4ald Citations

Crystal structure of human muscle aldolase complexed with fructose 1,6-bisphosphate: mechanistic implications.

Protein Sci 8 291-7 (1999)
Cited: 64 times
EuropePMC logo PMID: 10048322

Abstract

Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.

Articles - 4ald mentioned but not cited (16)

  1. Aldolase provides an unusual binding site for thrombospondin-related anonymous protein in the invasion machinery of the malaria parasite. Bosch J, Buscaglia CA, Krumm B, Ingason BP, Lucas R, Roach C, Cardozo T, Nussenzweig V, Hol WG. Proc Natl Acad Sci U S A 104 7015-7020 (2007)
  2. Structural and functional analysis of novel human cytochrome C targets in apoptosis. Martínez-Fábregas J, Díaz-Moreno I, González-Arzola K, Janocha S, Navarro JA, Hervás M, Bernhardt R, Velázquez-Campoy A, Díaz-Quintana A, De la Rosa MA. Mol Cell Proteomics 13 1439-1456 (2014)
  3. Ophiobolin A Induces Autophagy and Activates the Mitochondrial Pathway of Apoptosis in Human Melanoma Cells. Rodolfo C, Rocco M, Cattaneo L, Tartaglia M, Sassi M, Aducci P, Scaloni A, Camoni L, Marra M. PLoS One 11 e0167672 (2016)
  4. Ionic strength dependence of F-actin and glycolytic enzyme associations: a Brownian dynamics simulations approach. Forlemu NY, Njabon EN, Carlson KL, Schmidt ES, Waingeh VF, Thomasson KA. Proteins 79 2813-2827 (2011)
  5. A thermolabile aldolase A mutant causes fever-induced recurrent rhabdomyolysis without hemolytic anemia. Mamoune A, Bahuau M, Hamel Y, Serre V, Pelosi M, Habarou F, Nguyen Morel MA, Boisson B, Vergnaud S, Viou MT, Nonnenmacher L, Piraud M, Nusbaum P, Vamecq J, Romero N, Ottolenghi C, Casanova JL, de Lonlay P. PLoS Genet 10 e1004711 (2014)
  6. Evolutionary and functional analysis of fructose bisphosphate aldolase of plant parasitic nematodes. Prasad CS, Gupta S, Kumar H, Tiwari M. Bioinformation 9 1-8 (2013)
  7. A role of TGFß1 dependent 14-3-3σ phosphorylation at Ser69 and Ser74 in the regulation of gene transcription, stemness and radioresistance. Zakharchenko O, Cojoc M, Dubrovska A, Souchelnytskyi S. PLoS One 8 e65163 (2013)
  8. Discovery of Plasmodium (M)TRAP-Aldolase Interaction Stabilizers Interfering with Sporozoite Motility and Invasion. Boucher LE, Hopp CS, Muthinja JM, Frischknecht F, Bosch J. ACS Infect Dis 4 620-634 (2018)
  9. Substitutions at a rheostat position in human aldolase A cause a shift in the conformational population. Fenton KD, Meneely KM, Wu T, Martin TA, Swint-Kruse L, Fenton AW, Lamb AL. Protein Sci 31 357-370 (2022)
  10. Antilymphoma Effect of Incomptine A: In Vivo, In Silico, and Toxicological Studies. Calzada F, Bautista E, Hidalgo-Figueroa S, García-Hernández N, Barbosa E, Velázquez C, Ordoñez-Razo RM, Arietta-García AG. Molecules 26 6646 (2021)
  11. Global profiling of AMG510 modified proteins identified tumor suppressor KEAP1 as an off-target. Wang Y, Zhong B, Xu C, Zhan D, Zhao S, Wu H, Liu M, Lan X, Cai D, Ding Q, Zheng B, Lan J, Lv Q, Wang Y, Qin J. iScience 26 106080 (2023)
  12. Macrosphelide A Exhibits a Specific Anti-Cancer Effect by Simultaneously Inactivating ENO1, ALDOA, and FH. Song K, Rajasekaran N, Chelakkot C, Lee HS, Paek SM, Yang H, Jia L, Park HG, Son WS, Kim YJ, Choi JS, Jeong HM, Suh YG, Yun H, Shin YK. Pharmaceuticals (Basel) 14 1060 (2021)
  13. Low potency toxins reveal dense interaction networks in metabolism. Bains W. BMC Syst Biol 10 19 (2016)
  14. Protein interactions with metallothionein-3 promote vectorial active transport in human proximal tubular cells. Kalyan G, Slusser-Nore A, Dunlevy JR, Bathula CS, Shabb JB, Muhonen W, Somji S, Sens DA, Garrett SH. PLoS One 17 e0267599 (2022)
  15. Structure of fructose bisphosphate aldolase from Bartonella henselae bound to fructose 1,6-bisphosphate. Gardberg A, Abendroth J, Bhandari J, Sankaran B, Staker B. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1051-1054 (2011)
  16. Structure of fructose bisphosphate aldolase from Encephalitozoon cuniculi. Gardberg A, Sankaran B, Davies D, Bhandari J, Staker B, Stewart L. Acta Crystallogr Sect F Struct Biol Cryst Commun 67 1055-1059 (2011)


Reviews citing this publication (3)

  1. Glycolysis as a target for the design of new anti-trypanosome drugs. Verlinde CL, Hannaert V, Blonski C, Willson M, Périé JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA. Drug Resist Updat 4 50-65 (2001)
  2. Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. Tittmann K. Bioorg Chem 57 263-280 (2014)
  3. Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites. Erlandsen H, Abola EE, Stevens RC. Curr Opin Struct Biol 10 719-730 (2000)

Articles citing this publication (45)

  1. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Yamazaki D, Motohashi K, Kasama T, Hara Y, Hisabori T. Plant Cell Physiol 45 18-27 (2004)
  2. Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH, Hsiao M. Cancer Lett 403 28-36 (2017)
  3. Molecular Characterization, Gene Evolution, and Expression Analysis of the Fructose-1, 6-bisphosphate Aldolase (FBA) Gene Family in Wheat (Triticum aestivum L.). Lv GY, Guo XG, Xie LP, Xie CG, Zhang XH, Yang Y, Xiao L, Tang YY, Pan XL, Guo AG, Xu H. Front Plant Sci 8 1030 (2017)
  4. Aldolase directly interacts with ARNO and modulates cell morphology and acidic vesicle distribution. Merkulova M, Hurtado-Lorenzo A, Hosokawa H, Zhuang Z, Brown D, Ausiello DA, Marshansky V. Am J Physiol Cell Physiol 300 C1442-55 (2011)
  5. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, Allen KN. Protein Sci 13 3077-3084 (2004)
  6. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99A resolution. Heine A, Luz JG, Wong CH, Wilson IA. J Mol Biol 343 1019-1034 (2004)
  7. Regulation of plant cytosolic aldolase functions by redox-modifications. van der Linde K, Gutsche N, Leffers HM, Lindermayr C, Müller B, Holtgrefe S, Scheibe R. Plant Physiol Biochem 49 946-957 (2011)
  8. Detection of tryptophan to tryptophan energy transfer in proteins. Moens PD, Helms MK, Jameson DM. Protein J 23 79-83 (2004)
  9. Quaternary diamines as mass spectrometry cleavable crosslinkers for protein interactions. Clifford-Nunn B, Showalter HD, Andrews PC. J Am Soc Mass Spectrom 23 201-212 (2012)
  10. Characterization of glycolytic enzymes--rAldolase and rEnolase of Leishmania donovani, identified as Th1 stimulatory proteins, for their immunogenicity and immunoprophylactic efficacies against experimental visceral leishmaniasis. Gupta R, Kumar V, Kushawaha PK, Tripathi CP, Joshi S, Sahasrabuddhe AA, Mitra K, Sundar S, Siddiqi MI, Dube A. PLoS One 9 e86073 (2014)
  11. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Wymer N, Buchanan LV, Henderson D, Mehta N, Botting CH, Pocivavsek L, Fierke CA, Toone EJ, Naismith JH. Structure 9 1-9 (2001)
  12. Structural basis for catalysis of a tetrameric class IIa fructose 1,6-bisphosphate aldolase from Mycobacterium tuberculosis. Pegan SD, Rukseree K, Franzblau SG, Mesecar AD. J Mol Biol 386 1038-1053 (2009)
  13. Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. Malay AD, Allen KN, Tolan DR. J Mol Biol 347 135-144 (2005)
  14. Fructose-bisphosphate aldolase and enolase from Echinococcus granulosus: genes, expression patterns and protein interactions of two potential moonlighting proteins. Lorenzatto KR, Monteiro KM, Paredes R, Paludo GP, da Fonsêca MM, Galanti N, Zaha A, Ferreira HB. Gene 506 76-84 (2012)
  15. Chemical-modification rescue assessed by mass spectrometry demonstrates that gamma-thia-lysine yields the same activity as lysine in aldolase. Hopkins CE, O'Connor PB, Allen KN, Costello CE, Tolan DR. Protein Sci 11 1591-1599 (2002)
  16. Identification of catalytically important residues in the active site of Escherichia coli transaldolase. Schörken U, Thorell S, Schürmann M, Jia J, Sprenger GA, Schneider G. Eur J Biochem 268 2408-2415 (2001)
  17. Structural determinants of substrate recognition in the HAD superfamily member D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB) . Nguyen HH, Wang L, Huang H, Peisach E, Dunaway-Mariano D, Allen KN. Biochemistry 49 1082-1092 (2010)
  18. Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space. Rale M, Schneider S, Sprenger GA, Samland AK, Fessner WD. Chemistry 17 2623-2632 (2011)
  19. Aldol additions of dihydroxyacetone phosphate to N-Cbz-amino aldehydes catalyzed by L-fuculose-1-phosphate aldolase in emulsion systems: inversion of stereoselectivity as a function of the acceptor aldehyde. Espelt L, Bujons J, Parella T, Calveras J, Joglar J, Delgado A, Clapés P. Chemistry 11 1392-1401 (2005)
  20. Biosynthesis of tetrahydrofolate in plants: crystal structure of 7,8-dihydroneopterin aldolase from Arabidopsis thaliana reveals a novel adolase class. Bauer S, Schott AK, Illarionova V, Bacher A, Huber R, Fischer M. J Mol Biol 339 967-979 (2004)
  21. Theoretical study of interactions between muscle aldolase and F-actin: insight into different species. Forlemu NY, Waingeh VF, Ouporov IV, Lowe SL, Thomasson KA. Biopolymers 85 60-71 (2007)
  22. Cloning and characterization of Leishmania mexicana fructose-1,6-bisphosphate aldolase. de Walque S, Opperdoes FR, Michels PA. Mol Biochem Parasitol 103 279-283 (1999)
  23. Human aldolase A natural mutants: relationship between flexibility of the C-terminal region and enzyme function. Esposito G, Vitagliano L, Costanzo P, Borrelli L, Barone R, Pavone L, Izzo P, Zagari A, Salvatore F. Biochem J 380 51-56 (2004)
  24. Thermodynamic analysis shows conformational coupling and dynamics confer substrate specificity in fructose-1,6-bisphosphate aldolase. Pezza JA, Stopa JD, Brunyak EM, Allen KN, Tolan DR. Biochemistry 46 13010-13018 (2007)
  25. Docking multiple conformations of a flexible ligand into a protein binding site using NMR restraints. Zabell AP, Post CB. Proteins 46 295-307 (2002)
  26. Structures of l-fuculose-1-phosphate aldolase mutants outlining motions during catalysis. Joerger AC, Mueller-Dieckmann C, Schulz GE. J Mol Biol 303 531-543 (2000)
  27. Aldolase A Ins(1,4,5)P3-binding domains as determined by site-directed mutagenesis. Baron CB, Tolan DR, Choi KH, Coburn RF. Biochem J 341 ( Pt 3) 805-812 (1999)
  28. Proteomic Analysis of Methylglyoxal Modifications Reveals Susceptibility of Glycolytic Enzymes to Dicarbonyl Stress. Donnellan L, Young C, Simpson BS, Acland M, Dhillon VS, Costabile M, Fenech M, Hoffmann P, Deo P. Int J Mol Sci 23 3689 (2022)
  29. Modeling the interaction between aldolase and the thrombospondin-related anonymous protein, a key connection of the malaria parasite invasion machinery. Buscaglia CA, Hol WG, Nussenzweig V, Cardozo T. Proteins 66 528-537 (2007)
  30. Pharmacophore-based virtual screening to aid in the identification of unknown protein function. Mallipeddi PL, Joshi M, Briggs JM. Chem Biol Drug Des 80 828-842 (2012)
  31. The Network Basis for the Structural Thermostability and the Functional Thermoactivity of Aldolase B. Wang G. Molecules 28 1850 (2023)
  32. Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Schultenkämper K, Gütle DD, López MG, Keller LB, Zhang L, Einsle O, Jacquot JP, Wendisch VF. Front Microbiol 12 669220 (2021)
  33. Stereoselectivity of fructose-1,6-bisphosphate aldolase in Thermus caldophilus. Lee JH, Bae J, Kim D, Choi Y, Im YJ, Koh S, Kim JS, Kim MK, Kang GB, Hong SI, Lee DS, Eom SH. Biochem Biophys Res Commun 347 616-625 (2006)
  34. Aldolase as a chirality intersection of L-amino acids and D-sugars. Munegumi T. Orig Life Evol Biosph 45 173-182 (2015)
  35. Analysis of electrostatic coupling throughout the laboratory evolution of a designed retroaldolase. Coulther TA, Pott M, Zeymer C, Hilvert D, Ondrechen MJ. Protein Sci 30 1617-1627 (2021)
  36. Crystal structures of LacD from Staphylococcus aureus and LacD.1 from Streptococcus pyogenes: insights into substrate specificity and virulence gene regulation. Lee SJ, Kim HS, Kim DJ, Yoon HJ, Kim KH, Yoon JY, Suh SW. FEBS Lett 585 307-312 (2011)
  37. QM/MM studies of the mechanism of unusual bifunctional fructose-1,6-bisphosphate aldolase/phosphatase. Hou Q, Sheng X, Liu Y. Phys Chem Chem Phys 16 11366-11373 (2014)
  38. Toward structural-omics of the bovine retinal pigment epithelium. Morgan CE, Zhang Z, Miyagi M, Golczak M, Yu EW. Cell Rep 41 111876 (2022)
  39. Effect of Solvents on Proline Modified at the Secondary Sphere: A Multivariate Exploration. Lustosa DM, Barkai S, Domb I, Milo A. J Org Chem 87 1850-1857 (2022)
  40. Strategically designed biomodel: engineering C3-C4 cleavage of D-fructose. Singh P, Kumar A, Kaur S, Singh A. Org Biomol Chem 13 4210-4220 (2015)
  41. Characterization of proton abstraction steps in enzymatic reactions by Fourier transform infrared spectroscopy. Azéma L, Lakhdar-Ghazal F, Sygusch J, Blonski C. Anal Biochem 318 142-145 (2003)
  42. Cloning and Characterization of Fructose-1,6-Bisphosphate Aldolase from Euphausia superba. Xia J, Xin W, Wang F, Xie W, Liu Y, Xu J. Int J Mol Sci 23 10478 (2022)
  43. Dopamine modification of glycolytic enzymes impairs glycolysis: possible implications for Parkinson's disease. Chen B, Zhang Q, Zhong X, Zhang X, Liu X, Wang H, Yang F, Zhang J, Huang J, Wong YK, Luo P, Wang J, Sun J. Cell Commun Signal 22 75 (2024)
  44. Simultaneous solving high-resolution structures of various enzymes from human kidney microsomes. Lyu M, Su CC, Miyagi M, Yu EW. Life Sci Alliance 6 e202201580 (2023)
  45. Upper glycolytic components contribute differently in controlling retinal vascular endothelial cellular behavior: Implications for endothelial-related retinal diseases. Oska N, Eltanani S, Shawky M, Naghdi A, Gregory A, Yumnamcha T, Ibrahim AS. PLoS One 18 e0294909 (2023)


Related citations provided by authors (3)

  1. Activity and Specificity of Human Aldolases. Gamblin SJ, Davies GJ, Grimes JM, Jackson RM, Littlechild JA, Watson HC J. Mol. Biol. 219 573- (1991)
  2. The Crystal Structure of Human Muscle Aldolase at 3.0 A Resolution. Gamblin SJ, Cooper B, Millar JR, Davies GJ, Littlechild JA, Watson HC FEBS Lett. 262 282- (1990)
  3. Molecular Architecture of Rabbit Skeletal Muscle Aldolase at 2.7-A Resolution. Sygusch J, Beaudry D, Allaire M Proc. Natl. Acad. Sci. U.S.A. 84 7846- (1987)