3zrg Citations

Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity.

J Biol Chem 286 35834-35842 (2011)
Cited: 99 times
EuropePMC logo PMID: 21813644

Abstract

Phytopathogens deliver effector proteins inside host plant cells to promote infection. These proteins can also be sensed by the plant immune system, leading to restriction of pathogen growth. Effector genes can display signatures of positive selection and rapid evolution, presumably a consequence of their co-evolutionary arms race with plants. The molecular mechanisms underlying how effectors evolve to gain new virulence functions and/or evade the plant immune system are poorly understood. Here, we report the crystal structures of the effector domains from two oomycete RXLR proteins, Phytophthora capsici AVR3a11 and Phytophthora infestans PexRD2. Despite sharing <20% sequence identity in their effector domains, they display a conserved core α-helical fold. Bioinformatic analyses suggest that the core fold occurs in ∼44% of annotated Phytophthora RXLR effectors, both as a single domain and in tandem repeats of up to 11 units. Functionally important and polymorphic residues map to the surface of the structures, and PexRD2, but not AVR3a11, oligomerizes in planta. We conclude that the core α-helical fold enables functional adaptation of these fast evolving effectors through (i) insertion/deletions in loop regions between α-helices, (ii) extensions to the N and C termini, (iii) amino acid replacements in surface residues, (iv) tandem domain duplications, and (v) oligomerization. We hypothesize that the molecular stability provided by this core fold, combined with considerable potential for plasticity, underlies the evolution of effectors that maintain their virulence activities while evading recognition by the plant immune system.

Reviews - 3zrg mentioned but not cited (2)

  1. Effectors of Filamentous Plant Pathogens: Commonalities amid Diversity. Franceschetti M, Maqbool A, Jiménez-Dalmaroni MJ, Pennington HG, Kamoun S, Banfield MJ. Microbiol. Mol. Biol. Rev. 81 (2017)
  2. Exploiting Structural Modelling Tools to Explore Host-Translocated Effector Proteins. Amoozadeh S, Johnston J, Meisrimler CN. Int J Mol Sci 22 12962 (2021)

Articles - 3zrg mentioned but not cited (1)

  1. Structures of Phytophthora RXLR effector proteins: a conserved but adaptable fold underpins functional diversity. Boutemy LS, King SR, Win J, Hughes RK, Clarke TA, Blumenschein TM, Kamoun S, Banfield MJ. J. Biol. Chem. 286 35834-35842 (2011)


Reviews citing this publication (21)

  1. Genome evolution in filamentous plant pathogens: why bigger can be better. Raffaele S, Kamoun S. Nat. Rev. Microbiol. 10 417-430 (2012)
  2. Mechanisms and evolution of virulence in oomycetes. Jiang RH, Tyler BM. Annu Rev Phytopathol 50 295-318 (2012)
  3. Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. Win J, Krasileva KV, Kamoun S, Shirasu K, Staskawicz BJ, Banfield MJ. PLoS Pathog. 8 e1002400 (2012)
  4. On the front line: structural insights into plant-pathogen interactions. Wirthmueller L, Maqbool A, Banfield MJ. Nat. Rev. Microbiol. 11 761-776 (2013)
  5. Secretion, delivery and function of oomycete effector proteins. Wawra S, Belmonte R, Löbach L, Saraiva M, Willems A, van West P. Curr. Opin. Microbiol. 15 685-691 (2012)
  6. Recent Progress in RXLR Effector Research. Anderson RG, Deb D, Fedkenheuer K, McDowell JM. Mol. Plant Microbe Interact. 28 1063-1072 (2015)
  7. From pathogen genomes to host plant processes: the power of plant parasitic oomycetes. Pais M, Win J, Yoshida K, Etherington GJ, Cano LM, Raffaele S, Banfield MJ, Jones A, Kamoun S, Saunders DG. Genome Biol. 14 211 (2013)
  8. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Selin C, de Kievit TR, Belmonte MF, Fernando WG. Front Microbiol 7 600 (2016)
  9. Computational Prediction of Effector Proteins in Fungi: Opportunities and Challenges. Sonah H, Deshmukh RK, Bélanger RR. Front Plant Sci 7 126 (2016)
  10. Filamentous pathogen effectors interfering with small RNA silencing in plant hosts. Ye W, Ma W. Curr. Opin. Microbiol. 32 1-6 (2016)
  11. Exploiting pathogens' tricks of the trade for engineering of plant disease resistance: challenges and opportunities. Grant MR, Kazan K, Manners JM. Microb Biotechnol 6 212-222 (2013)
  12. Repeat-containing protein effectors of plant-associated organisms. Mesarich CH, Bowen JK, Hamiaux C, Templeton MD. Front Plant Sci 6 872 (2015)
  13. Taking the stage: effectors in the spotlight. Varden FA, De la Concepcion JC, Maidment JH, Banfield MJ. Curr. Opin. Plant Biol. 38 25-33 (2017)
  14. Eukaryotic virulence determinants utilize phosphoinositides at the ER and host cell surface. Jiang RH, Stahelin RV, Bhattacharjee S, Haldar K. Trends Microbiol. 21 145-156 (2013)
  15. Lessons in Effector and NLR Biology of Plant-Microbe Systems. Białas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu CH, Langner T, Maqbool A, Varden FA, Derevnina L, Belhaj K, Fujisaki K, Saitoh H, Terauchi R, Banfield MJ, Kamoun S. Mol. Plant Microbe Interact. 31 34-45 (2018)
  16. Pathogen virulence of Phytophthora infestans: from gene to functional genomics. Sanju S, Thakur A, Siddappa S, Sreevathsa R, Srivastava N, Shukla P, Singh BP. Physiol Mol Biol Plants 19 165-177 (2013)
  17. Effector Biology in Focus: A Primer for Computational Prediction and Functional Characterization. Dalio RJD, Herlihy J, Oliveira TS, McDowell JM, Machado M. Mol. Plant Microbe Interact. 31 22-33 (2018)
  18. Organize, Don't Agonize: Strategic Success of Phytophthora Species. Chepsergon J, Motaung TE, Bellieny-Rabelo D, Moleleki LN. Microorganisms 8 (2020)
  19. Proteinaceous effector discovery and characterization in filamentous plant pathogens. Kanja C, Hammond-Kosack KE. Mol Plant Pathol 21 1353-1376 (2020)
  20. Review on Structures of Pesticide Targets. Li X, Yang X, Zheng X, Bai M, Hu D. Int J Mol Sci 21 E7144 (2020)
  21. The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant⁻Microbe Interactions. de Vries S, de Vries J, Rose LE. Genes (Basel) 10 (2019)

Articles citing this publication (75)

  1. Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, Bharti AK, Donahoo RS, Finley S, Huitema E, Hulvey J, Platt D, Salamov A, Savidor A, Sharma R, Stam R, Storey D, Thines M, Win J, Haas BJ, Dinwiddie DL, Jenkins J, Knight JR, Affourtit JP, Han CS, Chertkov O, Lindquist EA, Detter C, Grigoriev IV, Kamoun S, Kingsmore SF, Kingsmore SF. Mol. Plant Microbe Interact. 25 1350-1360 (2012)
  2. Structure and evolution of barley powdery mildew effector candidates. Pedersen C, Ver Loren van Themaat E, McGuffin LJ, Abbott JC, Burgis TA, Barton G, Bindschedler LV, Lu X, Maekawa T, Wessling R, Cramer R, Thordal-Christensen H, Panstruga R, Spanu PD. BMC Genomics 13 694 (2012)
  3. Phytophthora infestans RXLR effector PexRD2 interacts with host MAPKKK ε to suppress plant immune signaling. King SR, McLellan H, Boevink PC, Armstrong MR, Bukharova T, Sukarta O, Win J, Kamoun S, Birch PR, Banfield MJ. Plant Cell 26 1345-1359 (2014)
  4. The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. Yu X, Tang J, Wang Q, Ye W, Tao K, Duan S, Lu C, Yang X, Dong S, Zheng X, Wang Y. New Phytol. 196 247-260 (2012)
  5. Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. Maqbool A, Saitoh H, Franceschetti M, Stevenson CE, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ. Elife 4 (2015)
  6. Structure Analysis Uncovers a Highly Diverse but Structurally Conserved Effector Family in Phytopathogenic Fungi. de Guillen K, Ortiz-Vallejo D, Gracy J, Fournier E, Kroj T, Padilla A. PLoS Pathog. 11 e1005228 (2015)
  7. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Wawra S, Djamei A, Albert I, Nürnberger T, Kahmann R, van West P. Mol. Plant Microbe Interact. 26 528-536 (2013)
  8. A Phytophthora infestans RXLR effector targets plant PP1c isoforms that promote late blight disease. Boevink PC, Wang X, McLellan H, He Q, Naqvi S, Armstrong MR, Zhang W, Hein I, Gilroy EM, Tian Z, Birch PRJ. Nat Commun 7 10311 (2016)
  9. Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora. Sharma R, Xia X, Cano LM, Evangelisti E, Kemen E, Judelson H, Oome S, Sambles C, van den Hoogen DJ, Kitner M, Klein J, Meijer HJ, Spring O, Win J, Zipper R, Bode HB, Govers F, Kamoun S, Schornack S, Studholme DJ, Van den Ackerveken G, Thines M. BMC Genomics 16 741 (2015)
  10. Distinct regions of the Pseudomonas syringae coiled-coil effector AvrRps4 are required for activation of immunity. Sohn KH, Hughes RK, Piquerez SJ, Jones JD, Banfield MJ. Proc. Natl. Acad. Sci. U.S.A. 109 16371-16376 (2012)
  11. Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DG. Mol. Plant Microbe Interact. 26 330-344 (2013)
  12. Single amino acid mutations in the potato immune receptor R3a expand response to Phytophthora effectors. Segretin ME, Pais M, Franceschetti M, Chaparro-Garcia A, Bos JI, Banfield MJ, Kamoun S. Mol. Plant Microbe Interact. 27 624-637 (2014)
  13. Host-targeting protein 1 (SpHtp1) from the oomycete Saprolegnia parasitica translocates specifically into fish cells in a tyrosine-O-sulphate-dependent manner. Wawra S, Bain J, Durward E, de Bruijn I, Minor KL, Matena A, Löbach L, Whisson SC, Bayer P, Porter AJ, Birch PR, Secombes CJ, van West P. Proc. Natl. Acad. Sci. U.S.A. 109 2096-2101 (2012)
  14. Computational prediction and molecular characterization of an oomycete effector and the cognate Arabidopsis resistance gene. Goritschnig S, Krasileva KV, Dahlbeck D, Staskawicz BJ. PLoS Genet. 8 e1002502 (2012)
  15. Recognition of an Avr3a homologue plays a major role in mediating nonhost resistance to Phytophthora capsici in Nicotiana species. Vega-Arreguín JC, Jalloh A, Bos JI, Moffett P. Mol. Plant Microbe Interact. 27 770-780 (2014)
  16. A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2. Ma L, Cornelissen BJ, Takken FL. Front Plant Sci 4 94 (2013)
  17. Structural elucidation and functional characterization of the Hyaloperonospora arabidopsidis effector protein ATR13. Leonelli L, Pelton J, Schoeffler A, Dahlbeck D, Berger J, Wemmer DE, Staskawicz B. PLoS Pathog. 7 e1002428 (2011)
  18. Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity. Ve T, Williams SJ, Catanzariti AM, Rafiqi M, Rahman M, Ellis JG, Hardham AR, Jones DA, Anderson PA, Dodds PN, Kobe B. Proc. Natl. Acad. Sci. U.S.A. 110 17594-17599 (2013)
  19. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JI, Schornack S, Jones AM, Bozkurt TO, Kamoun S. PLoS ONE 10 e0137071 (2015)
  20. Avirulence protein 3a (AVR3a) from the potato pathogen Phytophthora infestans forms homodimers through its predicted translocation region and does not specifically bind phospholipids. Wawra S, Agacan M, Boddey JA, Davidson I, Gachon CM, Zanda M, Grouffaud S, Whisson SC, Birch PR, Porter AJ, van West P. J. Biol. Chem. 287 38101-38109 (2012)
  21. Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance. Song T, Kale SD, Arredondo FD, Shen D, Su L, Liu L, Wu Y, Wang Y, Dou D, Tyler BM. Mol. Plant Microbe Interact. 26 711-720 (2013)
  22. Structural Basis of Host Autophagy-related Protein 8 (ATG8) Binding by the Irish Potato Famine Pathogen Effector Protein PexRD54. Maqbool A, Hughes RK, Dagdas YF, Tregidgo N, Zess E, Belhaj K, Round A, Bozkurt TO, Kamoun S, Banfield MJ. J. Biol. Chem. 291 20270-20282 (2016)
  23. Crystal structure of the effector AvrLm4-7 of Leptosphaeria maculans reveals insights into its translocation into plant cells and recognition by resistance proteins. Blondeau K, Blaise F, Graille M, Kale SD, Linglin J, Ollivier B, Labarde A, Lazar N, Daverdin G, Balesdent MH, Choi DH, Tyler BM, Rouxel T, van Tilbeurgh H, Fudal I. Plant J. 83 610-624 (2015)
  24. The RXLR motif of oomycete effectors is not a sufficient element for binding to phosphatidylinositol monophosphates. Yaeno T, Shirasu K. Plant Signal Behav 8 e23865 (2013)
  25. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes. Schuster M, Schweizer G, Kahmann R. Fungal Genet. Biol. 112 21-30 (2018)
  26. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum. Goss EM, Press CM, Grünwald NJ. PLoS ONE 8 e79347 (2013)
  27. Genome Sequence and Architecture of the Tobacco Downy Mildew Pathogen Peronospora tabacina. Derevnina L, Chin-Wo-Reyes S, Martin F, Wood K, Froenicke L, Spring O, Michelmore R. Mol. Plant Microbe Interact. 28 1198-1215 (2015)
  28. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors. Chen XR, Zhang BY, Xing YP, Li QY, Li YP, Tong YH, Xu JY. BMC Genomics 15 980 (2014)
  29. A Recent Expansion of the RXLR Effector Gene Avrblb2 Is Maintained in Global Populations of Phytophthora infestans Indicating Different Contributions to Virulence. Oliva RF, Cano LM, Raffaele S, Win J, Bozkurt TO, Belhaj K, Oh SK, Thines M, Kamoun S. Mol. Plant Microbe Interact. 28 901-912 (2015)
  30. Effector-triggered post-translational modifications and their role in suppression of plant immunity. Howden AJ, Huitema E. Front Plant Sci 3 160 (2012)
  31. Host-interactor screens of Phytophthora infestans RXLR proteins reveal vesicle trafficking as a major effector-targeted process. Petre B, Contreras MP, Bozkurt TO, Schattat MH, Sklenar J, Schornack S, Abd-El-Haliem A, Castells-Graells R, Lozano-Durán R, Dagdas YF, Menke FLH, Jones AME, Vossen JH, Robatzek S, Kamoun S, Win J. Plant Cell 33 1447-1471 (2021)
  32. In planta effector competition assays detect Hyaloperonospora arabidopsidis effectors that contribute to virulence and localize to different plant subcellular compartments. Badel JL, Piquerez SJ, Greenshields D, Rallapalli G, Fabro G, Ishaque N, Jones JD. Mol. Plant Microbe Interact. 26 745-757 (2013)
  33. A comparative hidden Markov model analysis pipeline identifies proteins characteristic of cereal-infecting fungi. Sperschneider J, Gardiner DM, Taylor JM, Hane JK, Singh KB, Manners JM. BMC Genomics 14 807 (2013)
  34. Structurally distinct Arabidopsis thaliana NLR immune receptors recognize tandem WY domains of an oomycete effector. Goritschnig S, Steinbrenner AD, Grunwald DJ, Staskawicz BJ. New Phytol. 210 984-996 (2016)
  35. Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M. PLoS ONE 9 e89738 (2014)
  36. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. McGowan J, Fitzpatrick DA. mSphere 2 (2017)
  37. Phytophthora sojae effector Avr1d functions as an E2 competitor and inhibits ubiquitination activity of GmPUB13 to facilitate infection. Lin Y, Hu Q, Zhou J, Yin W, Yao D, Shao Y, Zhao Y, Guo B, Xia Y, Chen Q, Wang Y, Ye W, Xie Q, Tyler BM, Xing W, Wang Y. Proc Natl Acad Sci U S A 118 e2018312118 (2021)
  38. Bioinformatics Analysis Reveals Abundant Short Alpha-Helices as a Common Structural Feature of Oomycete RxLR Effector Proteins. Ye W, Wang Y, Wang Y. PLoS ONE 10 e0135240 (2015)
  39. Genome of the destructive oomycete Phytophthora cinnamomi provides insights into its pathogenicity and adaptive potential. Engelbrecht J, Duong TA, Prabhu SA, Seedat M, van den Berg N. BMC Genomics 22 302 (2021)
  40. Sunflower resistance to multiple downy mildew pathotypes revealed by recognition of conserved effectors of the oomycete Plasmopara halstedii. Pecrix Y, Buendia L, Penouilh-Suzette C, Maréchaux M, Legrand L, Bouchez O, Rengel D, Gouzy J, Cottret L, Vear F, Godiard L. Plant J. 97 730-748 (2019)
  41. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. New Phytol. 220 232-248 (2018)
  42. Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Koludarov I, Jackson TN, Brouw BOD, Dobson J, Dashevsky D, Arbuckle K, Clemente CJ, Stockdale EJ, Cochran C, Debono J, Stephens C, Panagides N, Li B, Manchadi MR, Violette A, Fourmy R, Hendrikx I, Nouwens A, Clements J, Martelli P, Kwok HF, Fry BG. Toxins (Basel) 9 (2017)
  43. "Core" RxLR effectors in phytopathogenic oomycetes: A promising way to breeding for durable resistance in plants? Chepsergon J, Motaung TE, Moleleki LN. Virulence 12 1921-1935 (2021)
  44. A High-Quality Grapevine Downy Mildew Genome Assembly Reveals Rapidly Evolving and Lineage-Specific Putative Host Adaptation Genes. Dussert Y, Mazet ID, Couture C, Gouzy J, Piron MC, Kuchly C, Bouchez O, Rispe C, Mestre P, Delmotte F. Genome Biol Evol 11 954-969 (2019)
  45. Comparative genomics of downy mildews reveals potential adaptations to biotrophy. Fletcher K, Klosterman SJ, Derevnina L, Martin F, Bertier LD, Koike S, Reyes-Chin-Wo S, Mou B, Michelmore R. BMC Genomics 19 851 (2018)
  46. Effector-dependent activation and oligomerization of plant NRC class helper NLRs by sensor NLR immune receptors Rpi-amr3 and Rpi-amr1. Ahn HK, Lin X, Olave-Achury AC, Derevnina L, Contreras MP, Kourelis J, Wu CH, Kamoun S, Jones JDG. EMBO J 42 e111484 (2023)
  47. PyPredT6: A python-based prediction tool for identification of Type VI effector proteins. Sen R, Nayak L, De RK. J Bioinform Comput Biol 17 1950019 (2019)
  48. Race Characterization of Phytophthora Root Rot on Capsicum in Taiwan as a Basis for Anticipatory Resistance Breeding. Barchenger DW, Sheu ZM, Kumar S, Lin SW, Burlakoti RR, Bosland PW. Phytopathology 108 964-971 (2018)
  49. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor IA, Yang J, Liu J, Peng YL. Plant J. 96 133-146 (2018)
  50. An automated and combinative method for the predictive ranking of candidate effector proteins of fungal plant pathogens. Jones DAB, Rozano L, Debler JW, Mancera RL, Moolhuijzen PM, Hane JK. Sci Rep 11 19731 (2021)
  51. Conserved RxLR Effectors From Oomycetes Hyaloperonospora arabidopsidis and Phytophthora sojae Suppress PAMP- and Effector-Triggered Immunity in Diverse Plants. Deb D, Anderson RG, How-Yew-Kin T, Tyler BM, McDowell JM. Mol. Plant Microbe Interact. 31 374-385 (2018)
  52. Crystal structure of the Melampsora lini effector AvrP reveals insights into a possible nuclear function and recognition by the flax disease resistance protein P. Zhang X, Farah N, Rolston L, Ericsson DJ, Catanzariti AM, Bernoux M, Ve T, Bendak K, Chen C, Mackay JP, Lawrence GJ, Hardham A, Ellis JG, Williams SJ, Dodds PN, Jones DA, Kobe B. Mol. Plant Pathol. 19 1196-1209 (2018)
  53. Effector Polymorphisms of the Sunflower Downy Mildew Pathogen Plasmopara halstedii and Their Use to Identify Pathotypes from Field Isolates. Gascuel Q, Bordat A, Sallet E, Pouilly N, Carrere S, Roux F, Vincourt P, Godiard L. PLoS ONE 11 e0148513 (2016)
  54. Genome analysis of the foxtail millet pathogen Sclerospora graminicola reveals the complex effector repertoire of graminicolous downy mildews. Kobayashi M, Hiraka Y, Abe A, Yaegashi H, Natsume S, Kikuchi H, Takagi H, Saitoh H, Win J, Kamoun S, Terauchi R. BMC Genomics 18 897 (2017)
  55. Genome reconstruction of the non-culturable spinach downy mildew Peronospora effusa by metagenome filtering. Klein J, Neilen M, van Verk M, Dutilh BE, Van den Ackerveken G. PLoS One 15 e0225808 (2020)
  56. NLR immune receptor RB is differentially targeted by two homologous but functionally distinct effector proteins. Zhao J, Song J. Plant Commun 2 100236 (2021)
  57. Regressive evolution of an effector following a host jump in the Irish potato famine pathogen lineage. Zess EK, Dagdas YF, Peers E, Maqbool A, Banfield MJ, Bozkurt TO, Kamoun S. PLoS Pathog 18 e1010918 (2022)
  58. A secreted WY-domain-containing protein present in European isolates of the oomycete Plasmopara viticola induces cell death in grapevine and tobacco species. Combier M, Evangelisti E, Piron MC, Rengel D, Legrand L, Shenhav L, Bouchez O, Schornack S, Mestre P. PLoS ONE 14 e0220184 (2019)
  59. BASIDIN as a New Protein Effector of the Phytopathogen Causing Witche's Broom Disease in Cocoa. Farias KS, Ferreira MM, Amaral GV, Zugaib M, Santos AS, Gomes FP, Rezende RP, Gramacho KP, Aguiar ERGR, Pirovani CP. Int J Mol Sci 24 11714 (2023)
  60. Comparative Genomic and Proteomic Analyses of Three Widespread Phytophthora Species: Phytophthora chlamydospora, Phytophthora gonapodyides and Phytophthora pseudosyringae. McGowan J, O'Hanlon R, Owens RA, Fitzpatrick DA. Microorganisms 8 (2020)
  61. Comparative genomics of chytrid fungi reveal insights into the obligate biotrophic and pathogenic lifestyle of Synchytrium endobioticum. van de Vossenberg BTLH, Warris S, Nguyen HDT, van Gent-Pelzer MPE, Joly DL, van de Geest HC, Bonants PJM, Smith DS, Lévesque CA, van der Lee TAJ. Sci Rep 9 8672 (2019)
  62. Effector prediction and characterization in the oomycete pathogen Bremia lactucae reveal host-recognized WY domain proteins that lack the canonical RXLR motif. Wood KJ, Nur M, Gil J, Fletcher K, Lakeman K, Gann D, Gothberg A, Khuu T, Kopetzky J, Naqvi S, Pandya A, Zhang C, Maisonneuve B, Pel M, Michelmore R. PLoS Pathog 16 e1009012 (2020)
  63. Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design. Cao Y, Das P, Chenthamarakshan V, Chen PY, Melnyk I, Shen Y. Proc Mach Learn Res 139 1261-1271 (2021)
  64. Genetic variation along an altitudinal gradient in the Phytophthora infestans effector gene Pi02860. Yang LN, Ouyang H, Nkurikiyimfura O, Fang H, Waheed A, Li W, Wang YP, Zhan J. Front Microbiol 13 972928 (2022)
  65. Genomic signatures of heterokaryosis in the oomycete pathogen Bremia lactucae. Fletcher K, Gil J, Bertier LD, Kenefick A, Wood KJ, Zhang L, Reyes-Chin-Wo S, Cavanaugh K, Tsuchida C, Wong J, Michelmore R. Nat Commun 10 2645 (2019)
  66. Host interactors of effector proteins of the lettuce downy mildew Bremia lactucae obtained by yeast two-hybrid screening. Pelgrom AJE, Meisrimler CN, Elberse J, Koorman T, Boxem M, Van den Ackerveken G. PLoS One 15 e0226540 (2020)
  67. Peptide Extracts from Seven Medicinal Plants Discovered to Inhibit Oomycete Phytophthora infestans, a Causative Agent of Potato Late Blight Disease. Rogozhin EA, Vasilchenko AS, Barashkova AS, Smirnov AN, Zavriev SK, Demushkin VP. Plants (Basel) 9 E1294 (2020)
  68. RXLR effector diversity in Phytophthora infestans isolates determines recognition by potato resistance proteins; the case study AVR1 and R1. Du Y, Weide R, Zhao Z, Msimuko P, Govers F, Bouwmeester K. Stud. Mycol. 89 85-93 (2018)
  69. Short Linear Motifs (SLiMs) in "Core" RxLR Effectors of Phytophthora parasitica var. nicotianae: a Case of PpRxLR1 Effector. Chepsergon J, Nxumalo CI, Salasini BSC, Kanzi AM, Moleleki LN. Microbiol Spectr 10 e0177421 (2022)
  70. Structural analysis of Phytophthora suppressor of RNA silencing 2 (PSR2) reveals a conserved modular fold contributing to virulence. He J, Ye W, Choi DS, Wu B, Zhai Y, Guo B, Duan S, Wang Y, Gan J, Ma W, Ma J. Proc. Natl. Acad. Sci. U.S.A. 116 8054-8059 (2019)
  71. Structural genomics applied to the rust fungus Melampsora larici-populina reveals two candidate effector proteins adopting cystine knot and NTF2-like protein folds. de Guillen K, Lorrain C, Tsan P, Barthe P, Petre B, Saveleva N, Rouhier N, Duplessis S, Padilla A, Hecker A. Sci Rep 9 18084 (2019)
  72. TOR Inhibitors Synergistically Suppress the Growth and Development of Phytophthora infestans, a Highly Destructive Pathogenic Oomycete. Zhang S, Khalid AR, Guo D, Zhang J, Xiong F, Ren M. Front Microbiol 12 596874 (2021)
  73. The Effector Repertoire of the Hop Downy Mildew Pathogen Pseudoperonospora humuli. Purayannur S, Cano LM, Bowman MJ, Childs KL, Gent DH, Quesada-Ocampo LM. Front Genet 11 910 (2020)
  74. The leucine-rich repeats in allelic barley MLA immune receptors define specificity towards sequence-unrelated powdery mildew avirulence effectors with a predicted common RNase-like fold. Bauer S, Yu D, Lawson AW, Saur IML, Frantzeskakis L, Kracher B, Logemann E, Chai J, Maekawa T, Schulze-Lefert P. PLoS Pathog 17 e1009223 (2021)
  75. Use of iRNA in the post-transcriptional gene silencing of necrosis-inducing Phytophthora protein 1(NPP1) in Phytophthora cinnamomi. Pascoal-Ferreira P, Chahed A, Costa R, Branco I, Choupina A. Mol Biol Rep 50 6493-6504 (2023)