4bvh Citations

Ex-527 inhibits Sirtuins by exploiting their unique NAD+-dependent deacetylation mechanism.

Proc. Natl. Acad. Sci. U.S.A. (2013)
Related entries: 4bvb, 4bve, 4bvf, 4bvg, 4bv2, 4bv3, 4buz

Cited: 47 times
EuropePMC logo PMID: 23840057

Abstract

Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+), alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.

Reviews citing this publication (13)

  1. Multiple pathways of SIRT6 at the crossroads in the control of longevity, cancer, and cardiovascular diseases. Vitiello M, Zullo A, Servillo L, Mancini FP, Borriello A, Giovane A, Della Ragione F, D'Onofrio N, Balestrieri ML. Ageing Res. Rev. 35 301-311 (2017)
  2. The Current State of NAD(+) -Dependent Histone Deacetylases (Sirtuins) as Novel Therapeutic Targets. Schiedel M, Robaa D, Rumpf T, Sippl W, Jung M. Med Res Rev (2017)
  3. Therapeutics Targeting Protein Acetylation Perturb Latency of Human Viruses. Conrad RJ, Ott M. ACS Chem. Biol. 11 669-680 (2016)
  4. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Uversky VN. Int J Mol Sci 17 (2016)
  5. Human sirtuins: Structures and flexibility. Sacconnay L, Carrupt PA, Nurisso A. J. Struct. Biol. 196 534-542 (2016)
  6. Sirtuin functions and modulation: from chemistry to the clinic. Carafa V, Rotili D, Forgione M, Cuomo F, Serretiello E, Hailu GS, Jarho E, Lahtela-Kakkonen M, Mai A, Altucci L. Clin Epigenetics 8 61 (2016)
  7. The role of mitochondrial sirtuins in health and disease. Osborne B, Bentley NL, Montgomery MK, Turner N. Free Radic. Biol. Med. 100 164-174 (2016)
  8. Mitochondrial biology, targets, and drug delivery. Milane L, Trivedi M, Singh A, Talekar M, Amiji M. J Control Release 207 40-58 (2015)
  9. Schistosome sirtuins as drug targets. Lancelot J, Cabezas-Cruz A, Caby S, Marek M, Schultz J, Romier C, Sippl W, Jung M, Pierce RJ. Future Med Chem 7 765-782 (2015)
  10. New assays and approaches for discovery and design of Sirtuin modulators. Schutkowski M, Fischer F, Roessler C, Steegborn C. Expert Opin Drug Discov 9 183-199 (2014)
  11. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Hubbard BP, Sinclair DA. Trends Pharmacol. Sci. 35 146-154 (2014)
  12. Lysine deacetylase (KDAC) regulatory pathways: an alternative approach to selective modulation. Van Dyke MW. ChemMedChem 9 511-522 (2014)
  13. Investigational drugs for the management of Huntington's disease: are we there yet? Kulkarni P, Saxena U. Expert Opin Investig Drugs 23 1595-1603 (2014)

Articles citing this publication (34)

  1. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington's disease. Smith MR, Syed A, Lukacsovich T, Purcell J, Barbaro BA, Worthge SA, Wei SR, Pollio G, Magnoni L, Scali C, Massai L, Franceschini D, Camarri M, Gianfriddo M, Diodato E, Thomas R, Gokce O, Tabrizi SJ, Caricasole A, Landwehrmeyer B, Menalled L, Murphy C, Ramboz S, Luthi-Carter R, Westerberg G, Marsh JL. Hum. Mol. Genet. 23 2995-3007 (2014)
  2. Structural and functional analysis of human SIRT1. Davenport AM, Huber FM, Hoelz A. J. Mol. Biol. 426 526-541 (2014)
  3. Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Yamagata K, Goto Y, Nishimasu H, Morimoto J, Ishitani R, Dohmae N, Takeda N, Nagai R, Komuro I, Suga H, Nureki O. Structure 22 345-352 (2014)
  4. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Rumpf T, Schiedel M, Karaman B, Roessler C, North BJ, Lehotzky A, Oláh J, Ladwein KI, Schmidtkunz K, Gajer M, Pannek M, Steegborn C, Sinclair DA, Gerhardt S, Ovádi J, Schutkowski M, Sippl W, Einsle O, Jung M. Nat Commun 6 6263 (2015)
  5. Crystal structures of Sirt3 complexes with 4'-bromo-resveratrol reveal binding sites and inhibition mechanism. Nguyen GT, Gertz M, Steegborn C. Chem. Biol. 20 1375-1385 (2013)
  6. SIRT1 inhibition during the hypoinflammatory phenotype of sepsis enhances immunity and improves outcome. Vachharajani VT, Liu T, Brown CM, Wang X, Buechler NL, Wells JD, Yoza BK, McCall CE. J. Leukoc. Biol. 96 785-796 (2014)
  7. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism. Rowlands BD, Lau CL, Ryall JG, Thomas DS, Klugmann M, Beart PM, Rae CD. J. Neurosci. Res. 93 1147-1156 (2015)
  8. Resveratrol attenuates microvascular inflammation in sepsis via SIRT-1-Induced modulation of adhesion molecules in ob/ob mice. Wang X, Buechler NL, Yoza BK, McCall CE, Vachharajani VT. Obesity (Silver Spring) 23 1209-1217 (2015)
  9. Mechanism of inhibition of the human sirtuin enzyme SIRT3 by nicotinamide: computational and experimental studies. Guan X, Lin P, Knoll E, Chakrabarti R. PLoS ONE 9 e107729 (2014)
  10. Sirtuin 1 Regulates Dendritic Cell Activation and Autophagy during Respiratory Syncytial Virus-Induced Immune Responses. Owczarczyk AB, Schaller MA, Reed M, Rasky AJ, Lombard DB, Lukacs NW. J. Immunol. 195 1637-1646 (2015)
  11. Leucine Modulates Mitochondrial Biogenesis and SIRT1-AMPK Signaling in C2C12 Myotubes. Liang C, Curry BJ, Brown PL, Zemel MB. J Nutr Metab 2014 239750 (2014)
  12. Docking and binding free energy calculations of sirtuin inhibitors. Karaman B, Sippl W. Eur J Med Chem 93 584-598 (2015)
  13. Enhanced nucleotide excision repair capacity in lung cancer cells by preconditioning with DNA-damaging agents. Choi JY, Park JM, Yi JM, Leem SH, Kang TH. Oncotarget 6 22575-22586 (2015)
  14. The histone deacetylase sirtuin 2 is a new player in the regulation of platelet function. Moscardó A, Vallés J, Latorre A, Jover R, Santos MT. J. Thromb. Haemost. 13 1335-1344 (2015)
  15. VEGF Receptor-2-Linked PI3K/Calpain/SIRT1 Activation Mediates Retinal Arteriolar Dilations to VEGF and Shear Stress. Hein TW, Rosa RH, Ren Y, Xu W, Kuo L. Invest. Ophthalmol. Vis. Sci. 56 5381-5389 (2015)
  16. Pharmacological activation of endogenous protective pathways against oxidative stress under conditions of sepsis. McCreath G, Scullion MM, Lowes DA, Webster NR, Galley HF. Br J Anaesth 116 131-139 (2016)
  17. Reciprocal regulation between sirtuin-1 and angiotensin-II in the substantia nigra: implications for aging and neurodegeneration. Diaz-Ruiz C, Rodriguez-Perez AI, Beiroa D, Rodriguez-Pallares J, Labandeira-Garcia JL. Oncotarget 6 26675-26689 (2015)
  18. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays. Aleshin VA, Artiukhov AV, Oppermann H, Kazantsev AV, Lukashev NV, Bunik VI. Cells 4 427-451 (2015)
  19. Non-specific SIRT inhibition as a mechanism for the cytotoxicity of ginkgolic acids and urushiols. Ryckewaert L, Sacconnay L, Carrupt PA, Nurisso A, Simões-Pires C. Toxicol. Lett. 229 374-380 (2014)
  20. Deacylation Mechanism by SIRT2 Revealed in the 1'-SH-2'-O-Myristoyl Intermediate Structure. Wang Y, Fung YM, Zhang W, He B, Chung MW, Jin J, Hu J, Lin H, Hao Q. Cell Chem Biol 24 339-345 (2017)
  21. Propofol inhibits SIRT2 deacetylase through a conformation-specific, allosteric site. Weiser BP, Eckenhoff RG. J. Biol. Chem. 290 8559-8568 (2015)
  22. Selectivity hot-spots of sirtuin catalytic cores. Parenti MD, Bruzzone S, Nencioni A, Del Rio A. Mol Biosyst 11 2263-2272 (2015)
  23. SIRT1 Interacts with and Deacetylates ATP6V1B2 in Mature Adipocytes. Kim SY, Zhang Q, Brunmeir R, Han W, Xu F. PLoS ONE 10 e0133448 (2015)
  24. Adversity in childhood and depression: linked through SIRT1. Lo Iacono L, Visco-Comandini F, Valzania A, Viscomi MT, Coviello M, Giampà A, Roscini L, Bisicchia E, Siracusano A, Troisi A, Puglisi-Allegra S, Carola V. Transl Psychiatry 5 e629 (2015)
  25. Sirtuins are Unaffected by PARP Inhibitors Containing Planar Nicotinamide Bioisosteres. Ekblad T, Schüler H. Chem Biol Drug Des 87 478-482 (2016)
  26. The plasticizer BBP selectively inhibits epigenetic regulator sirtuins. Zhang J, Ali HI, Bedi YS, Choudhury M. Toxicology 338 130-141 (2015)
  27. Finding Potent Sirt Inhibitor in Coffee: Isolation, Confirmation and Synthesis of Javamide-II (N-Caffeoyltryptophan) as Sirt1/2 Inhibitor. Park JB. PLoS ONE 11 e0150392 (2016)
  28. Vav1 regulates mesenchymal stem cell differentiation decision between adipocyte and chondrocyte via Sirt1. Qu P, Wang L, Min Y, McKennett L, Keller JR, Lin PC. Stem Cells (2016)
  29. Inhibition of Extracellular Calcium Influx Results in Enhanced IL-12 Production in LPS-Treated Murine Macrophages by Downregulation of the CaMKKβ-AMPK-SIRT1 Signaling Pathway. Liu X, Wang N, Zhu Y, Yang Y, Chen X, Fan S, Chen Q, Zhou H, Zheng J. Mediators Inflamm. 2016 6152713 (2016)
  30. Acetylation of Mammalian ADA3 Is Required for Its Functional Roles in Histone Acetylation and Cell Proliferation. Mohibi S, Srivastava S, Bele A, Mirza S, Band H, Band V. Mol. Cell. Biol. 36 2487-2502 (2016)
  31. SIRT1 Mediates Depression-Like Behaviors in the Nucleus Accumbens. Kim HD, Hesterman J, Call T, Magazu S, Keeley E, Armenta K, Kronman H, Neve RL, Nestler EJ, Ferguson D. J. Neurosci. 36 8441-8452 (2016)
  32. SIRT6 Is a Positive Regulator of Aldose Reductase Expression in U937 and HeLa cells under Osmotic Stress: In Vitro and In Silico Insights. Timucin AC, Basaga H. PLoS ONE 11 e0161494 (2016)
  33. G-quadruplex-based fluorometric biosensor for label-free and homogenous detection of protein acetylation-related enzymes activities. Wang H, Li Y, Zhao K, Chen S, Wang Q, Lin B, Nie Z, Yao S. Biosens Bioelectron 91 400-407 (2017)
  34. SIRT1 activation mediates heat-induced survival of UVB damaged Keratinocytes. Calapre L, Gray ES, Kurdykowski S, David A, Descargues P, Ziman M. BMC Dermatol. 17 8 (2017)