3ugb Citations

Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates.

Biochemistry 51 4175-87 (2012)
Cited: 56 times
EuropePMC logo PMID: 22551455

Abstract

Post-translational modification of proteins by ubiquitin (Ub) regulates a host of cellular processes, including protein quality control, DNA repair, endocytosis, and cellular signaling. In the ubiquitination cascade, a thioester-linked conjugate between the C-terminus of Ub and the active site cysteine of a ubiquitin-conjugating enzyme (E2) is formed. The E2~Ub conjugate interacts with a ubiquitin ligase (E3) to transfer Ub to a lysine residue on a target protein. The flexibly linked E2~Ub conjugates have been shown to form a range of structures in solution. In addition, select E2~Ub conjugates oligomerize through a noncovalent "backside" interaction between Ub and E2 components of different conjugates. Additional studies are needed to bridge the gap between the dynamic monomeric conjugates, E2~Ub oligomers, and the mechanisms of ubiquitination. We present a new 2.35 Å crystal structure of an oligomeric UbcH5c~Ub conjugate. The conjugate forms a staggered linear oligomer that differs substantially from the "infinite spiral" helical arrangement of the only previously reported structure of an oligomeric conjugate. Our structure also differs in intraconjugate conformation from other structurally characterized conjugates. Despite these differences, we find that the backside interaction mode is conserved in different conjugate oligomers and is independent of intraconjugate relative E2-Ub orientations. We delineate a common intraconjugate E2-binding surface on Ub. In addition, we demonstrate that an E3 CHIP (carboxyl terminus of Hsp70 interacting protein) interacts directly with UbcH5c~Ub oligomers, not only with conjugate monomers. These results provide insights into the conformational diversity of E2~Ub conjugates and conjugate oligomers, and into their compatibility and interactions with E3s, which have important consequences for the ubiquitination process.

Reviews - 3ugb mentioned but not cited (4)

  1. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Metzger MB, Pruneda JN, Klevit RE, Weissman AM. Biochim Biophys Acta 1843 47-60 (2014)
  2. PROTAC targeted protein degraders: the past is prologue. Békés M, Langley DR, Crews CM. Nat Rev Drug Discov 21 181-200 (2022)
  3. Intracrine androgen biosynthesis and drug resistance. Penning TM, Asangani IA, Sprenger C, Plymate S. Cancer Drug Resist 3 912-929 (2020)
  4. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Roman-Trufero M, Dillon N. Front Cell Dev Biol 10 1058751 (2022)

Articles - 3ugb mentioned but not cited (9)

  1. BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Dou H, Buetow L, Sibbet GJ, Cameron K, Huang DT. Nat Struct Mol Biol 19 876-883 (2012)
  2. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes. Mulder MP, Witting K, Berlin I, Pruneda JN, Wu KP, Chang JG, Merkx R, Bialas J, Groettrup M, Vertegaal AC, Schulman BA, Komander D, Neefjes J, El Oualid F, Ovaa H. Nat Chem Biol 12 523-530 (2016)
  3. Structural insights into the conformation and oligomerization of E2~ubiquitin conjugates. Page RC, Pruneda JN, Amick J, Klevit RE, Misra S. Biochemistry 51 4175-4187 (2012)
  4. The S. Typhi effector StoD is an E3/E4 ubiquitin ligase which binds K48- and K63-linked diubiquitin. McDowell MA, Byrne AM, Mylona E, Johnson R, Sagfors A, Crepin VF, Lea S, Frankel G. Life Sci Alliance 2 e201800272 (2019)
  5. The ubiquitin ligase SspH1 from Salmonella uses a modular and dynamic E3 domain to catalyze substrate ubiquitylation. Cook M, Delbecq SP, Schweppe TP, Guttman M, Klevit RE, Brzovic PS. J Biol Chem 294 783-793 (2019)
  6. Functional conservation and divergence of the helix-turn-helix motif of E2 ubiquitin-conjugating enzymes. Welsh KA, Bolhuis DL, Nederstigt AE, Boyer J, Temple BRS, Bonacci T, Gu L, Ordureau A, Harper JW, Steimel JP, Zhang Q, Emanuele MJ, Harrison JS, Brown NG. EMBO J 41 e108823 (2022)
  7. Evolution of an Amniote-Specific Mechanism for Modulating Ubiquitin Signaling via Phosphoregulation of the E2 Enzyme UBE2D3. Roman-Trufero M, Ito CM, Pedebos C, Magdalou I, Wang YF, Karimi MM, Moyon B, Webster Z, di Gregorio A, Azuara V, Khalid S, Speck C, Rodriguez T, Dillon N. Mol Biol Evol 37 1986-2001 (2020)
  8. Performance of ZDOCK and IRAD in CAPRI rounds 28-34. Vreven T, Pierce BG, Borrman TM, Weng Z. Proteins 85 408-416 (2017)
  9. Production and characterisation of modularly deuterated UBE2D1-Ub conjugate by small angle neutron and X-ray scattering. Pietras Z, Duff AP, Morad V, Wood K, Jeffries CM, Sunnerhagen M. Eur Biophys J 51 569-577 (2022)


Reviews citing this publication (13)

  1. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Buetow L, Huang DT. Nat Rev Mol Cell Biol 17 626-642 (2016)
  2. E2 enzymes: more than just middle men. Stewart MD, Ritterhoff T, Klevit RE, Brzovic PS. Cell Res 26 423-440 (2016)
  3. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  4. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  5. Enzymatic Logic of Ubiquitin Chain Assembly. Deol KK, Lorenz S, Strieter ER. Front Physiol 10 835 (2019)
  6. The E3 ligase CHIP: insights into its structure and regulation. Paul I, Ghosh MK. Biomed Res Int 2014 918183 (2014)
  7. Mechanism and disease association of E2-conjugating enzymes: lessons from UBE2T and UBE2L3. Alpi AF, Chaugule V, Walden H. Biochem J 473 3401-3419 (2016)
  8. Plant SUMO E3 Ligases: Function, Structural Organization, and Connection With DNA. Jmii S, Cappadocia L. Front Plant Sci 12 652170 (2021)
  9. Acetylation, Phosphorylation, Ubiquitination (Oh My!): Following Post-Translational Modifications on the Ubiquitin Road. Lacoursiere RE, Hadi D, Shaw GS. Biomolecules 12 467 (2022)
  10. C-terminus of Hsp70 Interacting Protein (CHIP) and Neurodegeneration: Lessons from the Bench and Bedside. Mylvaganam S, Earnshaw R, Heymann G, Kalia SK, Kalia LV. Curr Neuropharmacol 19 1038-1068 (2021)
  11. Chaperone-assisted E3 ligase CHIP: A double agent in cancer. Kumar S, Basu M, Ghosh MK. Genes Dis 9 1521-1555 (2022)
  12. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Khago D, Fucci IJ, Byrd RA. Molecules 25 E5933 (2020)
  13. SUMO conjugating enzyme: a vital player of SUMO pathway in plants. Ghimire S, Tang X, Liu W, Fu X, Zhang H, Zhang N, Si H. Physiol Mol Biol Plants 27 2421-2431 (2021)

Articles citing this publication (30)

  1. Activation of a primed RING E3-E2-ubiquitin complex by non-covalent ubiquitin. Buetow L, Gabrielsen M, Anthony NG, Dou H, Patel A, Aitkenhead H, Sibbet GJ, Smith BO, Huang DT. Mol Cell 58 297-310 (2015)
  2. Capturing a substrate in an activated RING E3/E2-SUMO complex. Streich FC, Lima CD. Nature 536 304-308 (2016)
  3. Structural basis for the inhibition of host protein ubiquitination by Shigella effector kinase OspG. Grishin AM, Condos TE, Barber KR, Campbell-Valois FX, Parsot C, Shaw GS, Cygler M. Structure 22 878-888 (2014)
  4. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Yuan L, Lv Z, Atkison JH, Olsen SK. Nat Commun 8 211 (2017)
  5. The N-terminal extension of UBE2E ubiquitin-conjugating enzymes limits chain assembly. Schumacher FR, Wilson G, Day CL. J Mol Biol 425 4099-4111 (2013)
  6. S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity. Lv Z, Rickman KA, Yuan L, Williams K, Selvam SP, Woosley AN, Howe PH, Ogretmen B, Smogorzewska A, Olsen SK. Mol Cell 65 699-714.e6 (2017)
  7. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Williams KM, Qie S, Atkison JH, Salazar-Arango S, Alan Diehl J, Olsen SK. Nat Commun 10 3296 (2019)
  8. Role of a non-canonical surface of Rad6 in ubiquitin conjugating activity. Kumar P, Kumar P, Magala P, Geiger-Schuller KR, Majumdar A, Tolman JR, Wolberger C. Nucleic Acids Res 43 9039-9050 (2015)
  9. Specificity of the E1-E2-E3 enzymatic cascade for ubiquitin C-terminal sequences identified by phage display. Zhao B, Bhuripanyo K, Schneider J, Zhang K, Schindelin H, Boone D, Yin J. ACS Chem Biol 7 2027-2035 (2012)
  10. Comprehensive ubiquitin E2 profiling of ten ubiquitin E3 ligases. Marblestone JG, Butt S, McKelvey DM, Sterner DE, Mattern MR, Nicholson B, Eddins MJ. Cell Biochem Biophys 67 161-167 (2013)
  11. Crystal Structure of a Ube2S-Ubiquitin Conjugate. Lorenz S, Bhattacharyya M, Feiler C, Rape M, Kuriyan J. PLoS One 11 e0147550 (2016)
  12. UBE2D3 is a positive prognostic factor and is negatively correlated with hTERT expression in esophageal cancer. Guan GG, Wang WB, Lei BX, Wang QL, Wu L, Fu ZM, Zhou FX, Zhou YF. Oncol Lett 9 1567-1574 (2015)
  13. Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Valek L, Heidler J, Scheving R, Wittig I, Tegeder I. Redox Biol 20 217-235 (2019)
  14. In silico modeling of the cryptic E2∼ubiquitin-binding site of E6-associated protein (E6AP)/UBE3A reveals the mechanism of polyubiquitin chain assembly. Ronchi VP, Kim ED, Summa CM, Klein JM, Haas AL. J Biol Chem 292 18006-18023 (2017)
  15. Biochemical and structural characterization of the ubiquitin-conjugating enzyme UBE2W reveals the formation of a noncovalent homodimer. Vittal V, Wenzel DM, Brzovic PS, Klevit RE. Cell Biochem Biophys 67 103-110 (2013)
  16. Mechanistic insights revealed by a UBE2A mutation linked to intellectual disability. de Oliveira JF, do Prado PFV, da Costa SS, Sforça ML, Canateli C, Ranzani AT, Maschietto M, de Oliveira PSL, Otto PA, Klevit RE, Krepischi ACV, Rosenberg C, Franchini KG. Nat Chem Biol 15 62-70 (2019)
  17. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes. Lu X, Malley KR, Brenner CC, Koroleva O, Korolev S, Downes BP. Nat Commun 7 12580 (2016)
  18. The HIP2~ubiquitin conjugate forms a non-compact monomeric thioester during di-ubiquitin synthesis. Cook BW, Barber KR, Shilton BH, Shaw GS. PLoS One 10 e0120318 (2015)
  19. Structural analysis of recombinant human ubiquitin-conjugating enzyme UbcH5c. Wu F, Zhu J, Li H, Zhu L. Acta Pharm Sin B 7 390-394 (2017)
  20. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Yuan L, Lv Z, Adams MJ, Olsen SK. Nat Commun 12 2370 (2021)
  21. Mutations of Rad6 E2 ubiquitin-conjugating enzymes at alanine-126 in helix-3 affect ubiquitination activity and decrease enzyme stability. Shukla PK, Sinha D, Leng AM, Bissell JE, Thatipamula S, Ganguly R, Radmall KS, Skalicky JJ, Shrieve DC, Chandrasekharan MB. J Biol Chem 298 102524 (2022)
  22. Interactions Controlling the Slow Dynamic Conformational Motions of Ubiquitin. Kitazawa S, Yagi-Utsumi M, Kato K, Kitahara R. Molecules 22 E1414 (2017)
  23. Molecular dynamics simulations reveal a new role for a conserved active site asparagine in a ubiquitin-conjugating enzyme. Wilson RH, Zamfir S, Sumner I. J Mol Graph Model 76 403-411 (2017)
  24. Strategies to Trap Enzyme-Substrate Complexes that Mimic Michaelis Intermediates During E3-Mediated Ubiquitin-Like Protein Ligation. Streich FC, Lima CD. Methods Mol Biol 1844 169-196 (2018)
  25. A heterotypic assembly mechanism regulates CHIP E3 ligase activity. Das A, Thapa P, Santiago U, Shanmugam N, Banasiak K, Dąbrowska K, Nolte H, Szulc NA, Gathungu RM, Cysewski D, Krüger M, Dadlez M, Nowotny M, Camacho CJ, Hoppe T, Pokrzywa W. EMBO J 41 e109566 (2022)
  26. Conformational Dynamics Modulate Activation of the Ubiquitin Conjugating Enzyme Ube2g2. Magala P, Bocik WE, Majumdar A, Tolman JR. ACS Omega 2 4581-4592 (2017)
  27. RBR Ubiquitin Transfer: Not Simply an "Open" and "Closed" Case? Dunkerley KM, Shaw GS. Structure 25 817-819 (2017)
  28. Two-distinct polymer ubiquitin conjugates by photochemical grafting-from. Burridge KM, Parnell RF, Kearns MM, Page RC, Konkolewicz D. Macromol Chem Phys 222 2100091 (2021)
  29. Parkin-mediated ubiquitination inhibits BAK apoptotic activity by blocking its canonical hydrophobic groove. Cheng P, Hou Y, Bian M, Fang X, Liu Y, Rao Y, Cao S, Liu Y, Zhang S, Chen Y, Dong X, Liu Z. Commun Biol 6 1260 (2023)
  30. Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic. Goffinont S, Coste F, Prieu-Serandon P, Mance L, Gaudon V, Garnier N, Castaing B, Suskiewicz MJ. J Biol Chem 299 104870 (2023)