
  42. Diversity of CRISPR-Cas immune systems and molecular machines. Barrangou R. Genome Biol. 16 247 (2015)
  43. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Zhang S, Shen J, Li D, Cheng Y. Theranostics 11 614-648 (2021)
  44. The new CRISPR-Cas system: RNA-guided genome engineering to efficiently produce any desired genetic alteration in animals. Seruggia D, Montoliu L. Transgenic Res. 23 707-716 (2014)
  45. Bacterial CRISPR: accomplishments and prospects. Peters JM, Silvis MR, Zhao D, Hawkins JS, Gross CA, Qi LS. Curr. Opin. Microbiol. 27 121-126 (2015)
  46. CRISPR-Cas9 genome engineering: Treating inherited retinal degeneration. Burnight ER, Giacalone JC, Cooke JA, Thompson JR, Bohrer LR, Chirco KR, Drack AV, Fingert JH, Worthington KS, Wiley LA, Mullins RF, Stone EM, Tucker BA. Prog Retin Eye Res 65 28-49 (2018)
  47. Trinucleotide expansion in disease: why is there a length threshold? Lee DY, McMurray CT. Curr. Opin. Genet. Dev. 26 131-140 (2014)
  48. Structures and mechanisms of CRISPR RNA-guided effector nucleases. Nishimasu H, Nureki O. Curr. Opin. Struct. Biol. 43 68-78 (2017)
  49. Strategies for precision modulation of gene expression by epigenome editing: an overview. Laufer BI, Singh SM. Epigenetics Chromatin 8 34 (2015)
  50. Deciphering, Communicating, and Engineering the CRISPR PAM. Leenay RT, Beisel CL. J. Mol. Biol. 429 177-191 (2017)
  51. Delivering CRISPR: a review of the challenges and approaches. Lino CA, Harper JC, Carney JP, Timlin JA. Drug Deliv 25 1234-1257 (2018)
  52. Engineering the Delivery System for CRISPR-Based Genome Editing. Glass Z, Lee M, Li Y, Xu Q. Trends Biotechnol. 36 173-185 (2018)
  53. A CRISPR toolbox to study virus-host interactions. Puschnik AS, Majzoub K, Ooi YS, Carette JE. Nat. Rev. Microbiol. 15 351-364 (2017)
  54. CRISPR-Cas9, the new kid on the block of fungal molecular biology. Krappmann S. Med. Mycol. 55 16-23 (2017)
  55. Designed nucleases for targeted genome editing. Lee J, Chung JH, Kim HM, Kim DW, Kim H. Plant Biotechnol. J. 14 448-462 (2016)
  56. Non-Coding RNAs as Mediators of Epigenetic Changes in Malignancies. Kumar S, Gonzalez EA, Rameshwar P, Etchegaray JP. Cancers (Basel) 12 E3657 (2020)
  57. Resilience of biochemical activity in protein domains in the face of structural divergence. Zhang D, Iyer LM, Burroughs AM, Aravind L. Curr. Opin. Struct. Biol. 26 92-103 (2014)
  58. Genome Editing with CRISPR-Cas9: Can It Get Any Better? Haeussler M, Concordet JP. J Genet Genomics 43 239-250 (2016)
  59. A CRISPR Path to Engineering New Genetic Mouse Models for Cardiovascular Research. Miano JM, Zhu QM, Lowenstein CJ. Arterioscler. Thromb. Vasc. Biol. 36 1058-1075 (2016)
  60. Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Hu JH, Davis KM, Liu DR. Cell Chem Biol 23 57-73 (2016)
  61. CRISPR-Cas system: a powerful tool for genome engineering. Liu L, Fan XD. Plant Mol. Biol. 85 209-218 (2014)
  62. Guide RNA engineering for versatile Cas9 functionality. Nowak CM, Lawson S, Zerez M, Bleris L. Nucleic Acids Res. 44 9555-9564 (2016)
  63. CRISPR/Cas Systems in Genome Editing: Methodologies and Tools for sgRNA Design, Off-Target Evaluation, and Strategies to Mitigate Off-Target Effects. Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang X, Jin S. Adv Sci (Weinh) 7 1902312 (2020)
  64. CRISPR/Cas9: From Genome Engineering to Cancer Drug Discovery. Luo J. Trends Cancer 2 313-324 (2016)
  65. Concise Review: Human Embryonic Stem Cells-What Have We Done? What Are We Doing? Where Are We Going? Ilic D, Ogilvie C. Stem Cells 35 17-25 (2017)
  66. Approach for in vivo delivery of CRISPR/Cas system: a recent update and future prospect. Chuang YF, Phipps AJ, Lin FL, Hecht V, Hewitt AW, Wang PY, Liu GS. Cell Mol Life Sci 78 2683-2708 (2021)
  67. CRISPR-Cas9: Tool for Qualitative and Quantitative Plant Genome Editing. Noman A, Aqeel M, He S. Front Plant Sci 7 1740 (2016)
  68. Minimizing off-Target Mutagenesis Risks Caused by Programmable Nucleases. Ishida K, Gee P, Hotta A. Int J Mol Sci 16 24751-24771 (2015)
  69. Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. Mir A, Edraki A, Lee J, Sontheimer EJ. ACS Chem. Biol. 13 357-365 (2018)
  70. CRISPR/Cas9: a promising way to exploit genetic variation in plants. Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumar A, Singh D. Biotechnol. Lett. 38 1991-2006 (2016)
  71. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Stella S, Alcón P, Montoya G. Nat. Struct. Mol. Biol. 24 882-892 (2017)
  72. Conformational regulation of CRISPR-associated nucleases. Jackson RN, van Erp PB, Sternberg SH, Wiedenheft B. Curr. Opin. Microbiol. 37 110-119 (2017)
  73. The CRISPR/Cas revolution continues: From efficient gene editing for crop breeding to plant synthetic biology. Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. J Integr Plant Biol 60 1127-1153 (2018)
  74. The tracrRNA in CRISPR Biology and Technologies. Liao C, Beisel CL. Annu Rev Genet 55 161-181 (2021)
  75. CRISPR-Cas orthologues and variants: optimizing the repertoire, specificity and delivery of genome engineering tools. Cebrian-Serrano A, Davies B. Mamm. Genome 28 247-261 (2017)
  76. Cas9 versus Cas12a/Cpf1: Structure-function comparisons and implications for genome editing. Swarts DC, Jinek M. Wiley Interdiscip Rev RNA e1481 (2018)
  77. Diving into marine genomics with CRISPR/Cas9 systems. Momose T, Concordet JP. Mar Genomics 30 55-65 (2016)
  78. CRISPR applications in ophthalmologic genome surgery. Cabral T, DiCarlo JE, Justus S, Sengillo JD, Xu Y, Tsang SH. Curr Opin Ophthalmol 28 252-259 (2017)
  79. CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I, Zoumpourlis V. Int. J. Oncol. 53 443-468 (2018)
  80. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells. Kim EJ, Kang KH, Ju JH. Korean J. Intern. Med. 32 42-61 (2017)
  81. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering. Kirchner M, Schneider S. Angew. Chem. Int. Ed. Engl. 54 13508-13514 (2015)
  82. CRISPR-associated nucleases: the Dawn of a new age of efficient crop improvement. Ghogare R, Williamson-Benavides B, Ramírez-Torres F, Dhingra A. Transgenic Res 29 1-35 (2020)
  83. Cellular Reprogramming, Genome Editing, and Alternative CRISPR Cas9 Technologies for Precise Gene Therapy of Duchenne Muscular Dystrophy. Gee P, Xu H, Hotta A. Stem Cells Int 2017 8765154 (2017)
  84. Gene editing for skin diseases: designer nucleases as tools for gene therapy of skin fragility disorders. March OP, Reichelt J, Koller U. Exp. Physiol. 103 449-455 (2018)
  85. Plant-pathogen interactions: toward development of next-generation disease-resistant plants. Nejat N, Rookes J, Mantri NL, Cahill DM. Crit. Rev. Biotechnol. 37 229-237 (2017)
  86. Recent Advances in CRISPR-Cas9 Genome Editing Technology for Biological and Biomedical Investigations. Singh V, Gohil N, Ramírez García R, Braddick D, Fofié CK. J. Cell. Biochem. 119 81-94 (2018)
  87. [The CRISPR system can correct or modify the expression of genes responsible for hereditary diseases]. Tremblay JP. Med Sci (Paris) 31 1014-1022 (2015)
  88. DNA Repair Pathway Choices in CRISPR-Cas9-Mediated Genome Editing. Xue C, Greene EC. Trends Genet 37 639-656 (2021)
  89. Disrupting the male germ line to find infertility and contraception targets. Archambeault DR, Matzuk MM. Ann. Endocrinol. (Paris) 75 101-108 (2014)
  90. Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects. Bhatta BP, Malla S. Plants (Basel) 9 E1360 (2020)
  91. Non-viral delivery systems for CRISPR/Cas9-based genome editing: Challenges and opportunities. Li L, Hu S, Chen X. Biomaterials 171 207-218 (2018)
  92. RNA-guided CRISPR-Cas technologies for genome-scale investigation of disease processes. Humphrey SE, Kasinski AL. J Hematol Oncol 8 31 (2015)
  93. Structural mechanisms of RNA recognition: sequence-specific and non-specific RNA-binding proteins and the Cas9-RNA-DNA complex. Ban T, Zhu JK, Melcher K, Xu HE. Cell. Mol. Life Sci. 72 1045-1058 (2015)
  94. Application of CRISPR-mediated genome engineering in cancer research. Sayin VI, Papagiannakopoulos T. Cancer Lett. 387 10-17 (2017)
  95. Applications of the CRISPR-Cas9 system in kidney research. Higashijima Y, Hirano S, Nangaku M, Nureki O. Kidney Int. 92 324-335 (2017)
  96. CRISPR applications for Duchenne muscular dystrophy: From animal models to potential therapies. Chey YCJ, Arudkumar J, Aartsma-Rus A, Adikusuma F, Thomas PQ. WIREs Mech Dis 15 e1580 (2023)
  97. Combining CRISPR/Cas9 and rAAV Templates for Efficient Gene Editing. Kaulich M, Dowdy SF. Nucleic Acid Ther 25 287-296 (2015)
  98. Developmental history and application of CRISPR in human disease. Liang P, Zhang X, Chen Y, Huang J. J Gene Med 19 (2017)
  99. RNase H As Gene Modifier, Driver of Evolution and Antiviral Defense. Moelling K, Broecker F, Russo G, Sunagawa S. Front Microbiol 8 1745 (2017)
  100. Small Non-Coding RNAs: New Insights in Modulation of Host Immune Response by Intracellular Bacterial Pathogens. Ahmed W, Zheng K, Liu ZF. Front Immunol 7 431 (2016)
  101. The Rise of CRISPR/Cas for Genome Editing in Stem Cells. Shui B, Hernandez Matias L, Guo Y, Peng Y. Stem Cells Int 2016 8140168 (2016)
  102. The big bang of genome editing technology: development and application of the CRISPR/Cas9 system in disease animal models. Shao M, Xu TR, Chen CS. Zool. Res. 37 191-204 (2016)
  103. Adaptation of CRISPR nucleases for eukaryotic applications. Ran FA. Anal. Biochem. 532 90-94 (2017)
  104. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Front Genet 12 615491 (2021)
  105. Advances in engineering CRISPR-Cas9 as a molecular Swiss Army knife. Meaker GA, Hair EJ, Gorochowski TE. Synth Biol (Oxf) 5 ysaa021 (2020)
  106. CRISPR-Cas9 in genome editing: Its function and medical applications. Khadempar S, Familghadakchi S, Motlagh RA, Farahani N, Dashtiahangar M, Rezaei H, Gheibi Hayat SM. J Cell Physiol 234 5751-5761 (2019)
  107. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. Ghaffari S, Khalili N, Rezaei N. J Exp Clin Cancer Res 40 269 (2021)
  108. CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Wang M, Zhang R, Li J. Biosens Bioelectron 165 112430 (2020)
  109. Current application of CRISPR/Cas9 gene-editing technique to eradication of HIV/AIDS. Huang Z, Tomitaka A, Raymond A, Nair M. Gene Ther. 24 377-384 (2017)
  110. Discovery of Diverse CRISPR-Cas Systems and Expansion of the Genome Engineering Toolbox. Koonin EV, Gootenberg JS, Abudayyeh OO. Biochemistry 62 3465-3487 (2023)
  111. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Comput Struct Biotechnol J 18 3649-3665 (2020)
  112. Genome Editing in Cereals: Approaches, Applications and Challenges. Ansari WA, Chandanshive SU, Bhatt V, Nadaf AB, Vats S, Katara JL, Sonah H, Deshmukh R. Int J Mol Sci 21 (2020)
  113. How bacteria control the CRISPR-Cas arsenal. Leon LM, Mendoza SD, Bondy-Denomy J. Curr. Opin. Microbiol. 42 87-95 (2018)
  114. Multigene CRISPR/Cas9 genome editing of hybrid proline rich proteins (HyPRPs) for sustainable multi-stress tolerance in crops: the review of a promising approach. Saikia B, Singh S, Debbarma J, Velmurugan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. Physiol Mol Biol Plants 26 857-869 (2020)
  115. RNA-Targeting CRISPR-Cas Systems and Their Applications. Burmistrz M, Krakowski K, Krawczyk-Balska A. Int J Mol Sci 21 (2020)
  116. Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Jia N, Patel DJ. Nat Rev Mol Cell Biol 22 563-579 (2021)
  117. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Bayat H, Modarressi MH, Rahimpour A. Curr. Microbiol. 75 107-115 (2018)
  118. Using Gene Editing Approaches to Fine-Tune the Immune System. Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, Carmona MD, Herrera C, Martin F, Benabdellah K. Front Immunol 11 570672 (2020)
  119. A Single-Molecule View of Genome Editing Proteins: Biophysical Mechanisms for TALEs and CRISPR/Cas9. Cuculis L, Schroeder CM. Annu Rev Chem Biomol Eng 8 577-597 (2017)
  120. An RNA-centric historical narrative around the Protein Data Bank. Westhof E, Leontis NB. J Biol Chem 296 100555 (2021)
  121. Analysis of CRISPR-Cas System in Streptococcus thermophilus and Its Application. Hao M, Cui Y, Qu X. Front Microbiol 9 257 (2018)
  122. Application of CRISPR/Cas Systems in the Nucleic Acid Detection of Infectious Diseases. Li J, Wang Y, Wang B, Lou J, Ni P, Jin Y, Chen S, Duan G, Zhang R. Diagnostics (Basel) 12 2455 (2022)
  123. Application of the CRISPR/Cas9 System to Drug Resistance in Breast Cancer. Chen Y, Zhang Y. Adv Sci (Weinh) 5 1700964 (2018)
  124. CRISPR GENOME SURGERY IN THE RETINA IN LIGHT OF OFF-TARGETING. Cho GY, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. Retina (Philadelphia, Pa.) 38 1443-1455 (2018)
  125. CRISPR-Cas9 Based Genome Engineering: Opportunities in Agri-Food-Nutrition and Healthcare. Rajendran SR, Yau YY, Pandey D, Kumar A. OMICS 19 261-275 (2015)
  126. CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review. Syding LA, Nickl P, Kasparek P, Sedlacek R. Cells 9 (2020)
  127. Diverse Class 2 CRISPR-Cas Effector Proteins for Genome Engineering Applications. Pyzocha NK, Chen S. ACS Chem. Biol. 13 347-356 (2018)
  128. Genome Editing in Rice: Recent Advances, Challenges, and Future Implications. Mishra R, Joshi RK, Zhao K. Front Plant Sci 9 1361 (2018)
  129. Methodologies for Improving HDR Efficiency. Liu M, Rehman S, Tang X, Gu K, Fan Q, Chen D, Ma W. Front Genet 9 691 (2018)
  130. NMR and computational methods for molecular resolution of allosteric pathways in enzyme complexes. East KW, Skeens E, Cui JY, Belato HB, Mitchell B, Hsu R, Batista VS, Palermo G, Lisi GP. Biophys Rev 12 155-174 (2020)
  131. Primordial germ cell-mediated transgenesis and genome editing in birds. Han JY, Park YH. J Anim Sci Biotechnol 9 19 (2018)
  132. Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Ribeiro LF, Ribeiro LFC, Barreto MQ, Ward RJ. Int J Genomics 2018 1652567 (2018)
  133. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Expert Opin Drug Deliv 20 471-487 (2023)
  134. Split Cas9, Not Hairs - Advancing the Therapeutic Index of CRISPR Technology. Schmelas C, Grimm D. Biotechnol J 13 e1700432 (2018)
  135. Survival and Evolution of CRISPR-Cas System in Prokaryotes and Its Applications. Shabbir MA, Hao H, Shabbir MZ, Hussain HI, Iqbal Z, Ahmed S, Sattar A, Iqbal M, Li J, Yuan Z. Front Immunol 7 375 (2016)
  136. The evolution of CRISPR/Cas9 and their cousins: hope or hype? Chaudhary K, Chattopadhyay A, Pratap D. Biotechnol. Lett. 40 465-477 (2018)
  137. The physicist's guide to one of biotechnology's hottest new topics: CRISPR-Cas. Bonomo ME, Deem MW. Phys Biol 15 041002 (2018)
  138. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. Wang J, Zhang X, Cheng L, Luo Y. RNA Biol 17 13-22 (2020)
  139. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery. De Masi C, Spitalieri P, Murdocca M, Novelli G, Sangiuolo F. Hum Genomics 14 25 (2020)
  140. Application of CRISPR/Cas9-Based Gene Editing in HIV-1/AIDS Therapy. Xiao Q, Guo D, Chen S. Front Cell Infect Microbiol 9 69 (2019)
  141. CRISPR techniques and potential for the detection and discrimination of SARS-CoV-2 variants of concern. Xiao H, Hu J, Huang C, Feng W, Liu Y, Kumblathan T, Tao J, Xu J, Le XC, Zhang H. Trends Analyt Chem 161 117000 (2023)
  142. Carrier strategies boost the application of CRISPR/Cas system in gene therapy. Xu Z, Wang Q, Zhong H, Jiang Y, Shi X, Yuan B, Yu N, Zhang S, Yuan X, Guo S, Yang Y. Exploration (Beijing) 2 20210081 (2022)
  143. Coupling Machine Learning and Lipidomics as a Tool to Investigate Metabolic Dysfunction-Associated Fatty Liver Disease. A General Overview. Castañé H, Baiges-Gaya G, Hernández-Aguilera A, Rodríguez-Tomàs E, Fernández-Arroyo S, Herrero P, Delpino-Rius A, Canela N, Menendez JA, Camps J, Joven J. Biomolecules 11 473 (2021)
  144. Current updates of CRISPR/Cas9-mediated genome editing and targeting within tumor cells: an innovative strategy of cancer management. Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Alkhaleefah FK, Rahmani AH, Khan AA. Cancer Commun (Lond) 42 1257-1287 (2022)
  145. Embryonic Stem Cells in Clinical Trials: Current Overview of Developments and Challenges. Golchin A, Chatziparasidou A, Ranjbarvan P, Niknam Z, Ardeshirylajimi A. Adv Exp Med Biol 1312 19-37 (2021)
  146. Exploiting DNA Endonucleases to Advance Mechanisms of DNA Repair. Thompson MK, Sobol RW, Prakash A. Biology (Basel) 10 530 (2021)
  147. Functional annotation of cis-regulatory elements in human cells by dCas9/sgRNA. Du Y, Meng Q, Zhang J, Sun M, Shen B, Jiang H, Kang N, Gao J, Huang X, Liu J. Cell Res. 25 877-880 (2015)
  148. Genome Editing: A New Horizon for Oral and Craniofacial Research. Yu N, Yang J, Mishina Y, Giannobile WV. J. Dent. Res. 98 36-45 (2019)
  149. Genome editing approaches: manipulating of lovastatin and taxol synthesis of filamentous fungi by CRISPR/Cas9 system. El-Sayed ASA, Abdel-Ghany SE, Ali GS. Appl. Microbiol. Biotechnol. 101 3953-3976 (2017)
  150. Genome editing in Drosophila melanogaster: from basic genome engineering to the multipurpose CRISPR-Cas9 system. Ren X, Holsteens K, Li H, Sun J, Zhang Y, Liu LP, Liu Q, Ni JQ. Sci China Life Sci 60 476-489 (2017)
  151. How does RNA fold dynamically? Bushhouse DZ, Choi EK, Hertz LM, Lucks JB. J Mol Biol 434 167665 (2022)
  152. Impact of CRISPR-Cas9-Based Genome Engineering in Farm Animals. Singh P, Ali SA. Vet Sci 8 122 (2021)
  153. Insights into the Human Virome Using CRISPR Spacers from Microbiomes. Hidalgo-Cantabrana C, Sanozky-Dawes R, Barrangou R. Viruses 10 (2018)
  154. Points of View on the Tools for Genome/Gene Editing. Chuang CK, Lin WM. Int J Mol Sci 22 9872 (2021)
  155. Regulating CRISPR/Cas9 Function through Conditional Guide RNA Control. Brown W, Zhou W, Deiters A. Chembiochem 22 63-72 (2021)
  156. Single-Molecule View of Small RNA-Guided Target Search and Recognition. Globyte V, Kim SH, Joo C. Annu Rev Biophys 47 569-593 (2018)
  157. The CRISPR-Cas9 system in Neisseria spp. Zhang Y. Pathog Dis 75 (2017)
  158. The Versatile Type V CRISPR Effectors and Their Application Prospects. Tong B, Dong H, Cui Y, Jiang P, Jin Z, Zhang D. Front Cell Dev Biol 8 622103 (2020)
  159. Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Wang D, Jin S, Lu Q, Chen Y. J Fungi (Basel) 9 362 (2023)
  160. Advances in CRISPR/Cas9. Zhu Y. Biomed Res Int 2022 9978571 (2022)
  161. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Int J Mol Sci 22 (2021)
  162. Application of the CRISPR/Cas9 System to Study Regulation Pathways of the Cellular Immune Response to Influenza Virus. Prokhorova D, Zhukova Eschenko N, Lemza A, Sergeeva M, Amirkhanov R, Stepanov G. Viruses 14 437 (2022)
  163. Applications of the CRISPR/Cas system beyond gene editing. Anton T, Karg E, Bultmann S. Biol Methods Protoc 3 bpy002 (2018)
  164. Base editing in crops: current advances, limitations and future implications. Mishra R, Joshi RK, Zhao K. Plant Biotechnol. J. 18 20-31 (2020)
  165. Biotechnological Tools to Elucidate the Mechanism of Plant and Nematode Interactions. Khan A, Chen S, Fatima S, Ahamad L, Siddiqui MA. Plants (Basel) 12 2387 (2023)
  166. CRISPR Approaches for the Diagnosis of Human Diseases. Puig-Serra P, Casado-Rosas MC, Martinez-Lage M, Olalla-Sastre B, Alonso-Yanez A, Torres-Ruiz R, Rodriguez-Perales S. Int J Mol Sci 23 1757 (2022)
  167. CRISPR Knockouts in Ciona Embryos. Gandhi S, Razy-Krajka F, Christiaen L, Stolfi A. Adv. Exp. Med. Biol. 1029 141-152 (2018)
  168. CRISPR gene editing to improve crop resistance to parasitic plants. Jhu MY, Ellison EE, Sinha NR. Front Genome Ed 5 1289416 (2023)
  169. CRISPR genome editing using computational approaches: A survey. Alipanahi R, Safari L, Khanteymoori A. Front Bioinform 2 1001131 (2022)
  170. CRISPR system for genome engineering: the application for autophagy study. Cui J, Chew SJL, Shi Y, Gong Z, Shen HM. BMB Rep 50 247-256 (2017)
  171. CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement. Zegeye WA, Tsegaw M, Zhang Y, Cao L. Int J Mol Sci 23 4454 (2022)
  172. CRISPR-Cas immunity, DNA repair and genome stability. Cubbon A, Ivancic-Bace I, Bolt EL. Biosci. Rep. 38 (2018)
  173. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. Synth Syst Biotechnol 3 135-149 (2018)
  174. CRISPR-Cas9: A method for establishing rat models of drug metabolism and pharmacokinetics. Lu J, Liu J, Guo Y, Zhang Y, Xu Y, Wang X. Acta Pharm Sin B 11 2973-2982 (2021)
  175. CRISPR/Cas genome editing system and its application in potato. Hou X, Guo X, Zhang Y, Zhang Q. Front Genet 14 1017388 (2023)
  176. CRISPR/Cas-Based Biosensor As a New Age Detection Method for Pathogenic Bacteria. Chakraborty J, Chaudhary AA, Khan SU, Rudayni HA, Rahaman SM, Sarkar H. ACS Omega 7 39562-39573 (2022)
  177. CRISPR/Cas9 assisted stem cell therapy in Parkinson's disease. Pinjala P, Tryphena KP, Prasad R, Khatri DK, Sun W, Singh SB, Gugulothu D, Srivastava S, Vora L. Biomater Res 27 46 (2023)
  178. CRISPR/Cas9 genome editing technology in filamentous fungi: progress and perspective. Song R, Zhai Q, Sun L, Huang E, Zhang Y, Zhu Y, Guo Q, Tian Y, Zhao B, Lu H. Appl. Microbiol. Biotechnol. 103 6919-6932 (2019)
  179. CRISPR/Cas9 system and its applications in nervous system diseases. Jiang H, Tang M, Xu Z, Wang Y, Li M, Zheng S, Zhu J, Lin Z, Zhang M. Genes Dis 11 675-686 (2024)
  180. CRISPR/Cas9: A Powerful Strategy to Improve CAR-T Cell Persistence. Wei W, Chen ZN, Wang K. Int J Mol Sci 24 12317 (2023)
  181. CRISPR/Cas9: a tool to eradicate HIV-1. Bhowmik R, Chaubey B. AIDS Res Ther 19 58 (2022)
  182. Catalytic confinement effects in nanochannels: from biological synthesis to chemical engineering. Shen Y, Wang X, Lei J, Wang S, Hou Y, Hou X. Nanoscale Adv 4 1517-1526 (2022)
  183. Challenges and Perspectives in Homology-Directed Gene Targeting in Monocot Plants. Van Vu T, Sung YW, Kim J, Doan DTH, Tran MT, Kim JY. Rice (N Y) 12 95 (2019)
  184. Chromatin Alterations in Neurological Disorders and Strategies of (Epi)Genome Rescue. Janowski M, Milewska M, Zare P, Pękowska A. Pharmaceuticals (Basel) 14 765 (2021)
  185. Current Status of CRISPR/Cas9 Application in Clinical Cancer Research: Opportunities and Challenges. Rafii S, Tashkandi E, Bukhari N, Al-Shamsi HO. Cancers (Basel) 14 947 (2022)
  186. Data Mining by Pluralistic Approach on CRISPR Gene Editing in Plants. Kaul T, Raman NM, Eswaran M, Thangaraj A, Verma R, Sony SK, Sathelly KM, Kaul R, Yadava P, Agrawal PK. Front Plant Sci 10 801 (2019)
  187. Development and Applications of CRISPR/Cas9-Based Genome Editing in Lactobacillus. Mu Y, Zhang C, Li T, Jin FJ, Sung YJ, Oh HM, Lee HG, Jin L. Int J Mol Sci 23 12852 (2022)
  188. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. Nomura W. Chem Rec 18 1717-1726 (2018)
  189. Dynamics and mechanisms of CRISPR-Cas9 through the lens of computational methods. Saha A, Arantes PR, Palermo G. Curr Opin Struct Biol 75 102400 (2022)
  190. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Xu Y, Chen C, Guo Y, Hu S, Sun Z. Front Immunol 13 848327 (2022)
  191. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Rahman MU, Zulfiqar S, Raza MA, Ahmad N, Zhang B. Cells 11 3590 (2022)
  192. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Dimitri A, Herbst F, Fraietta JA. Mol Cancer 21 78 (2022)
  193. Functional Genomics Approaches to Elucidate Vulnerabilities of Intrinsic and Acquired Chemotherapy Resistance. Cetin R, Quandt E, Kaulich M. Cells 10 260 (2021)
  194. Gene editing innovations and their applications in cardiomyopathy research. Kyriakopoulou E, Monnikhof T, van Rooij E. Dis Model Mech 16 dmm050088 (2023)
  195. Genetic Kidney Diseases (GKDs) Modeling Using Genome Editing Technologies. Gómez-García F, Martínez-Pulleiro R, Carrera N, Allegue C, Garcia-Gonzalez MA. Cells 11 1571 (2022)
  196. Genome editing for Duchenne muscular dystrophy: a glimpse of the future? Kupatt C, Windisch A, Moretti A, Wolf E, Wurst W, Walter MC. Gene Ther (2021)
  197. HIV infection detection using CRISPR/Cas systems: Present and future prospects. Deng B, Xue J. Comput Struct Biotechnol J 21 4409-4423 (2023)
  198. Lighting up Nobel Prize-winning studies with protein intrinsic disorder. Piersimoni L, Abd El Malek M, Bhatia T, Bender J, Brankatschk C, Calvo Sánchez J, Dayhoff GW, Di Ianni A, Figueroa Parra JO, Garcia-Martinez D, Hesselbarth J, Köppen J, Lauth LM, Lippik L, Machner L, Sachan S, Schmidt L, Selle R, Skalidis I, Sorokin O, Ubbiali D, Voigt B, Wedler A, Wei AAJ, Zorn P, Dunker AK, Köhn M, Sinz A, Uversky VN. Cell Mol Life Sci 79 449 (2022)
  199. Multiplex Genome Editing in Yeast by CRISPR/Cas9 - A Potent and Agile Tool to Reconstruct Complex Metabolic Pathways. Utomo JC, Hodgins CL, Ro DK. Front Plant Sci 12 719148 (2021)
  200. New CRISPR Technology for Creating Cell Models of Lipoprotein Assembly and Secretion. Anaganti N, Chattopadhyay A, Di Filippo M, Hussain MM. Curr Atheroscler Rep 25 209-217 (2023)
  201. New Insights into the Therapeutic Applications of CRISPR/Cas9 Genome Editing in Breast Cancer. Ahmed M, Daoud GH, Mohamed A, Harati R. Genes (Basel) 12 723 (2021)
  202. Precision gene editing technology and applications in nephrology. WareJoncas Z, Campbell JM, Martínez-Gálvez G, Gendron WAC, Barry MA, Harris PC, Sussman CR, Ekker SC. Nat Rev Nephrol 14 663-677 (2018)
  203. Programmable Molecular Scissors: Applications of a New Tool for Genome Editing in Biotech. Saha SK, Saikot FK, Rahman MS, Jamal MAHM, Rahman SMK, Islam SMR, Kim KH. Mol Ther Nucleic Acids 14 212-238 (2019)
  204. Putting CRISPR-Cas system in action: a golden window for efficient and precise genome editing for crop improvement. Tariq A, Mushtaq M, Yaqoob H, Bhat BA, Zargar SM, Raza A, Ali S, Charagh S, Mubarik MS, Zaman QU, Prasad PV, Mir RA. GM Crops Food 14 1-27 (2023)
  205. RNA-Responsive gRNAs for Controlling CRISPR Activity: Current Advances, Future Directions, and Potential Applications. Pelea O, Fulga TA, Sauka-Spengler T. CRISPR J 5 642-659 (2022)
  206. Recent Advances in CRISPR/Cas9 Delivery Strategies. Yip BH. Biomolecules 10 (2020)
  207. Recent Progress and Future Prospect of CRISPR/Cas-Derived Transcription Activation (CRISPRa) System in Plants. Ding X, Yu L, Chen L, Li Y, Zhang J, Sheng H, Ren Z, Li Y, Yu X, Jin S, Cao J. Cells 11 3045 (2022)
  208. Recent advances in CRISPR-Cas system for the treatment of genetic hearing loss. Yin G, Wang XH, Sun Y. Am J Stem Cells 12 37-50 (2023)
  209. Recent advances in the delivery and applications of nonviral CRISPR/Cas9 gene editing. Sinclair F, Begum AA, Dai CC, Toth I, Moyle PM. Drug Deliv Transl Res 13 1500-1519 (2023)
  210. Recent advances in therapeutic CRISPR-Cas9 genome editing: mechanisms and applications. Zhou L, Yao S. Mol Biomed 4 10 (2023)
  211. Review: Recent Applications of Gene Editing in Fish Species and Aquatic Medicine. Gutási A, Hammer SE, El-Matbouli M, Saleh M. Animals (Basel) 13 1250 (2023)
  212. Structural biology of CRISPR-Cas immunity and genome editing enzymes. Wang JY, Pausch P, Doudna JA. Nat Rev Microbiol 20 641-656 (2022)
  213. The CRISPR/Cas9 System Delivered by Extracellular Vesicles. Zhu X, Gao M, Yang Y, Li W, Bao J, Li Y. Pharmaceutics 15 984 (2023)
  214. The Many (Inter)faces of Anti-CRISPRs: Modulation of CRISPR-Cas Structure and Dynamics by Mechanistically Diverse Inhibitors. Belato HB, Lisi GP. Biomolecules 13 264 (2023)
  215. The potential of gene editing for Huntington's disease. Duan W, Urani E, Mattson MP. Trends Neurosci 46 365-376 (2023)
  216. Towards Point of Care CRISPR-Based Diagnostics: From Method to Device. Chen H, Zhou X, Wang M, Ren L. J Funct Biomater 14 97 (2023)
  217. Type II anti-CRISPR proteins as a new tool for synthetic biology. Zhang Y, Marchisio MA. RNA Biol 18 1085-1098 (2021)
  218. Understanding the mechanistic basis of non-coding RNA through molecular dynamics simulations. Palermo G, Casalino L, Magistrato A, Andrew McCammon J. J. Struct. Biol. 206 267-279 (2019)
  219. Visualizing the Nucleome Using the CRISPR-Cas9 System: From in vitro to in vivo. Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Biochemistry (Mosc) 88 S123-S149 (2023)
  220. When push comes to shove - RNA polymerase and DNA-bound protein roadblocks. Hao N, Donnelly AJ, Dodd IB, Shearwin KE. Biophys Rev 15 355-366 (2023)
  221. [Application and potential of genome engineering by artificial enzymes]. Nomura W. Yakugaku Zasshi 135 405-414 (2015)
  222. gRNA Design: How Its Evolution Impacted on CRISPR/Cas9 Systems Refinement. Motoche-Monar C, Ordoñez JE, Chang O, Gonzales-Zubiate FA. Biomolecules 13 1698 (2023)

Articles citing this publication (303)

  1. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng Z, Joung JK. Nature 529 490-495 (2016)
  2. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. Nat. Biotechnol. 34 184-191 (2016)
  3. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Tsai SQ, Wyvekens N, Khayter C, Foden JA, Thapar V, Reyon D, Goodwin MJ, Aryee MJ, Joung JK. Nat. Biotechnol. 32 569-576 (2014)
  4. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA. Nat. Biotechnol. 32 670-676 (2014)
  5. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV, Zheng Z, Joung JK. Nat Biotechnol 33 1293-1298 (2015)
  6. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Anders C, Niewoehner O, Duerst A, Jinek M. Nature 513 569-573 (2014)
  7. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, Lim WA. Cell 160 339-350 (2015)
  8. Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. Gagnon JA, Valen E, Thyme SB, Huang P, Akhmetova L, Pauli A, Montague TG, Zimmerman S, Richter C, Schier AF. PLoS ONE 9 e98186 (2014)
  9. A CRISPR/Cas9 toolkit for multiplex genome editing in plants. Xing HL, Dong L, Wang ZP, Zhang HY, Han CY, Liu B, Wang XC, Chen QJ. BMC Plant Biol. 14 327 (2014)
  10. Applications of CRISPR technologies in research and beyond. Barrangou R, Doudna JA. Nat. Biotechnol. 34 933-941 (2016)
  11. The crystal structure of Cpf1 in complex with CRISPR RNA. Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, Ma C, Wang S, Wu D, Ma Y, Fan S, Wang J, Gao N, Huang Z. Nature 532 522-526 (2016)
  12. STRUCTURAL BIOLOGY. A Cas9-guide RNA complex preorganized for target DNA recognition. Jiang F, Zhou K, Ma L, Gressel S, Doudna JA. Science 348 1477-1481 (2015)
  13. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, Ishitani R, Zhang F, Nureki O. Cell 165 949-962 (2016)
  14. Cas9 specifies functional viral targets during CRISPR-Cas adaptation. Heler R, Samai P, Modell JW, Weiner C, Goldberg GW, Bikard D, Marraffini LA. Nature 519 199-202 (2015)
  15. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR. Nat. Chem. Biol. 11 316-318 (2015)
  16. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E, Doudna JA. Science 351 867-871 (2016)
  17. Crystal Structure of Staphylococcus aureus Cas9. Nishimasu H, Cong L, Yan WX, Ran FA, Zetsche B, Li Y, Kurabayashi A, Ishitani R, Zhang F, Nureki O. Cell 162 1113-1126 (2015)
  18. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R. Science 350 823-826 (2015)
  19. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA. Nature 550 407-410 (2017)
  20. New CRISPR-Cas systems from uncultivated microbes. Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman K, Thomas BC, Doudna JA, Banfield JF. Nature 542 237-241 (2017)
  21. Structural biology. Crystal structure of the CRISPR RNA-guided surveillance complex from Escherichia coli. Jackson RN, Golden SM, van Erp PB, Carter J, Westra ER, Brouns SJ, van der Oost J, Terwilliger TC, Read RJ, Wiedenheft B. Science 345 1473-1479 (2014)
  22. A multifunctional AAV-CRISPR-Cas9 and its host response. Chew WL, Tabebordbar M, Cheng JK, Mali P, Wu EY, Ng AH, Zhu K, Wagers AJ, Church GM. Nat. Methods 13 868-874 (2016)
  23. Rational design of a split-Cas9 enzyme complex. Wright AV, Sternberg SH, Taylor DW, Staahl BT, Bardales JA, Kornfeld JE, Doudna JA. Proc. Natl. Acad. Sci. U.S.A. 112 2984-2989 (2015)
  24. CRISPR-Cas9-based photoactivatable transcription system. Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M. Chem. Biol. 22 169-174 (2015)
  25. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Ren X, Yang Z, Xu J, Sun J, Mao D, Hu Y, Yang SJ, Qiao HH, Wang X, Hu Q, Deng P, Liu LP, Ji JY, Li JB, Ni JQ. Cell Rep 9 1151-1162 (2014)
  26. Naturally Occurring Off-Switches for CRISPR-Cas9. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL, Davidson AR. Cell 167 1829-1838.e9 (2016)
  27. CasA mediates Cas3-catalyzed target degradation during CRISPR RNA-guided interference. Hochstrasser ML, Taylor DW, Bhat P, Guegler CK, Sternberg SH, Nogales E, Doudna JA. Proc. Natl. Acad. Sci. U.S.A. 111 6618-6623 (2014)
  28. Structure and Engineering of Francisella novicida Cas9. Hirano H, Gootenberg JS, Horii T, Abudayyeh OO, Kimura M, Hsu PD, Nakane T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O. Cell 164 950-961 (2016)
  29. Guide RNA functional modules direct Cas9 activity and orthogonality. Briner AE, Donohoue PD, Gomaa AA, Selle K, Slorach EM, Nye CH, Haurwitz RE, Beisel CL, May AP, Barrangou R. Mol. Cell 56 333-339 (2014)
  30. Genome engineering with CRISPR-Cas9 in the mosquito Aedes aegypti. Kistler KE, Vosshall LB, Matthews BJ. Cell Rep 11 51-60 (2015)
  31. RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Piatek A, Ali Z, Baazim H, Li L, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM. Plant Biotechnol. J. 13 578-589 (2015)
  32. An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Zhu X, Xu Y, Yu S, Lu L, Ding M, Cheng J, Song G, Gao X, Yao L, Fan D, Meng S, Zhang X, Hu S, Tian Y. Sci Rep 4 6420 (2014)
  33. Development of an intein-mediated split-Cas9 system for gene therapy. Truong DJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, Ortiz O. Nucleic Acids Res. 43 6450-6458 (2015)
  34. Cas9-mediated targeting of viral RNA in eukaryotic cells. Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Proc. Natl. Acad. Sci. U.S.A. 112 6164-6169 (2015)
  35. Selection of chromosomal DNA libraries using a multiplex CRISPR system. Ryan OW, Skerker JM, Maurer MJ, Li X, Tsai JC, Poddar S, Lee ME, DeLoache W, Dueber JE, Arkin AP, Cate JH. Elife 3 (2014)
  36. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. Science 360 436-439 (2018)
  37. Disabling Cas9 by an anti-CRISPR DNA mimic. Shin J, Jiang F, Liu JJ, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA. Sci Adv 3 e1701620 (2017)
  38. Letter Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Duan J, Lu G, Xie Z, Lou M, Luo J, Guo L, Zhang Y. Cell Res. 24 1009-1012 (2014)
  39. Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. Chen S, Lee B, Lee AY, Modzelewski AJ, He L. J. Biol. Chem. 291 14457-14467 (2016)
  40. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Miyaoka Y, Berman JR, Cooper SB, Mayerl SJ, Chan AH, Zhang B, Karlin-Neumann GA, Conklin BR. Sci Rep 6 23549 (2016)
  41. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Cui L, Bikard D. Nucleic Acids Res. 44 4243-4251 (2016)
  42. Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells. Böttcher R, Hollmann M, Merk K, Nitschko V, Obermaier C, Philippou-Massier J, Wieland I, Gaul U, Förstemann K. Nucleic Acids Res. 42 e89 (2014)
  43. Quantitative CRISPR interference screens in yeast identify chemical-genetic interactions and new rules for guide RNA design. Smith JD, Suresh S, Schlecht U, Wu M, Wagih O, Peltz G, Davis RW, Steinmetz LM, Parts L, St Onge RP. Genome Biol. 17 45 (2016)
  44. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Gao P, Yang H, Rajashankar KR, Huang Z, Patel DJ. Cell Res. 26 901-913 (2016)
  45. Expanding the CRISPR imaging toolset with Staphylococcus aureus Cas9 for simultaneous imaging of multiple genomic loci. Chen B, Hu J, Almeida R, Liu H, Balakrishnan S, Covill-Cooke C, Lim WA, Huang B. Nucleic Acids Res. 44 e75 (2016)
  46. Dual sgRNA-directed gene knockout using CRISPR/Cas9 technology in Caenorhabditis elegans. Chen X, Xu F, Zhu C, Ji J, Zhou X, Feng X, Guang S. Sci Rep 4 7581 (2014)
  47. Structural basis of CRISPR-SpyCas9 inhibition by an anti-CRISPR protein. Dong, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z. Nature 546 436-439 (2017)
  48. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q. J Mol Cell Biol 7 284-298 (2015)
  49. Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y. Nucleic Acids Res. 44 e86 (2016)
  50. Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9. Anders C, Bargsten K, Jinek M. Mol. Cell 61 895-902 (2016)
  51. Letter Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays. Reis AC, Halper SM, Vezeau GE, Cetnar DP, Hossain A, Clauer PR, Salis HM. Nat Biotechnol 37 1294-1301 (2019)
  52. Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities. Liu L, Li X, Wang J, Wang M, Chen P, Yin M, Li J, Sheng G, Wang Y. Cell 168 121-134.e12 (2017)
  53. Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9. Yang H, Patel DJ. Mol. Cell 67 117-127.e5 (2017)
  54. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Singh D, Sternberg SH, Fei J, Doudna JA, Ha T. Nat Commun 7 12778 (2016)
  55. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Liu L, Chen P, Wang M, Li X, Wang J, Yin M, Wang Y. Mol. Cell 65 310-322 (2017)
  56. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system. Song Y, Yuan L, Wang Y, Chen M, Deng J, Lv Q, Sui T, Li Z, Lai L. Cell. Mol. Life Sci. 73 2959-2968 (2016)
  57. Programmed Self-Assembly of an Active P22-Cas9 Nanocarrier System. Qazi S, Miettinen HM, Wilkinson RA, McCoy K, Douglas T, Wiedenheft B. Mol Pharm 13 1191-1196 (2016)
  58. Efficient Multiple Genome Modifications Induced by the crRNAs, tracrRNA and Cas9 Protein Complex in Zebrafish. Kotani H, Taimatsu K, Ohga R, Ota S, Kawahara A. PLoS ONE 10 e0128319 (2015)
  59. Molecular insights into DNA interference by CRISPR-associated nuclease-helicase Cas3. Gong B, Shin M, Sun J, Jung CH, Bolt EL, van der Oost J, Kim JS. Proc. Natl. Acad. Sci. U.S.A. 111 16359-16364 (2014)
  60. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Ma E, Harrington LB, O'Connell MR, Zhou K, Doudna JA. Mol. Cell 60 398-407 (2015)
  61. Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Hirano S, Nishimasu H, Ishitani R, Nureki O. Mol. Cell 61 886-894 (2016)
  62. DNase H Activity of Neisseria meningitidis Cas9. Zhang Y, Rajan R, Seifert HS, Mondragón A, Sontheimer EJ. Mol. Cell 60 242-255 (2015)
  63. A conformational checkpoint between DNA binding and cleavage by CRISPR-Cas9. Dagdas YS, Chen JS, Sternberg SH, Doudna JA, Yildiz A. Sci Adv 3 eaao0027 (2017)
  64. Harnessing CRISPR-Cas9 immunity for genetic engineering. Charpentier E, Marraffini LA. Curr. Opin. Microbiol. 19 114-119 (2014)
  65. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Josephs EA, Kocak DD, Fitzgibbon CJ, McMenemy J, Gersbach CA, Marszalek PE. Nucleic Acids Res. 43 8924-8941 (2015)
  66. A Biophysical Model of CRISPR/Cas9 Activity for Rational Design of Genome Editing and Gene Regulation. Farasat I, Salis HM. PLoS Comput. Biol. 12 e1004724 (2016)
  67. Cut site selection by the two nuclease domains of the Cas9 RNA-guided endonuclease. Chen H, Choi J, Bailey S. J. Biol. Chem. 289 13284-13294 (2014)
  68. Efficient genome engineering in eukaryotes using Cas9 from Streptococcus thermophilus. Xu K, Ren C, Liu Z, Zhang T, Zhang T, Li D, Wang L, Yan Q, Guo L, Shen J, Zhang Z. Cell. Mol. Life Sci. 72 383-399 (2015)
  69. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T. J. Cell Biol. 214 529-537 (2016)
  70. DNA-free genome editing with preassembled CRISPR/Cas9 ribonucleoproteins in plants. Park J, Choe S. Transgenic Res 28 61-64 (2019)
  71. Expansion of the CRISPR-Cas9 genome targeting space through the use of H1 promoter-expressed guide RNAs. Ranganathan V, Wahlin K, Maruotti J, Zack DJ. Nat Commun 5 4516 (2014)
  72. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Liu X, Homma A, Sayadi J, Yang S, Ohashi J, Takumi T. Sci Rep 6 19675 (2016)
  73. Cmr4 is the slicer in the RNA-targeting Cmr CRISPR complex. Zhu X, Ye K. Nucleic Acids Res. 43 1257-1267 (2015)
  74. In vitro enzymology of Cas9. Anders C, Jinek M. Meth. Enzymol. 546 1-20 (2014)
  75. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Huang X, Sun W, Cheng Z, Chen M, Li X, Wang J, Sheng G, Gong W, Wang Y. Nat Commun 11 5241 (2020)
  76. Synthesis of an arrayed sgRNA library targeting the human genome. Schmidt T, Schmid-Burgk JL, Hornung V. Sci Rep 5 14987 (2015)
  77. CRISPR-Cas9 conformational activation as elucidated from enhanced molecular simulations. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. Proc. Natl. Acad. Sci. U.S.A. 114 7260-7265 (2017)
  78. Performance of the Cas9 nickase system in Drosophila melanogaster. Ren X, Yang Z, Mao D, Chang Z, Qiao HH, Wang X, Sun J, Hu Q, Cui Y, Liu LP, Ji JY, Xu J, Ni JQ. G3 (Bethesda) 4 1955-1962 (2014)
  79. A marker-free system for highly efficient construction of vaccinia virus vectors using CRISPR Cas9. Yuan M, Gao X, Chard LS, Ali Z, Ahmed J, Li Y, Liu P, Lemoine NR, Wang Y. Mol Ther Methods Clin Dev 2 15035 (2015)
  80. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Kulcsár PI, Tálas A, Huszár K, Ligeti Z, Tóth E, Weinhardt N, Fodor E, Welker E. Genome Biol. 18 190 (2017)
  81. Structural roles of guide RNAs in the nuclease activity of Cas9 endonuclease. Lim Y, Bak SY, Sung K, Jeong E, Lee SH, Kim JS, Bae S, Kim SK. Nat Commun 7 13350 (2016)
  82. CRISPR/Cas9-mediated targeted T-DNA integration in rice. Lee K, Eggenberger AL, Banakar R, McCaw ME, Zhu H, Main M, Kang M, Gelvin SB, Wang K. Plant Mol Biol 99 317-328 (2019)
  83. Characterizing a thermostable Cas9 for bacterial genome editing and silencing. Mougiakos I, Mohanraju P, Bosma EF, Vrouwe V, Finger Bou M, Naduthodi MIS, Gussak A, Brinkman RBL, van Kranenburg R, van der Oost J. Nat Commun 8 1647 (2017)
  84. Creation of targeted genomic deletions using TALEN or CRISPR/Cas nuclease pairs in one-cell mouse embryos. Brandl C, Ortiz O, Röttig B, Wefers B, Wurst W, Kühn R. FEBS Open Bio 5 26-35 (2015)
  85. Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Lee K, Mackley VA, Rao A, Chong AT, Dewitt MA, Corn JE, Murthy N. Elife 6 (2017)
  86. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Altae-Tran H, Kannan S, Demircioglu FE, Oshiro R, Nety SP, McKay LJ, Dlakić M, Inskeep WP, Makarova KS, Macrae RK, Koonin EV, Zhang F. Science 374 57-65 (2021)
  87. Mutations in Cas9 Enhance the Rate of Acquisition of Viral Spacer Sequences during the CRISPR-Cas Immune Response. Heler R, Wright AV, Vucelja M, Bikard D, Doudna JA, Marraffini LA. Mol. Cell 65 168-175 (2017)
  88. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations. Palermo G, Miao Y, Walker RC, Jinek M, McCammon JA. ACS Cent Sci 2 756-763 (2016)
  89. A Single-Chain Photoswitchable CRISPR-Cas9 Architecture for Light-Inducible Gene Editing and Transcription. Zhou XX, Zou X, Chung HK, Gao Y, Liu Y, Qi LS, Lin MZ. ACS Chem. Biol. 13 443-448 (2018)
  90. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations. Zuo Z, Liu J. Sci Rep 5 37584 (2016)
  91. Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9. Bryson AL, Hwang Y, Sherrill-Mix S, Wu GD, Lewis JD, Black L, Clark TA, Bushman FD. MBio 6 e00648 (2015)
  92. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System. Liu TY, Iavarone AT, Doudna JA. PLoS ONE 12 e0170552 (2017)
  93. Refined sgRNA efficacy prediction improves large- and small-scale CRISPR-Cas9 applications. Labuhn M, Adams FF, Ng M, Knoess S, Schambach A, Charpentier EM, Schwarzer A, Mateo JL, Klusmann JH, Heckl D. Nucleic Acids Res. 46 1375-1385 (2018)
  94. ISC, a Novel Group of Bacterial and Archaeal DNA Transposons That Encode Cas9 Homologs. Kapitonov VV, Makarova KS, Koonin EV. J. Bacteriol. 198 797-807 (2015)
  95. Modulating the Cascade architecture of a minimal Type I-F CRISPR-Cas system. Gleditzsch D, Müller-Esparza H, Pausch P, Sharma K, Dwarakanath S, Urlaub H, Bange G, Randau L. Nucleic Acids Res. 44 5872-5882 (2016)
  96. Method for Dual Viral Vector Mediated CRISPR-Cas9 Gene Disruption in Primary Human Endothelial Cells. Gong H, Liu M, Klomp J, Merrill BJ, Rehman J, Malik AB. Sci Rep 7 42127 (2017)
  97. CRISPR/Cas9-Induced Double-Strand Break Repair in Arabidopsis Nonhomologous End-Joining Mutants. Shen H, Strunks GD, Klemann BJ, Hooykaas PJ, de Pater S. G3 (Bethesda) 7 193-202 (2017)
  98. News Gene editing at CRISPR speed. Baker M. Nat. Biotechnol. 32 309-312 (2014)
  99. A machine learning approach for predicting CRISPR-Cas9 cleavage efficiencies and patterns underlying its mechanism of action. Abadi S, Yan WX, Amar D, Mayrose I. PLoS Comput. Biol. 13 e1005807 (2017)
  100. CRISPR/Cas9-mediated gene manipulation to create single-amino-acid-substituted and floxed mice with a cloning-free method. Ma X, Chen C, Veevers J, Zhou X, Ross RS, Feng W, Chen J. Sci Rep 7 42244 (2017)
  101. Catalytically Active Cas9 Mediates Transcriptional Interference to Facilitate Bacterial Virulence. Ratner HK, Escalera-Maurer A, Le Rhun A, Jaggavarapu S, Wozniak JE, Crispell EK, Charpentier E, Weiss DS. Mol Cell 75 498-510.e5 (2019)
  102. Establishing the allosteric mechanism in CRISPR-Cas9. Nierzwicki Ł, Arantes PR, Saha A, Palermo G. Wiley Interdiscip Rev Comput Mol Sci 11 e1503 (2021)
  103. Structural basis for RNA-guided DNA cleavage by IscB-ωRNA and mechanistic comparison with Cas9. Schuler G, Hu C, Ke A. Science 376 1476-1481 (2022)
  104. Allosteric Motions of the CRISPR-Cas9 HNH Nuclease Probed by NMR and Molecular Dynamics. East KW, Newton JC, Morzan UN, Narkhede YB, Acharya A, Skeens E, Jogl G, Batista VS, Palermo G, Lisi GP. J Am Chem Soc 142 1348-1358 (2020)
  105. Analysis of gene repair tracts from Cas9/gRNA double-stranded breaks in the human CFTR gene. Hollywood JA, Lee CM, Scallan MF, Harrison PT. Sci Rep 6 32230 (2016)
  106. CRISPR Crops: Plant Genome Editing Toward Disease Resistance. Langner T, Kamoun S, Belhaj K. Annu Rev Phytopathol 56 479-512 (2018)
  107. Developmental barcoding of whole mouse via homing CRISPR. Kalhor R, Kalhor K, Mejia L, Leeper K, Graveline A, Mali P, Church GM. Science 361 (2018)
  108. Expanding the genome-targeting scope and the site selectivity of high-precision base editors. Tan J, Zhang F, Karcher D, Bock R. Nat Commun 11 629 (2020)
  109. In Vitro Reconstitution and Crystallization of Cas9 Endonuclease Bound to a Guide RNA and a DNA Target. Anders C, Niewoehner O, Jinek M. Meth. Enzymol. 558 515-537 (2015)
  110. Atomic-scale insights into allosteric inhibition and evolutional rescue mechanism of Streptococcus thermophilus Cas9 by the anti-CRISPR protein AcrIIA6. Li X, Wang C, Peng T, Chai Z, Ni D, Liu Y, Zhang J, Chen T, Lu S. Comput Struct Biotechnol J 19 6108-6124 (2021)
  111. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo. Li M, Huang R, Jiang X, Chen Y, Zhang Z, Zhang X, Liang P, Zhan S, Cao S, Songyang Z, Huang J. PLoS ONE 10 e0143148 (2015)
  112. Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations. Hullahalli K, Rodrigues M, Palmer KL. Elife 6 (2017)
  113. Letter One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Zhao P, Zhang Z, Lv X, Zhao X, Suehiro Y, Jiang Y, Wang X, Mitani S, Gong H, Xue D. Cell Res. 26 633-636 (2016)
  114. Principles for Predicting RNA Secondary Structure Design Difficulty. Anderson-Lee J, Fisker E, Kosaraju V, Wu M, Kong J, Lee J, Lee M, Zada M, Treuille A, Das R, Eterna Players. J. Mol. Biol. 428 748-757 (2016)
  115. Protein engineering of Cas9 for enhanced function. Oakes BL, Nadler DC, Savage DF. Meth. Enzymol. 546 491-511 (2014)
  116. Recognition and cleavage of 5-methylcytosine DNA by bacterial SRA-HNH proteins. Han T, Yamada-Mabuchi M, Zhao G, Li L, Liu G, Ou HY, Deng Z, Zheng Y, He X. Nucleic Acids Res. 43 1147-1159 (2015)
  117. The role of Cas8 in type I CRISPR interference. Cass SD, Haas KA, Stoll B, Alkhnbashi OS, Sharma K, Urlaub H, Backofen R, Marchfelder A, Bolt EL. Biosci. Rep. 35 (2015)
  118. Box C/D sRNA stem ends act as stabilizing anchors for box C/D di-sRNPs. Yip WS, Shigematsu H, Taylor DW, Baserga SJ. Nucleic Acids Res. 44 8976-8989 (2016)
  119. Construction of a CRISPR-Cas9 System for Pig Genome Targeting. Su YH, Lin TY, Huang CL, Tu CF, Chuang CK. Anim. Biotechnol. 26 279-288 (2015)
  120. Enhanced Bacterial Immunity and Mammalian Genome Editing via RNA-Polymerase-Mediated Dislodging of Cas9 from Double-Strand DNA Breaks. Clarke R, Heler R, MacDougall MS, Yeo NC, Chavez A, Regan M, Hanakahi L, Church GM, Marraffini LA, Merrill BJ. Mol. Cell 71 42-55.e8 (2018)
  121. Gaussian accelerated molecular dynamics (GaMD): principles and applications. Wang J, Arantes PR, Bhattarai A, Hsu RV, Pawnikar S, Huang YM, Palermo G, Miao Y. Wiley Interdiscip Rev Comput Mol Sci 11 e1521 (2021)
  122. Genome-wide CRISPR-KO Screen Uncovers mTORC1-Mediated Gsk3 Regulation in Naive Pluripotency Maintenance and Dissolution. Li M, Yu JSL, Tilgner K, Ong SH, Koike-Yusa H, Yusa K. Cell Rep 24 489-502 (2018)
  123. Increased Efficiency for Biallelic Mutations of the CCR5 Gene by CRISPR-Cas9 Using Multiple Guide RNAs As a Novel Therapeutic Option for Human Immunodeficiency Virus. Lin D, Scheller SH, Robinson MM, Izadpanah R, Alt EU, Braun SE. CRISPR J 4 92-103 (2021)
  124. Probing the structural dynamics of the CRISPR-Cas9 RNA-guided DNA-cleavage system by coarse-grained modeling. Zheng W. Proteins 85 342-353 (2017)
  125. Structural Basis for the RNA-Guided Ribonuclease Activity of CRISPR-Cas13d. Zhang C, Konermann S, Brideau NJ, Lotfy P, Wu X, Novick SJ, Strutzenberg T, Griffin PR, Hsu PD, Lyumkis D. Cell 175 212-223.e17 (2018)
  126. Structure of a type IV CRISPR-Cas ribonucleoprotein complex. Zhou Y, Bravo JPK, Taylor HN, Steens JA, Jackson RN, Staals RHJ, Taylor DW. iScience 24 102201 (2021)
  127. Terminal Uridylyl Transferase Mediated Site-Directed Access to Clickable Chromatin Employing CRISPR-dCas9. George JT, Azhar M, Aich M, Sinha D, Ambi UB, Maiti S, Chakraborty D, Srivatsan SG. J Am Chem Soc 142 13954-13965 (2020)
  128. Editorial The future of drug discovery: enabling technologies for enhancing lead characterization and profiling therapeutic potential. Janero DR. Expert Opin Drug Discov 9 847-858 (2014)
  129. The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex. Zeng Y, Cui Y, Zhang Y, Zhang Y, Liang M, Chen H, Lan J, Song G, Lou J. Nucleic Acids Res. 46 350-361 (2018)
  130. Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae. Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M, Finnigan GC. G3 (Bethesda) 8 999-1018 (2018)
  131. A CRISPRi screen in E. coli reveals sequence-specific toxicity of dCas9. Cui L, Vigouroux A, Rousset F, Varet H, Khanna V, Bikard D. Nat Commun 9 1912 (2018)
  132. Integrating gene delivery and gene-editing technologies by adenoviral vector transfer of optimized CRISPR-Cas9 components. Maggio I, Zittersteijn HA, Wang Q, Liu J, Janssen JM, Ojeda IT, van der Maarel SM, Lankester AC, Hoeben RC, Gonçalves MAFV. Gene Ther 27 209-225 (2020)
  133. Interference activity of a minimal Type I CRISPR-Cas system from Shewanella putrefaciens. Dwarakanath S, Brenzinger S, Gleditzsch D, Plagens A, Klingl A, Thormann K, Randau L. Nucleic Acids Res. 43 8913-8923 (2015)
  134. Key role of the REC lobe during CRISPR-Cas9 activation by 'sensing', 'regulating', and 'locking' the catalytic HNH domain. Palermo G, Chen JS, Ricci CG, Rivalta I, Jinek M, Batista VS, Doudna JA, McCammon JA. Q. Rev. Biophys. 51 (2018)
  135. Mechanisms of improved specificity of engineered Cas9s revealed by single-molecule FRET analysis. Singh D, Wang Y, Mallon J, Yang O, Fei J, Poddar A, Ceylan D, Bailey S, Ha T. Nat. Struct. Mol. Biol. 25 347-354 (2018)
  136. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. Zhang YH, Wu LZ, Liang HL, Yang Y, Qiu J, Kan Q, Zhu W, Ma CL, Zhou XY. Am J Transl Res 9 355-365 (2017)
  137. Rapid poxvirus engineering using CRISPR/Cas9 as a selection tool. Gowripalan A, Smith S, Stefanovic T, Tscharke DC. Commun Biol 3 643 (2020)
  138. Site-Directed Genome Knockout in Chicken Cell Line and Embryos Can Use CRISPR/Cas Gene Editing Technology. Zuo Q, Wang Y, Cheng S, Lian C, Tang B, Wang F, Lu Z, Ji Y, Zhao R, Zhang W, Jin K, Song J, Zhang Y, Li B. G3 (Bethesda) 6 1787-1792 (2016)
  139. Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor. Kim I, Jeong M, Ka D, Han M, Kim NK, Bae E, Suh JY. Sci Rep 8 3883 (2018)
  140. Structural insights into DNA cleavage activation of CRISPR-Cas9 system. Huai C, Li G, Yao R, Zhang Y, Cao M, Kong L, Jia C, Yuan H, Chen H, Lu D, Huang Q. Nat Commun 8 1375 (2017)
  141. Synthetic and Evolutionary Construction of a Chlorate-Reducing Shewanella oneidensis MR-1. Clark IC, Melnyk RA, Youngblut MD, Carlson HK, Iavarone AT, Coates JD. MBio 6 e00282-15 (2015)
  142. A method for characterizing Cas9 variants via a one-million target sequence library of self-targeting sgRNAs. Tálas A, Huszár K, Kulcsár PI, Varga JK, Varga É, Tóth E, Welker Z, Erdős G, Pach PF, Welker Á, Györgypál Z, Tusnády GE, Welker E. Nucleic Acids Res 49 e31 (2021)
  143. An efficient and scalable pipeline for epitope tagging in mammalian stem cells using Cas9 ribonucleoprotein. Dewari PS, Southgate B, Mccarten K, Monogarov G, O'Duibhir E, Quinn N, Tyrer A, Leitner MC, Plumb C, Kalantzaki M, Blin C, Finch R, Bressan RB, Morrison G, Jacobi AM, Behlke MA, von Kriegsheim A, Tomlinson S, Krijgsveld J, Pollard SM. Elife 7 (2018)
  144. Base editing strategy for insertion of the A673T mutation in the APP gene to prevent the development of AD in vitro. Guyon A, Rousseau J, Bégin FG, Bertin T, Lamothe G, Tremblay JP. Mol Ther Nucleic Acids 24 253-263 (2021)
  145. Editorial CRISPR-Cas adaptive immunity and the three Rs. Killelea T, Bolt EL. Biosci. Rep. 37 (2017)
  146. Complete Genome Sequence of Geobacillus thermodenitrificans T12, A Potential Host for Biotechnological Applications. Daas MJA, Vriesendorp B, van de Weijer AHP, van der Oost J, van Kranenburg R. Curr. Microbiol. 75 49-56 (2018)
  147. DNA interference states of the hypercompact CRISPR-CasΦ effector. Pausch P, Soczek KM, Herbst DA, Tsuchida CA, Al-Shayeb B, Banfield JF, Nogales E, Doudna JA. Nat Struct Mol Biol 28 652-661 (2021)
  148. Decoding non-random mutational signatures at Cas9 targeted sites. Taheri-Ghahfarokhi A, Taylor BJM, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, Karlsson F, Clausen M, Hicks R, Mayr LM, Bohlooly-Y M, Maresca M. Nucleic Acids Res. 46 8417-8434 (2018)
  149. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Lim D, Sreekanth V, Cox KJ, Law BK, Wagner BK, Karp JM, Choudhary A. Nat Commun 11 4043 (2020)
  150. Engineering of the genome editing protein Cas9 to slide along DNA. Banerjee T, Takahashi H, Subekti DRG, Kamagata K. Sci Rep 11 14165 (2021)
  151. Function Analysis of the PR55/B Gene Related to Self-Incompatibility in Chinese Cabbage Using CRISPR/Cas9. Shin NR, Shin YH, Kim HS, Park YD. Int J Mol Sci 23 5062 (2022)
  152. Massively parallel determination and modeling of endonuclease substrate specificity. Thyme SB, Song Y, Brunette TJ, Szeto MD, Kusak L, Bradley P, Baker D. Nucleic Acids Res. 42 13839-13852 (2014)
  153. NmeCas9 is an intrinsically high-fidelity genome-editing platform. Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, Settle AH, Lied AM, McGovern K, Fuller CK, Cameron P, Fazzio TG, Zhu LJ, Wolfe SA, Sontheimer EJ. Genome Biol. 19 214 (2018)
  154. RNA-Independent DNA Cleavage Activities of Cas9 and Cas12a. Sundaresan R, Parameshwaran HP, Yogesha SD, Keilbarth MW, Rajan R. Cell Rep 21 3728-3739 (2017)
  155. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, Li B, Lindsey K, Daniell H, Jin S, Zhang X. Plant Biotechnol. J. 17 858-868 (2019)
  156. Bridge helix arginines play a critical role in Cas9 sensitivity to mismatches. Bratovič M, Fonfara I, Chylinski K, Gálvez EJC, Sullivan TJ, Boerno S, Timmermann B, Boettcher M, Charpentier E. Nat Chem Biol 16 587-595 (2020)
  157. CRISPR Spherical Nucleic Acids. Huang C, Han Z, Evangelopoulos M, Mirkin CA. J Am Chem Soc 144 18756-18760 (2022)
  158. CRISPR-mediated Ophthalmic Genome Surgery. Cho GY, Abdulla Y, Sengillo JD, Justus S, Schaefer KA, Bassuk AG, Tsang SH, Mahajan VB. Curr Ophthalmol Rep 5 199-206 (2017)
  159. Evolution of CRISPR-associated endonucleases as inferred from resurrected proteins. Alonso-Lerma B, Jabalera Y, Samperio S, Morin M, Fernandez A, Hille LT, Silverstein RA, Quesada-Ganuza A, Reifs A, Fernández-Peñalver S, Benitez Y, Soletto L, Gavira JA, Diaz A, Vranken W, Sanchez-Mejias A, Güell M, Mojica FJM, Kleinstiver BP, Moreno-Pelayo MA, Montoliu L, Perez-Jimenez R. Nat Microbiol 8 77-90 (2023)
  160. Generation of an Oocyte-Specific Cas9 Transgenic Mouse for Genome Editing. Zhang L, Zhou J, Han J, Hu B, Hou N, Shi Y, Huang X, Lou X. PLoS ONE 11 e0154364 (2016)
  161. Molecular organization of the type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2. Ka D, Jang DM, Han BW, Bae E. Nucleic Acids Res. 46 9805-9815 (2018)
  162. Multiplex CRISPR-Cas9 mutagenesis of the phytochrome gene family in Physcomitrium (Physcomitrella) patens. Trogu S, Ermert AL, Stahl F, Nogué F, Gans T, Hughes J. Plant Mol Biol 107 327-336 (2021)
  163. Principles of target DNA cleavage and the role of Mg2+ in the catalysis of CRISPR-Cas9. Nierzwicki Ł, East KW, Binz JM, Hsu RV, Ahsan M, Arantes PR, Skeens E, Pacesa M, Jinek M, Lisi GP, Palermo G. Nat Catal 5 912-922 (2022)
  164. Quantification of Cas9 binding and cleavage across diverse guide sequences maps landscapes of target engagement. Boyle EA, Becker WR, Bai HB, Chen JS, Doudna JA, Greenleaf WJ. Sci Adv 7 eabe5496 (2021)
  165. Structural and functional characterization of deep-sea thermophilic bacteriophage GVE2 HNH endonuclease. Zhang L, Xu D, Huang Y, Zhu X, Rui M, Wan T, Zheng X, Shen Y, Chen X, Ma K, Gong Y. Sci Rep 7 42542 (2017)
  166. Structure and Dynamics of Cas9 HNH Domain Catalytic State. Zuo Z, Liu J. Sci Rep 7 17271 (2017)
  167. Whole genome metagenomic analysis of the gut microbiome of differently fed infants identifies differences in microbial composition and functional genes, including an absent CRISPR/Cas9 gene in the formula-fed cohort. Di Guglielmo MD, Franke K, Cox C, Crowgey EL. Hum Microb J 12 100057 (2019)
  168. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Zhou W, Hu L, Ying L, Zhao Z, Chu PK, Yu XF. Nat Commun 9 5012 (2018)
  169. A Mutated Nme1Cas9 Is a Functional Alternative RNase to Both LwaCas13a and RfxCas13d in the Yeast S. cerevisiae. Zhang Y, Ge H, Marchisio MA. Front Bioeng Biotechnol 10 922949 (2022)
  170. A Simple and Efficient Approach to Construct Mutant Vaccinia Virus Vectors. Yuan M, Wang P, Chard LS, Lemoine NR, Wang Y. J Vis Exp (2016)
  171. A highly efficient ligation-independent cloning system for CRISPR/Cas9 based genome editing in plants. Khan AA, El-Sayed A, Akbar A, Mangravita-Novo A, Bibi S, Afzal Z, Norman DJ, Ali GS. Plant Methods 13 86 (2017)
  172. An efficient and specific CRISPR-Cas9 genome editing system targeting soybean phytoene desaturase genes. Lu QSM, Tian L. BMC Biotechnol 22 7 (2022)
  173. An overview of designing and selection of sgRNAs for precise genome editing by the CRISPR-Cas9 system in plants. Uniyal AP, Mansotra K, Yadav SK, Kumar V. 3 Biotech 9 223 (2019)
  174. Blackjack mutations improve the on-target activities of increased fidelity variants of SpCas9 with 5'G-extended sgRNAs. Kulcsár PI, Tálas A, Tóth E, Nyeste A, Ligeti Z, Welker Z, Welker E. Nat Commun 11 1223 (2020)
  175. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. Neurotherapeutics (2022)
  176. CRISPR-Cas9 Mediated DNA Unwinding Detected Using Site-Directed Spin Labeling. Tangprasertchai NS, Di Felice R, Zhang X, Slaymaker IM, Vazquez Reyes C, Jiang W, Rohs R, Qin PZ. ACS Chem. Biol. 12 1489-1493 (2017)
  177. Cas9 in close-up. Garside EL, MacMillan AM. Nat. Biotechnol. 32 338-340 (2014)
  178. Computational normal mode analysis accurately replicates the activity and specificity profiles of CRISPR-Cas9 and high-fidelity variants. Shor O, Rabinowitz R, Offen D, Benninger F. Comput Struct Biotechnol J 20 2013-2019 (2022)
  179. Conserved DNA motifs in the type II-A CRISPR leader region. Van Orden MJ, Klein P, Babu K, Najar FZ, Rajan R. PeerJ 5 e3161 (2017)
  180. Decoupling the bridge helix of Cas12a results in a reduced trimming activity, increased mismatch sensitivity and impaired conformational transitions. Wörle E, Jakob L, Schmidbauer A, Zinner G, Grohmann D. Nucleic Acids Res 49 5278-5293 (2021)
  181. Double-Stranded Biotinylated Donor Enhances Homology-Directed Repair in Combination with Cas9 Monoavidin in Mammalian Cells. Roche PJR, Gytz H, Hussain F, Cameron CJF, Paquette D, Blanchette M, Dostie J, Nagar B, Akavia UD. CRISPR J 1 414-430 (2018)
  182. Dynamics changes of CRISPR-Cas9 systems induced by high fidelity mutations. Zheng L, Shi J, Mu Y. Phys Chem Chem Phys 20 27439-27448 (2018)
  183. Enabling the Rise of a CRISPR World. LaManna CM, Barrangou R. CRISPR J 1 205-208 (2018)
  184. Engineering of high-precision base editors for site-specific single nucleotide replacement. Tan J, Zhang F, Karcher D, Bock R. Nat Commun 10 439 (2019)
  185. Finding function in mystery transcripts. Chi KR. Nature 529 423-425 (2016)
  186. Fulfilling the dream of a perfect genome editing tool. Spies M. Proc. Natl. Acad. Sci. U.S.A. 111 10029-10030 (2014)
  187. Functional roles of intrinsic disorder in CRISPR-associated protein Cas9. Du Z, Uversky VN. Mol Biosyst 13 1770-1780 (2017)
  188. Genome-wide CRISPR off-target prediction and optimization using RNA-DNA interaction fingerprints. Chen Q, Chuai G, Zhang H, Tang J, Duan L, Guan H, Li W, Li W, Wen J, Zuo E, Zhang Q, Liu Q. Nat Commun 14 7521 (2023)
  189. Glycyrrhetinic acid restricts mitochondrial energy metabolism by targeting SHMT2. Jin X, Li L, Peng Q, Gan C, Gao L, He S, Tan S, Pu W, Liu Y, Gong Y, Yao Y, Wang G, Liu X, Gong M, Lei P, Zhang H, Qi S, Xu H, Hu H, Dong B, Peng Y, Su D, Dai L. iScience 25 104349 (2022)
  190. Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA. Saha C, Mohanraju P, Stubbs A, Dugar G, Hoogstrate Y, Kremers GJ, van Cappellen WA, Horst-Kreft D, Laffeber C, Lebbink JHG, Bruens S, Gaskin D, Beerens D, Klunder M, Joosten R, Demmers JAA, van Gent D, Mouton JW, van der Spek PJ, van der Oost J, van Baarlen P, Louwen R. Sci Adv 6 eaaz4849 (2020)
  191. Identification of the EH CRISPR-Cas9 system on a metagenome and its application to genome engineering. Esquerra-Ruvira B, Baquedano I, Ruiz R, Fernandez A, Montoliu L, Mojica FJM. Microb Biotechnol 16 1505-1523 (2023)
  192. Kinetic characterization of Cas9 enzymes. Liu MS, Gong S, Yu HH, Taylor DW, Johnson KA. Methods Enzymol 616 289-311 (2019)
  193. Ligation-assisted homologous recombination enables precise genome editing by deploying both MMEJ and HDR. Zhao Z, Shang P, Sage F, Geijsen N. Nucleic Acids Res 50 e62 (2022)
  194. Monovalent metal ion binding promotes the first transesterification reaction in the spliceosome. Aupič J, Borišek J, Fica SM, Galej WP, Magistrato A. Nat Commun 14 8482 (2023)
  195. Multiplexed capture of spatial configuration and temporal dynamics of locus-specific 3D chromatin by biotinylated dCas9. Liu X, Chen Y, Zhang Y, Liu Y, Liu N, Botten GA, Cao H, Orkin SH, Zhang MQ, Xu J. Genome Biol 21 59 (2020)
  196. Nonspecific interactions between SpCas9 and dsDNA sites located downstream of the PAM mediate facilitated diffusion to accelerate target search. Yang M, Sun R, Deng P, Yang Y, Wang W, Liu JG, Chen C. Chem Sci 12 12776-12784 (2021)
  197. Origins and evolution of CRISPR-Cas systems. Koonin EV, Makarova KS. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 374 20180087 (2019)
  198. Pre-organized Guide RNA in the Cas9 Complex Is Ready for the Selection of Target Double-Stranded DNA. Kamiya Y, Asanuma H. Chembiochem 16 2273-2275 (2015)
  199. Strand break-induced replication fork collapse leads to C-circles, C-overhangs and telomeric recombination. Zhang T, Zhang Z, Shengzhao G, Li X, Liu H, Zhao Y. PLoS Genet. 15 e1007925 (2019)
  200. Structural biology. Cas9, poised for DNA cleavage. Chen H, Bailey S. Science 351 811-812 (2016)
  201. Structure of the IscB-ωRNA ribonucleoprotein complex, the likely ancestor of CRISPR-Cas9. Kato K, Okazaki S, Kannan S, Altae-Tran H, Esra Demircioglu F, Isayama Y, Ishikawa J, Fukuda M, Macrae RK, Nishizawa T, Makarova KS, Koonin EV, Zhang F, Nishimasu H. Nat Commun 13 6719 (2022)
  202. A Robust Expression and Purification Method for Production of SpCas9-GFP-MBP Fusion Protein for In Vitro Applications. Fleitas AL, Señorale M, Vidal S. Methods Protoc 5 44 (2022)
  203. A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity. Eslami-Mossallam B, Klein M, Smagt CVD, Sanden KVD, Jones SK, Hawkins JA, Finkelstein IJ, Depken M. Nat Commun 13 1367 (2022)
  204. A tightly regulated and adjustable CRISPR-dCas9 based AND gate in yeast. Hofmann A, Falk J, Prangemeier T, Happel D, Köber A, Christmann A, Koeppl H, Kolmar H. Nucleic Acids Res. 47 509-520 (2019)
  205. ACE: a probabilistic model for characterizing gene-level essentiality in CRISPR screens. Hutton ER, Vakoc CR, Siepel A. Genome Biol 22 278 (2021)
  206. Allosteric activation of CRISPR-Cas12a requires the concerted movement of the bridge helix and helix 1 of the RuvC II domain. Wörle E, Newman A, D'Silva J, Burgio G, Grohmann D. Nucleic Acids Res 50 10153-10168 (2022)
  207. Allosteric inhibition of CRISPR-Cas9 by bacteriophage-derived peptides. Cui YR, Wang SJ, Chen J, Li J, Chen W, Wang S, Meng B, Zhu W, Zhang Z, Yang B, Jiang B, Yang G, Ma P, Liu J. Genome Biol 21 51 (2020)
  208. Binding to the conserved and stably folded guide RNA pseudoknot induces Cas12a conformational changes during ribonucleoprotein assembly. Sudhakar S, Barkau CL, Chilamkurthy R, Barber HM, Pater AA, Moran SD, Damha MJ, Pradeepkumar PI, Gagnon KT. J Biol Chem 299 104700 (2023)
  209. Bio-Orthogonal Chemistry Conjugation Strategy Facilitates Investigation of N-methyladenosine and Thiouridine Guide RNA Modifications on CRISPR Activity. Hoy A, Zheng YY, Sheng J, Royzen M. CRISPR J 5 787-798 (2022)
  210. Bioinformatic and literature assessment of toxicity and allergenicity of a CRISPR-Cas9 engineered gene drive to control Anopheles gambiae the mosquito vector of human malaria. Qureshi A, Connolly JB. Malar J 22 234 (2023)
  211. Biotechnological challenges: The scope of genome editing. Lima NS, Martínez AG. JBRA Assist Reprod 25 150-154 (2021)
  212. CRISPR Technology Reveals RAD(51)-ical Mechanisms of Repair in Roundworms: An Educational Primer for Use with "Promotion of Homologous Recombination by SWS-1 in Complex with RAD-51 Paralogs in Caenorhabditis elegans". Turcotte CA, Andrews NP, Sloat SA, Checchi PM. Genetics 204 883-891 (2016)
  213. CRISPR snapshots of a gene-editing tool. Krasteva PV. Nat. Methods 11 365 (2014)
  214. CRISPR-Cas Technology: Emerging Applications in Clinical Microbiology and Infectious Diseases. Serajian S, Ahmadpour E, Oliveira SMR, Pereira ML, Heidarzadeh S. Pharmaceuticals (Basel) 14 1171 (2021)
  215. CRISPR-Cas in Streptococcus pyogenes. Le Rhun A, Escalera-Maurer A, Bratovič M, Charpentier E. RNA Biol 16 380-389 (2019)
  216. CRISPR-Cas9 Approach Constructing Cellulase sestc-Engineered Saccharomyces cerevisiae for the Production of Orange Peel Ethanol. Yang P, Wu Y, Zheng Z, Cao L, Zhu X, Mu D, Jiang S. Front Microbiol 9 2436 (2018)
  217. CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells. Min YL, Li H, Rodriguez-Caycedo C, Mireault AA, Huang J, Shelton JM, McAnally JR, Amoasii L, Mammen PPA, Bassel-Duby R, Olson EN. Sci Adv 5 eaav4324 (2019)
  218. CRISPRtracrRNA: robust approach for CRISPR tracrRNA detection. Mitrofanov A, Ziemann M, Alkhnbashi OS, Hess WR, Backofen R. Bioinformatics 38 ii42-ii48 (2022)
  219. Cas9 is mostly orthogonal to human systems of DNA break sensing and repair. Maltseva EA, Vasil'eva IA, Moor NA, Kim DV, Dyrkheeva NS, Kutuzov MM, Vokhtantsev IP, Kulishova LM, Zharkov DO, Lavrik OI. PLoS One 18 e0294683 (2023)
  220. Catalytic Mechanism of Non-Target DNA Cleavage in CRISPR-Cas9 Revealed by Ab Initio Molecular Dynamics. Casalino L, Nierzwicki Ł, Jinek M, Palermo G. ACS Catal 10 13596-13605 (2020)
  221. CoLAMP: CRISPR-based one-pot loop-mediated isothermal amplification enables at-home diagnosis of SARS-CoV-2 RNA with nearly eliminated contamination utilizing amplicons depletion strategy. Cao Y, Lu X, Lin H, Rodriguez Serrano AF, Lui GCY, Hsing IM. Biosens Bioelectron 236 115402 (2023)
  222. Comprehensive Analysis of CRISPR/Cas9-Mediated Mutagenesis in Arabidopsis thaliana by Genome-wide Sequencing. Xu W, Fu W, Zhu P, Li Z, Wang C, Wang C, Zhang Y, Zhu S. Int J Mol Sci 20 (2019)
  223. Conformational plasticity of SpyCas9 induced by AcrIIA4 and AcrIIA2: Insights from molecular dynamics simulation. Wen S, Zhao Y, Qi X, Cai M, Huang K, Liu H, Kong DX. Comput Struct Biotechnol J 23 537-548 (2024)
  224. Coordinated Actions of Cas9 HNH and RuvC Nuclease Domains Are Regulated by the Bridge Helix and the Target DNA Sequence. Babu K, Kathiresan V, Kumari P, Newsom S, Parameshwaran HP, Chen X, Liu J, Qin PZ, Rajan R. Biochemistry 60 3783-3800 (2021)
  225. Delivering Cas9/sgRNA ribonucleoprotein (RNP) by lentiviral capsid-based bionanoparticles for efficient 'hit-and-run' genome editing. Lyu P, Javidi-Parsijani P, Atala A, Lu B. Nucleic Acids Res. 47 e99 (2019)
  226. Designed allosteric protein logic. Plaper T, Merljak E, Fink T, Satler T, Ljubetič A, Lainšček D, Jazbec V, Benčina M, Stevanoska S, Džeroski S, Jerala R. Cell Discov 10 8 (2024)
  227. Development of an Agrobacterium-delivered CRISPR/Cas9 system for wheat genome editing. Zhang Z, Hua L, Gupta A, Tricoli D, Edwards KJ, Yang B, Li W. Plant Biotechnol. J. 17 1623-1635 (2019)
  228. Differential Divalent Metal Binding by SpyCas9's RuvC Active Site Contributes to Nonspecific DNA Cleavage. Newsom SN, Wang DS, Rostami S, Schuster I, Parameshwaran HP, Joseph YG, Qin PZ, Liu J, Rajan R. CRISPR J 6 527-542 (2023)
  229. Direct AFM Visualization of the Nanoscale Dynamics of Biomolecular Complexes. Lyubchenko YL. J Phys D Appl Phys 51 (2018)
  230. Directed evolution studies of a thermophilic Type II-C Cas9. Hand TH, Das A, Li H. Meth. Enzymol. 616 265-288 (2019)
  231. Disruption of electrostatic contacts in the HNH nuclease from a thermophilic Cas9 rewires allosteric motions and enhances high-temperature DNA cleavage. Belato HB, Norbrun C, Luo J, Pindi C, Sinha S, D'Ordine AM, Jogl G, Palermo G, Lisi GP. J Chem Phys 157 225103 (2022)
  232. Diversification of the CRISPR Toolbox: Applications of CRISPR-Cas Systems Beyond Genome Editing. Balderston S, Clouse G, Ripoll JJ, Pratt GK, Gasiunas G, Bock JO, Bennett EP, Aran K. CRISPR J 4 400-415 (2021)
  233. research-article Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency. Park SJ, Yoon S, Choi EH, Hyeon H, Lee K, Kim KP. BMB Rep 56 102-107 (2023)
  234. Engineering of efficiency-enhanced Cas9 and base editors with improved gene therapy efficacies. Yin S, Zhang M, Liu Y, Sun X, Guan Y, Chen X, Yang L, Huo Y, Yang J, Zhang X, Han H, Zhang J, Xiao MM, Liu M, Hu J, Wang L, Li D. Mol Ther 31 744-759 (2023)
  235. Engineering of molybdenum-cofactor-dependent nitrate assimilation in Yarrowia lipolytica. Perli T, Borodina I, Daran JM. FEMS Yeast Res 21 foab050 (2021)
  236. Enterococcus faecalis Strains with Compromised CRISPR-Cas Defense Emerge under Antibiotic Selection for a CRISPR-Targeted Plasmid. Huo W, Price VJ, Sharifi A, Zhang MQ, Palmer KL. Appl Environ Microbiol 89 e0012423 (2023)
  237. Excess of guide RNA reduces knockin efficiency and drastically increases on-target large deletions. Chenouard V, Leray I, Tesson L, Remy S, Allan A, Archer D, Caulder A, Fortun A, Bernardeau K, Cherifi Y, Teboul L, David L, Anegon I. iScience 26 106399 (2023)
  238. Exploring the Catalytic Mechanism of Cas9 Using Information Inferred from Endonuclease VII. Yoon H, Zhao LN, Warshel A. ACS Catal 9 1329-1336 (2019)
  239. Full-Length Model of SaCas9-sgRNA-DNA Complex in Cleavage State. Du W, Zhu H, Qian J, Xue D, Zheng S, Huang Q. Int J Mol Sci 24 1204 (2023)
  240. Functional Comparison between VP64-dCas9-VP64 and dCas9-VP192 CRISPR Activators in Human Embryonic Kidney Cells. Javaid N, Pham TLH, Choi S. Int J Mol Sci 22 (2021)
  241. Functional Control of Peptide Amphiphile Assemblies via Modulation of Internal Cohesion and Surface Chemistry Switch. Lu S, Cui W, Li J, Sheng Y, Chen P. Chemistry 24 13931-13937 (2018)
  242. Gene editing with CRISPR-Cas12a guides possessing ribose-modified pseudoknot handles. Ageely EA, Chilamkurthy R, Jana S, Abdullahu L, O'Reilly D, Jensik PJ, Damha MJ, Gagnon KT. Nat Commun 12 6591 (2021)
  243. Generation of genome-modified Drosophila cell lines using SwAP. Franz A, Brunner E, Basler K. Fly (Austin) 11 303-311 (2017)
  244. Genome editing in plants using the compact editor CasΦ. Li Z, Zhong Z, Wu Z, Pausch P, Al-Shayeb B, Amerasekera J, Doudna JA, Jacobsen SE. Proc Natl Acad Sci U S A 120 e2216822120 (2023)
  245. Global chromosome rearrangement induced by CRISPR-Cas9 reshapes the genome and transcriptome of human cells. Liu Y, Ma G, Gao Z, Li J, Wang J, Zhu X, Ma R, Yang J, Zhou Y, Hu K, Zhang Y, Guo Y. Nucleic Acids Res 50 3456-3474 (2022)
  246. HK97 gp74 Possesses an α-Helical Insertion in the ββα Fold That Affects Its Metal Binding, cos Site Digestion, and In Vivo Activities. Weiditch SA, Bickers SC, Bona D, Maxwell KL, Kanelis V. J Bacteriol 202 (2020)
  247. HideRNAs protect against CRISPR-Cas9 re-cutting after successful single base-pair gene editing. Harmsen TJW, Pritchard CEJ, Riepsaame J, van de Vrugt HJ, Huijbers IJ, Te Riele H. Sci Rep 12 9606 (2022)
  248. High-Resolution Structure of Cas13b and Biochemical Characterization of RNA Targeting and Cleavage. Slaymaker IM, Mesa P, Kellner MJ, Kannan S, Brignole E, Koob J, Feliciano PR, Stella S, Abudayyeh OO, Gootenberg JS, Strecker J, Montoya G, Zhang F. Cell Rep 26 3741-3751.e5 (2019)
  249. Highly Efficient and Heritable Targeted Mutagenesis in Wheat via the Agrobacterium tumefaciens-Mediated CRISPR/Cas9 System. Zhang S, Zhang R, Gao J, Gu T, Song G, Li W, Li D, Li Y, Li G. Int J Mol Sci 20 (2019)
  250. Improved Machine Learning-Based Model for the Classification of Off-Targets in the CRISPR/Cpf1 System. Kesarwani P, Vora DS, Sundar D. ACS Omega 8 45578-45588 (2023)
  251. Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a Histone AcetylTransferase. Roca Paixão JF, Gillet FX, Ribeiro TP, Bournaud C, Lourenço-Tessutti IT, Noriega DD, Melo BP, de Almeida-Engler J, Grossi-de-Sa MF. Sci Rep 9 8080 (2019)
  252. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides. Sakovina L, Vokhtantsev I, Vorobyeva M, Vorobyev P, Novopashina D. Int J Mol Sci 23 13460 (2022)
  253. Inhibition of CRISPR-Cas9 ribonucleoprotein complex assembly by anti-CRISPR AcrIIC2. Thavalingam A, Cheng Z, Garcia B, Huang X, Shah M, Sun W, Wang M, Harrington L, Hwang S, Hidalgo-Reyes Y, Sontheimer EJ, Doudna J, Davidson AR, Moraes TF, Wang Y, Maxwell KL. Nat Commun 10 2806 (2019)
  254. Knockout Mutants of OsPUB7 Generated Using CRISPR/Cas9 Revealed Abiotic Stress Tolerance in Rice. Kim MS, Ko SR, Jung YJ, Kang KK, Lee YJ, Cho YG. Int J Mol Sci 24 5338 (2023)
  255. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. Bolsoni J, Liu D, Mohabatpour F, Ebner R, Sadhnani G, Tafech B, Leung J, Shanta S, An K, Morin T, Chen Y, Arguello A, Choate K, Jan E, Ross CJD, Brambilla D, Witzigmann D, Kulkarni J, Cullis PR, Hedtrich S. ACS Nano 17 22046-22059 (2023)
  256. MDiGest: A Python package for describing allostery from molecular dynamics simulations. Maschietto F, Allen B, Kyro GW, Batista VS. J Chem Phys 158 215103 (2023)
  257. Letter Molecular basis for DNA cleavage by the hypercompact Cas12j-SF05. Duan Z, Zhang X, Zhang JT, Li S, Liu R, Sun J, Zhao Q, Jia N, Jia N, Zhu JK. Cell Discov 9 117 (2023)
  258. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease. Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q. PLoS Biol. 17 e3000496 (2019)
  259. Molecular mechanisms of Streptococcus pyogenes Cas9: a single-molecule perspective. Zhang Q, Chen Z, Sun B. Biophys Rep 7 475-489 (2021)
  260. Multiplexed Cas9 targeting reveals genomic location effects and gRNA-based staggered breaks influencing mutation efficiency. Gisler S, Gonçalves JP, Akhtar W, de Jong J, Pindyurin AV, Wessels LFA, van Lohuizen M. Nat Commun 10 1598 (2019)
  261. Multiplexed Simian Immunodeficiency Virus-Specific Paired RNA-Guided Cas9 Nickases Inactivate Proviral DNA. Smith LM, Ladner JT, Hodara VL, Parodi LM, Harris RA, Callery JE, Lai Z, Zou Y, Raveedran M, Rogers J, Giavedoni LD. J Virol 95 e0088221 (2021)
  262. Nonspecific interactions between Cas12a and dsDNA located downstream of the PAM mediate target search and assist AsCas12a for DNA cleavage. Sun R, Zhao Y, Wang W, Liu JG, Chen C. Chem Sci 14 3839-3851 (2023)
  263. One more piece down to solve the III-A CRISPR puzzle. Hayes RP, Ke A. J. Mol. Biol. 427 228-230 (2015)
  264. Optimization of T-DNA architecture for Cas9-mediated mutagenesis in Arabidopsis. Castel B, Tomlinson L, Locci F, Yang Y, Jones JDG. PLoS ONE 14 e0204778 (2019)
  265. Optimizing Systems for Cas9 Expression in Toxoplasma gondii. Markus BM, Bell GW, Lorenzi HA, Lourido S. mSphere 4 (2019)
  266. Origins and Applications of CRISPR-Mediated Genome Editing. Christin JR, Beckert MV. Einstein J Biol Med 31 2-5 (2016)
  267. Overview of CRISPR-Cas9 Biology. Ratner HK, Sampson TR, Weiss DS. Cold Spring Harb Protoc 2016 (2016)
  268. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange G, Randau L. RNA Biol 16 504-517 (2019)
  269. Polarity of the CRISPR roadblock to transcription. Hall PM, Inman JT, Fulbright RM, Le TT, Brewer JJ, Lambert G, Darst SA, Wang MD. Nat Struct Mol Biol 29 1217-1227 (2022)
  270. Position-dependent sequence motif preferences of SpCas9 are largely determined by scaffold-complementary spacer motifs. Huszár K, Welker Z, Györgypál Z, Tóth E, Ligeti Z, Kulcsár PI, Dancsó J, Tálas A, Krausz SL, Varga É, Welker E. Nucleic Acids Res 51 5847-5863 (2023)
  271. Predicting CRISPR-Cas12a guide efficiency for targeting using machine learning. O'Brien A, Bauer DC, Burgio G. PLoS One 18 e0292924 (2023)
  272. Probing the Dynamics of Streptococcus pyogenes Cas9 Endonuclease Bound to the sgRNA Complex Using Hydrogen-Deuterium Exchange Mass Spectrometry. Zhdanova PV, Chernonosov AA, Prokhorova DV, Stepanov GA, Kanazhevskaya LY, Koval VV. Int J Mol Sci 23 1129 (2022)
  273. Prokaryotic ncRNAs: Master regulators of gene expression. Majumder R, Ghosh S, Das A, Singh MK, Samanta S, Saha A, Saha RP. Curr Res Pharmacol Drug Discov 3 100136 (2022)
  274. Proximal binding of dCas9 at a DNA double strand break stimulates homology-directed repair as a local inhibitor of classical non-homologous end joining. Feng YL, Liu SC, Chen RD, Sun XN, Xiao JJ, Xiang JF, Xie AY. Nucleic Acids Res 51 2740-2758 (2023)
  275. Reprogrammed tracrRNAs enable repurposing of RNAs as crRNAs and sequence-specific RNA biosensors. Liu Y, Pinto F, Wan X, Yang Z, Peng S, Li M, Cooper JM, Xie Z, French CE, Wang B. Nat Commun 13 1937 (2022)
  276. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Genna V, Colombo M, De Vivo M, Marcia M. Structure 26 40-50.e2 (2018)
  277. Single- and duplex TaqMan-quantitative PCR for determining the copy numbers of integrated selection markers during site-specific mutagenesis in Toxoplasma gondii by CRISPR-Cas9. Hänggeli KPA, Hemphill A, Müller N, Schimanski B, Olias P, Müller J, Boubaker G. PLoS One 17 e0271011 (2022)
  278. Small RNA-induced INTS6 gene up-regulation suppresses castration-resistant prostate cancer cells by regulating β-catenin signaling. Chen H, Shen HX, Lin YW, Mao YQ, Liu B, Xie LP. Cell Cycle 17 1602-1613 (2018)
  279. Specificity Assessment of CRISPR Genome Editing of Oncogenic EGFR Point Mutation with Single-Base Differences. Bae T, Kim H, Kim JH, Kim YJ, Lee SH, Ham BJ, Hur JK. Molecules 25 (2019)
  280. Staphylococcus aureus Cas9 is a multiple-turnover enzyme. Yourik P, Fuchs RT, Mabuchi M, Curcuru JL, Robb GB. RNA 25 35-44 (2019)
  281. Structural Basis for Reduced Dynamics of Three Engineered HNH Endonuclease Lys-to-Ala Mutants for the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Associated 9 (CRISPR/Cas9) Enzyme. Wang J, Skeens E, Arantes PR, Maschietto F, Allen B, Kyro GW, Lisi GP, Palermo G, Batista VS. Biochemistry 61 785-794 (2022)
  282. Structural and dynamic insights into the HNH nuclease of divergent Cas9 species. Belato HB, D'Ordine AM, Nierzwicki L, Arantes PR, Jogl G, Palermo G, Lisi GP. J Struct Biol 214 107814 (2022)
  283. Structural basis for mismatch surveillance by CRISPR-Cas9. Bravo JPK, Liu MS, Hibshman GN, Dangerfield TL, Jung K, McCool RS, Johnson KA, Taylor DW. Nature 603 343-347 (2022)
  284. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Hirano S, Abudayyeh OO, Gootenberg JS, Horii T, Ishitani R, Hatada I, Zhang F, Nishimasu H, Nureki O. Nat Commun 10 1968 (2019)
  285. Structural biology: activating and guiding Cas9. Du Toit A. Nat. Rev. Microbiol. 12 236-237 (2014)
  286. Structural insights into a high fidelity variant of SpCas9. Guo M, Ren K, Zhu Y, Tang Z, Wang Y, Zhang B, Huang Z. Cell Res. 29 183-192 (2019)
  287. Structure- and Content-Dependent Efficiency of Cas9-Assisted DNA Cleavage in Genome-Editing Systems. Baranova SV, Zhdanova PV, Lomzov AA, Koval VV, Chernonosov AA. Int J Mol Sci 23 13889 (2022)
  288. Structures of Neisseria meningitidis Cas9 Complexes in Catalytically Poised and Anti-CRISPR-Inhibited States. Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y. Mol. Cell 76 938-952.e5 (2019)
  289. Study of the regulatory elements of the Ovalbumin gene promoter using CRISPR technology in chicken cells. Yousefi Taemeh S, Dehdilani N, Goshayeshi L, Rival-Gervier S, Mehrzad J, Pain B, Dehghani H. J Biol Eng 17 46 (2023)
  290. Supramolecular CRISPR-OFF switches with host-guest chemistry. Xiong W, Liu X, Qi Q, Ji H, Liu F, Zhong C, Liu S, Tian T, Zhou X. Nucleic Acids Res 50 1241-1255 (2022)
  291. Synthetic chimeric nucleases function for efficient genome editing. Liu RM, Liang LL, Freed E, Chang H, Oh E, Liu ZY, Garst A, Eckert CA, Gill RT. Nat Commun 10 5524 (2019)
  292. Temperature-Dependent Affinity Changes in Substrate Binding Affect the Cleavage Activity of BthC2c1. Wu D, Liu J, Liu Y, Qiu Y, Cao Z, Pan Y, Shi J, Yuan X. Protein Pept Lett 30 233-241 (2023)
  293. Tetrazine-Ligated CRISPR sgRNAs for Efficient Genome Editing. Chen Z, Devi G, Arif A, Zamore PD, Sontheimer EJ, Watts JK. ACS Chem Biol 17 1045-1050 (2022)
  294. The Electronic Structure of Genome Editors from the First Principles. Nierzwicki Ł, Ahsan M, Palermo G. Electron Struct 5 014003 (2023)
  295. The molecular basis for recognition of 5'-NNNCC-3' PAM and its methylation state by Acidothermus cellulolyticus Cas9. Das A, Hand TH, Smith CL, Wickline E, Zawrotny M, Li H. Nat Commun 11 6346 (2020)
  296. Thermodynamic Swings: How Ideal Complex of Cas9-RNA/DNA Forms. Zhdanova PV, Lomzov AA, Prokhorova DV, Stepanov GA, Chernonosov AA, Koval VV. Int J Mol Sci 23 8891 (2022)
  297. Time-controlled and muscle-specific CRISPR/Cas9-mediated deletion of CTG-repeat expansion in the DMPK gene. Cardinali B, Provenzano C, Izzo M, Voellenkle C, Battistini J, Strimpakos G, Golini E, Mandillo S, Scavizzi F, Raspa M, Perfetti A, Baci D, Lazarevic D, Garcia-Manteiga JM, Gourdon G, Martelli F, Falcone G. Mol Ther Nucleic Acids 27 184-199 (2022)
  298. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. Wu Q, Shou J. J Mol Cell Biol 12 828-856 (2021)
  299. Transgenerationally Transmitted DNA Demethylation of a Spontaneous Epialleles Using CRISPR/dCas9-TET1cd Targeted Epigenetic Editing in Arabidopsis. Wang M, He L, Chen B, Wang Y, Wang L, Zhou W, Zhang T, Cao L, Zhang P, Xie L, Zhang Q. Int J Mol Sci 23 10492 (2022)
  300. Understanding on CRISPR/Cas9 mediated cutting-edge approaches for cancer therapeutics. Bhattacharjee R, Das Roy L, Choudhury A. Discov Oncol 13 45 (2022)
  301. Unexpected gene activation following CRISPR-Cas9-mediated genome editing. Manjón AG, Linder S, Teunissen H, Friskes A, Zwart W, de Wit E, Medema RH. EMBO Rep 23 e53902 (2022)
  302. Versatile transcription control based on reversible dCas9 binding. Widom JR, Rai V, Rohlman CE, Walter NG. RNA 25 1457-1469 (2019)
  303. dCas9 binding inhibits the initiation of base excision repair in vitro. Antony JS, Roberts SA, Wyrick JJ, Hinz JM. DNA Repair (Amst) 109 103257 (2022)