3thd Citations

Crystal structure of human β-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases.

J Biol Chem 287 1801-12 (2012)
Cited: 69 times
EuropePMC logo PMID: 22128166

Abstract

G(M1) gangliosidosis and Morquio B are autosomal recessive lysosomal storage diseases associated with a neurodegenerative disorder or dwarfism and skeletal abnormalities, respectively. These diseases are caused by deficiencies in the lysosomal enzyme β-d-galactosidase (β-Gal), which lead to accumulations of the β-Gal substrates, G(M1) ganglioside, and keratan sulfate. β-Gal is an exoglycosidase that catalyzes the hydrolysis of terminal β-linked galactose residues. This study shows the crystal structures of human β-Gal in complex with its catalytic product galactose or with its inhibitor 1-deoxygalactonojirimycin. Human β-Gal is composed of a catalytic TIM barrel domain followed by β-domain 1 and β-domain 2. To gain structural insight into the molecular defects of β-Gal in the above diseases, the disease-causing mutations were mapped onto the three-dimensional structure. Finally, the possible causes of the diseases are discussed.

Articles - 3thd mentioned but not cited (7)

  1. Crystal structure of human β-galactosidase: structural basis of Gm1 gangliosidosis and morquio B diseases. Ohto U, Usui K, Ochi T, Yuki K, Satow Y, Shimizu T. J Biol Chem 287 1801-1812 (2012)
  2. MYO3A Causes Human Dominant Deafness and Interacts with Protocadherin 15-CD2 Isoform. Grati M, Yan D, Raval MH, Walsh T, Ma Q, Chakchouk I, Kannan-Sundhari A, Mittal R, Masmoudi S, Blanton SH, Tekin M, King MC, Yengo CM, Liu XZ. Hum Mutat 37 481-487 (2016)
  3. A novel missense variant in MYO3A is associated with autosomal dominant high-frequency hearing loss in a German family. Doll J, Hofrichter MAH, Bahena P, Heihoff A, Segebarth D, Müller T, Dittrich M, Haaf T, Vona B. Mol Genet Genomic Med 8 e1343 (2020)
  4. Crystallization reports are the backbone of Acta Cryst. F, but do they have any spine? Newman J, Burton DR, Caria S, Desbois S, Gee CL, Fazio VJ, Kvansakul M, Marshall B, Mills G, Richter V, Seabrook SA, Wu M, Peat TS. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 712-718 (2013)
  5. Structure based virtual screening of natural product molecules as glycosidase inhibitors. Moorthy NSHN, Brás NF, Ramos MJ, Fernandes PA. In Silico Pharmacol 9 56 (2021)
  6. Function and Structure of Lacticaseibacillus casei GH35 β-Galactosidase LBCZ_0230 with High Hydrolytic Activity to Lacto-N-biose I and Galacto-N-biose. Saburi W, Ota T, Kato K, Tagami T, Yamashita K, Yao M, Mori H. J Appl Glycosci (1999) 70 43-52 (2023)
  7. Mechanistic Insights into the Chaperoning of Human Lysosomal-Galactosidase Activity: Highly Functionalized Aminocyclopentanes and C-5a-Substituted Derivatives of 4-epi-Isofagomine. Weber P, Thonhofer M, Averill S, Davies GJ, Santana AG, Müller P, Nasseri SA, Offen WA, Pabst BM, Paschke E, Schalli M, Torvisco A, Tschernutter M, Tysoe C, Windischhofer W, Withers SG, Wolfsgruber A, Wrodnigg TM, Stütz AE. Molecules 25 E4025 (2020)


Reviews citing this publication (12)

  1. Ganglioside biochemistry. Kolter T. ISRN Biochem 2012 506160 (2012)
  2. Emerging novel concept of chaperone therapies for protein misfolding diseases. Suzuki Y. Proc Jpn Acad Ser B Phys Biol Sci 90 145-162 (2014)
  3. Tuning protein folding in lysosomal storage diseases: the chemistry behind pharmacological chaperones. Pereira DM, Valentão P, Andrade PB. Chem Sci 9 1740-1752 (2018)
  4. Pharmacological chaperone therapy for lysosomal storage diseases. Parenti G, Moracci M, Fecarotta S, Andria G. Future Med Chem 6 1031-1045 (2014)
  5. Cold-Active β-Galactosidases: Insight into Cold Adaption Mechanisms and Biotechnological Exploitation. Mangiagalli M, Lotti M. Mar Drugs 19 43 (2021)
  6. Metabolism of Glycosphingolipids and Their Role in the Pathophysiology of Lysosomal Storage Disorders. Ryckman AE, Brockhausen I, Walia JS. Int J Mol Sci 21 E6881 (2020)
  7. GM1 Gangliosidosis-A Mini-Review. Nicoli ER, Annunziata I, d'Azzo A, Platt FM, Tifft CJ, Stepien KM. Front Genet 12 734878 (2021)
  8. GM1 Gangliosidosis: Mechanisms and Management. Rha AK, Maguire AS, Martin DR. Appl Clin Genet 14 209-233 (2021)
  9. Morquio B Disease. Disease Characteristics and Treatment Options of a Distinct GLB1-Related Dysostosis Multiplex. Yuskiv N, Higaki K, Stockler-Ipsiroglu S. Int J Mol Sci 21 E9121 (2020)
  10. Activatable Second Near-Infrared Fluorescent Probes: A New Accurate Diagnosis Strategy for Diseases. Li D, Pan J, Xu S, Fu S, Chu C, Liu G. Biosensors (Basel) 11 436 (2021)
  11. Structural Insights into the Molecular Evolution of the Archaeal Exo-β-d-Glucosaminidase. Mine S, Watanabe M. Int J Mol Sci 20 E2460 (2019)
  12. [Structural basis for β-galactosidase associated with lysosomal disease]. Shimizu T. Yakugaku Zasshi 133 509-517 (2013)

Articles citing this publication (50)

  1. Glycomimetic-based pharmacological chaperones for lysosomal storage disorders: lessons from Gaucher, GM1-gangliosidosis and Fabry diseases. Sánchez-Fernández EM, García Fernández JM, Mellet CO. Chem Commun (Camb) 52 5497-5515 (2016)
  2. A bicyclic 1-deoxygalactonojirimycin derivative as a novel pharmacological chaperone for GM1 gangliosidosis. Takai T, Higaki K, Aguilar-Moncayo M, Mena-Barragán T, Hirano Y, Yura K, Yu L, Ninomiya H, García-Moreno MI, Sakakibara Y, Ohno K, Nanba E, Ortiz Mellet C, García Fernández JM, Suzuki Y. Mol Ther 21 526-532 (2013)
  3. Insight into the evolution and functional characteristics of the pan-genome assembly from sesame landraces and modern cultivars. Yu J, Golicz AA, Lu K, Dossa K, Zhang Y, Chen J, Wang L, You J, Fan D, Edwards D, Zhang X. Plant Biotechnol J 17 881-892 (2019)
  4. Enzyme replacement for GM1-gangliosidosis: Uptake, lysosomal activation, and cellular disease correction using a novel β-galactosidase:RTB lectin fusion. Condori J, Acosta W, Ayala J, Katta V, Flory A, Martin R, Radin J, Cramer CL, Radin DN. Mol Genet Metab 117 199-209 (2016)
  5. Human GLB1 knockout cerebral organoids: A model system for testing AAV9-mediated GLB1 gene therapy for reducing GM1 ganglioside storage in GM1 gangliosidosis. Latour YL, Yoon R, Thomas SE, Grant C, Li C, Sena-Esteves M, Allende ML, Proia RL, Tifft CJ. Mol Genet Metab Rep 21 100513 (2019)
  6. Interaction between the elastin peptide VGVAPG and human elastin binding protein. Blanchevoye C, Floquet N, Scandolera A, Baud S, Maurice P, Bocquet O, Blaise S, Ghoneim C, Cantarelli B, Delacoux F, Dauchez M, Efremov RG, Martiny L, Duca L, Debelle L. J Biol Chem 288 1317-1328 (2013)
  7. Structural basis of pharmacological chaperoning for human β-galactosidase. Suzuki H, Ohto U, Higaki K, Mena-Barragán T, Aguilar-Moncayo M, Ortiz Mellet C, Nanba E, Garcia Fernandez JM, Suzuki Y, Shimizu T. J Biol Chem 289 14560-14568 (2014)
  8. The crystal structure of acidic β-galactosidase from Aspergillus oryzae. Maksimainen MM, Lampio A, Mertanen M, Turunen O, Rouvinen J. Int J Biol Macromol 60 109-115 (2013)
  9. Evaluation of N-nonyl-deoxygalactonojirimycin as a pharmacological chaperone for human GM1 gangliosidosis leads to identification of a feline model suitable for testing enzyme enhancement therapy. Rigat BA, Tropak MB, Buttner J, Crushell E, Benedict D, Callahan JW, Martin DR, Mahuran DJ. Mol Genet Metab 107 203-212 (2012)
  10. Pharmacological chaperones for human α-N-acetylgalactosaminidase. Clark NE, Metcalf MC, Best D, Fleet GW, Garman SC. Proc Natl Acad Sci U S A 109 17400-17405 (2012)
  11. Structural insights into the substrate specificity of Streptococcus pneumoniae β(1,3)-galactosidase BgaC. Cheng W, Wang L, Jiang YL, Bai XH, Chu J, Li Q, Yu G, Liang QL, Zhou CZ, Chen Y. J Biol Chem 287 22910-22918 (2012)
  12. Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice. Chen JC, Luu AR, Wise N, Angelis R, Agrawal V, Mangini L, Vincelette J, Handyside B, Sterling H, Lo MJ, Wong H, Galicia N, Pacheco G, Van Vleet J, Giaramita A, Fong S, Roy SM, Hague C, Lawrence R, Bullens S, Christianson TM, d'Azzo A, Crawford BE, Bunting S, LeBowitz JH, Yogalingam G. J Biol Chem 295 13532-13555 (2020)
  13. Polyethylene glycol-b-poly(lactic acid) polymersomes as vehicles for enzyme replacement therapy. Kelly JM, Gross AL, Martin DR, Byrne ME. Nanomedicine (Lond) 12 2591-2606 (2017)
  14. Induced Structural Disorder as a Molecular Mechanism for Enzyme Dysfunction in Phosphoglucomutase 1 Deficiency. Stiers KM, Kain BN, Graham AC, Beamer LJ. J Mol Biol 428 1493-1505 (2016)
  15. Recurrent and novel GLB1 mutations in India. Bidchol AM, Dalal A, Trivedi R, Shukla A, Nampoothiri S, Sankar VH, Danda S, Gupta N, Kabra M, Hebbar SA, Bhat RY, Matta D, Ekbote AV, Puri RD, Phadke SR, Gowrishankar K, Aggarwal S, Ranganath P, Sharda S, Kamate M, Datar CA, Bhat K, Kamath N, Shah H, Shah H, Krishna S, Gopinath PM, Verma IC, Nagarajaram HA, Satyamoorthy K, Girisha KM. Gene 567 173-181 (2015)
  16. Age-related modulation of plasmatic beta-Galactosidase activity in healthy subjects and in patients affected by T2DM. Spazzafumo L, Mensà E, Matacchione G, Galeazzi T, Zampini L, Recchioni R, Marcheselli F, Prattichizzo F, Testa R, Antonicelli R, Garagnani P, Boemi M, Bonafè M, Bonfigli AR, Procopio AD, Olivieri F. Oncotarget 8 93338-93348 (2017)
  17. Iminosugar-based galactoside mimics as inhibitors of galactocerebrosidase: SAR studies and comparison with other lysosomal galactosidases. Biela-Banaś A, Oulaïdi F, Front S, Gallienne E, Ikeda-Obatake K, Asano N, Wenger DA, Martin OR. ChemMedChem 9 2647-2652 (2014)
  18. Structural features of Aspergillus niger β-galactosidase define its activity against glycoside linkages. Rico-Díaz A, Ramírez-Escudero M, Vizoso-Vázquez Á, Cerdán ME, Becerra M, Sanz-Aparicio J. FEBS J 284 1815-1829 (2017)
  19. Bi-functional IgG-lysosomal enzyme fusion proteins for brain drug delivery. Boado RJ, Lu JZ, Hui EK, Lin H, Pardridge WM. Sci Rep 9 18632 (2019)
  20. Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics. Whitmore EK, Martin D, Guvench O. Int J Mol Sci 21 E7699 (2020)
  21. Morquio-B disease: Clinical and genetic characteristics of a distinct GLB1-related dysostosis multiplex. Abumansour IS, Yuskiv N, Paschke E, Stockler-Ipsiroglu S. JIMD Rep 51 30-44 (2020)
  22. A Specific Activity-Based Probe to Monitor Family GH59 Galactosylceramidase, the Enzyme Deficient in Krabbe Disease. Marques AR, Willems LI, Herrera Moro D, Florea BI, Scheij S, Ottenhoff R, van Roomen CP, Verhoek M, Nelson JK, Kallemeijn WW, Biela-Banas A, Martin OR, Cachón-González MB, Kim NN, Cox TM, Boot RG, Overkleeft HS, Aerts JM. Chembiochem 18 402-412 (2017)
  23. Candidate molecules for chemical chaperone therapy of GM1-gangliosidosis. Higaki K, Ninomiya H, Suzuki Y, Nanba E. Future Med Chem 5 1551-1558 (2013)
  24. Pre-diagnosing and managing patients with GM1 gangliosidosis and related disorders by the evaluation of GM1 ganglioside content. Tonin R, Caciotti A, Procopio E, Fischetto R, Deodato F, Mancardi MM, Di Rocco M, Ardissone A, Salviati A, Marangi A, Strisciuglio P, Mangone G, Casini A, Ricci S, Fiumara A, Parini R, Pavone FS, Guerrini R, Calamai M, Morrone A. Sci Rep 9 17684 (2019)
  25. N-acetylgalatosamine-Mediated Regulation of the aga Operon by AgaR in Streptococcus pneumoniae. Afzal M, Afzal M, Shafeeq S, Ahmed H, Kuipers OP. Front Cell Infect Microbiol 6 101 (2016)
  26. SAAMP 2.0: An algorithm to predict genotype-phenotype correlation of lysosomal storage diseases. Ou L, Przybilla MJ, Whitley CB. Clin Genet 93 1008-1014 (2018)
  27. Structural and functional analysis of tomato β-galactosidase 4: insight into the substrate specificity of the fruit softening-related enzyme. Eda M, Matsumoto T, Ishimaru M, Tada T. Plant J 86 300-307 (2016)
  28. The skeletal phenotype of intermediate GM1 gangliosidosis: Clinical, radiographic and densitometric features, and implications for clinical monitoring and intervention. Ferreira CR, Regier DS, Yoon R, Pan KS, Johnston JM, Yang S, Spranger JW, Tifft CJ. Bone 131 115142 (2020)
  29. Clinical and molecular characteristics of 11 Chinese probands with GM1 gangliosidosis. Feng Y, Huang Y, Zhao X, Sheng H, Feng Y, Zhang W, Liu L. Metab Brain Dis 33 2051-2057 (2018)
  30. Multi-pronged approach to human mesenchymal stromal cells senescence quantification with a focus on label-free methods. Zhai W, Tan J, Russell T, Chen S, McGonagle D, Win Naing M, Yong D, Jones E. Sci Rep 11 1054 (2021)
  31. Genotype-phenotype correlation of gangliosidosis mutations using in silico tools and homology modeling. Ou L, Kim S, Whitley CB, Jarnes-Utz JR. Mol Genet Metab Rep 20 100495 (2019)
  32. Structure of the murine lysosomal multienzyme complex core. Gorelik A, Illes K, Hasan SMN, Nagar B, Mazhab-Jafari MT. Sci Adv 7 eabf4155 (2021)
  33. VaProS: a database-integration approach for protein/genome information retrieval. Gojobori T, Ikeo K, Katayama Y, Kawabata T, Kinjo AR, Kinoshita K, Kwon Y, Migita O, Mizutani H, Muraoka M, Nagata K, Omori S, Sugawara H, Yamada D, Yura K. J Struct Funct Genomics 17 69-81 (2016)
  34. β-Galactosidosis in Patient with Intermediate GM1 and MBD Phenotype. Moore T, Bernstein JA, Casson-Parkin S, Cowan TM. JIMD Rep 7 77-79 (2013)
  35. Protein modeling and clinical description of a novel in-frame GLB1 deletion causing GM1 gangliosidosis type II. Richter JE, Zimmermann MT, Blackburn PR, Mohammad AN, Klee EW, Pollard LM, Macmurdo CF, Atwal PS, Caulfield TR. Mol Genet Genomic Med 6 1229-1235 (2018)
  36. The Structure of an Archaeal β-Glucosaminidase Provides Insight into Glycoside Hydrolase Evolution. Mine S, Watanabe M, Kamachi S, Abe Y, Ueda T. J Biol Chem 292 4996-5006 (2017)
  37. The pharmacological chaperone N-n-butyl-deoxygalactonojirimycin enhances β-galactosidase processing and activity in fibroblasts of a patient with infantile GM1-gangliosidosis. Mohamed FE, Al Sorkhy M, Ghattas MA, Al-Gazali L, Al-Dirbashi O, Al-Jasmi F, Ali BR. Hum Genet 139 657-673 (2020)
  38. A computational approach to analyse the amino acid variants of GLB1 protein causing GM1 Gangliosidosis. Priyanka K, Madhana Priya N, Magesh R. Metab Brain Dis 36 499-508 (2021)
  39. Are GMI gangliosidosis and Morquio type B two different disorders or part of one phenotypic spectrum? Kingma SDK, Ceulemans B, Kenis S, Jonckheere AI. JIMD Rep 59 90-103 (2021)
  40. Morquio-like dysostosis multiplex presenting with neuronopathic features is a distinct GLB1-related phenotype. Stockler-Ipsiroglu S, Yazdanpanah N, Yazdanpanah M, Moisa Popurs M, Yuskiv N, Schmitz Ferreira Santos ML, Ae Kim C, Fischinger Moura de Souza C, Marques Lourenço C, Steiner CE, Federhen A, Giugliani L, Bastos Pereira DM, Durán-Carabali LE, Giugliani R. JIMD Rep 60 23-31 (2021)
  41. Surface chemistry and spectroscopy of the β-galactosidase Langmuir monolayer. Crawford NF, Micic M, Orbulescu J, Weissbart D, Leblanc RM. J Colloid Interface Sci 453 202-208 (2015)
  42. Chain-Branched Polyhydroxylated Octahydro-1H-Indoles as Potential Leads against Lysosomal Storage Diseases. Estévez JC, González MA, Villaverde MC, Hirokami Y, Kato A, Sussman F, Reza D, Estévez RJ. Pharmaceuticals (Basel) 12 E47 (2019)
  43. Fluorimetric assay with a novel substrate for quantification of galactocerebrosidase activity in dried blood spot specimens. Ullal AJ, Pham H, Singh R, Ross P, Graham CA, Norton SM, Nuffer MH, Burns DS, Eckhardt AE, Escolar M, Bali D, Pamula VK. Pract Lab Med 18 e00141 (2020)
  44. Case Reports GM1-Gangliosidosis Type III Associated Parkinsonism. Kaiyrzhanov R, Guliyeva U, Gulieva S, Salayev K, Mursalova A, Allahyarova P, Ferla MP, Houlden H. Mov Disord Clin Pract 8 S21-S23 (2021)
  45. Hypoglycemic Activity of Aqueous Extract of Latex from Hancornia speciosa Gomes: A Study in Zebrafish and In Silico. Tomazi R, Figueira ÂC, Ferreira AM, Ferreira DQ, de Souza GC, de Souza Pinheiro WB, Pinheiro Neto JR, da Silva GA, de Lima HB, da Silva Hage-Melim LI, Pereira ACM, Carvalho JCT, da Silva de Almeida SSM. Pharmaceuticals (Basel) 14 856 (2021)
  46. Identification of a novel GLB1 mutation in a consanguineous Pakistani family affected by rare infantile GM1 gangliosidosis. Zubaida B, Almas Hashmi M, Arshad Cheema H, Naeem M. J Genet 97 1445-1449 (2018)
  47. Processed pseudogene insertion in GLB1 causes Morquio B disease by altering intronic splicing regulatory landscape. Bychkov I, Kuznetsova A, Baydakova G, Gorobets L, Kenis V, Dimitrieva A, Filatova A, Tabakov V, Skoblov M, Zakharova E. NPJ Genom Med 7 44 (2022)
  48. Validation of a highly sensitive HaloTag-based assay to evaluate the potency of a novel class of allosteric β-Galactosidase correctors. Rudinskiy M, Pons-Vizcarra M, Soldà T, Fregno I, Bergmann TJ, Ruano A, Delgado A, Morales S, Barril X, Bellotto M, Cubero E, García-Collazo AM, Pérez-Carmona N, Molinari M. PLoS One 18 e0294437 (2023)
  49. [Identification and pathogenicity prediction of a novel GLB1 variant c.101T>C (p.Ile34Thr) in an infant with GM1 gangliosidosis]. Lan XR, Qiu JW, Li H, Cai XR, Song YZ. Zhongguo Dang Dai Er Ke Za Zhi 21 71-76 (2019)
  50. iTRAQ-Based Proteomics Analysis of Autophagy-Mediated Responses against MeJA in Laticifers of Euphorbia kansui L. Fang X, Yao X, Zhang Y, Tian Z, Wang M, Li P, Cai X. Int J Mol Sci 20 E3770 (2019)