3rpt Citations

Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold.

Abstract

The manipulation of protein backbone structure to control interaction and function is a challenge for protein engineering. We integrated computational design with experimental selection for grafting the backbone and side chains of a two-segment HIV gp120 epitope, targeted by the cross-neutralizing antibody b12, onto an unrelated scaffold protein. The final scaffolds bound b12 with high specificity and with affinity similar to that of gp120, and crystallographic analysis of a scaffold bound to b12 revealed high structural mimicry of the gp120-b12 complex structure. The method can be generalized to design other functional proteins through backbone grafting.

Reviews - 3rpt mentioned but not cited (2)

  1. Strategies to control the binding mode of de novo designed protein interactions. Der BS, Kuhlman B. Curr. Opin. Struct. Biol. 23 639-646 (2013)
  2. Protein engineering strategies for the development of viral vaccines and immunotherapeutics. Koellhoffer JF, Higgins CD, Lai JR. FEBS Lett. 588 298-307 (2014)


Reviews citing this publication (45)

  1. The protein-folding problem, 50 years on. Dill KA, MacCallum JL. Science 338 1042-1046 (2012)
  2. HIV-1 neutralizing antibodies: understanding nature's pathways. Mascola JR, Haynes BF. Immunol. Rev. 254 225-244 (2013)
  3. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Burton DR, Poignard P, Stanfield RL, Wilson IA. Science 337 183-186 (2012)
  4. A Blueprint for HIV Vaccine Discovery. Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R. Cell Host Microbe 12 396-407 (2012)
  5. Broadly neutralizing antiviral antibodies. Corti D, Lanzavecchia A. Annu. Rev. Immunol. 31 705-742 (2013)
  6. Broadly neutralizing antibodies and the search for an HIV-1 vaccine: the end of the beginning. Kwong PD, Mascola JR, Nabel GJ. Nat. Rev. Immunol. 13 693-701 (2013)
  7. Broadly neutralizing antibodies against HIV-1: templates for a vaccine. van Gils MJ, Sanders RW. Virology 435 46-56 (2013)
  8. Structural insights into key sites of vulnerability on HIV-1 Env and influenza HA. Julien JP, Lee PS, Wilson IA. Immunol. Rev. 250 180-198 (2012)
  9. Development of prophylactic vaccines against HIV-1. Schiffner T, Sattentau QJ, Dorrell L. Retrovirology 10 72 (2013)
  10. Advances in structure-based vaccine design. Kulp DW, Schief WR. Curr Opin Virol 3 322-331 (2013)
  11. α-Helix mimetics: outwards and upwards. Jayatunga MK, Thompson S, Hamilton AD. Bioorg. Med. Chem. Lett. 24 717-724 (2014)
  12. HIV vaccine design: the neutralizing antibody conundrum. Stamatatos L. Curr. Opin. Immunol. 24 316-323 (2012)
  13. Computational design of protein-protein interactions. Schreiber G, Fleishman SJ. Curr. Opin. Struct. Biol. 23 903-910 (2013)
  14. HIV-1 envelope glycoprotein immunogens to induce broadly neutralizing antibodies. Sliepen K, Sanders RW. Expert Rev Vaccines 15 349-365 (2016)
  15. Options and obstacles for designing a universal influenza vaccine. Jang YH, Seong BL. Viruses 6 3159-3180 (2014)
  16. Elicitation of HIV-1-neutralizing antibodies against the CD4-binding site. Georgiev IS, Gordon Joyce M, Zhou T, Kwong PD. Curr Opin HIV AIDS 8 382-392 (2013)
  17. HIV-1 vaccine immunogen design strategies. Mann JK, Ndung'u T. Virol. J. 12 3 (2015)
  18. Protein Crystallography in Vaccine Research and Development. Malito E, Carfi A, Bottomley MJ. Int J Mol Sci 16 13106-13140 (2015)
  19. Immunogen design for HIV-1 and influenza. Rathore U, Kesavardhana S, Mallajosyula VV, Varadarajan R. Biochim. Biophys. Acta 1844 1891-1906 (2014)
  20. Protein Assembly by Design. Zhu J, Avakyan N, Kakkis A, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Chem Rev 121 13701-13796 (2021)
  21. Structural and Computational Biology in the Design of Immunogenic Vaccine Antigens. Liljeroos L, Malito E, Ferlenghi I, Bottomley MJ. J Immunol Res 2015 156241 (2015)
  22. Computational tools for epitope vaccine design and evaluation. He L, Zhu J. Curr Opin Virol 11 103-112 (2015)
  23. Natural photoreceptors and their application to synthetic biology. Schmidt D, Cho YK. Trends Biotechnol. 33 80-91 (2015)
  24. Max Bergmann lecture protein epitope mimetics in the age of structural vaccinology. Robinson JA. J. Pept. Sci. 19 127-140 (2013)
  25. Antibodies to combat viral infections: development strategies and progress. Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Nat Rev Drug Discov 21 676-696 (2022)
  26. How HIV-1 entry mechanism and broadly neutralizing antibodies guide structure-based vaccine design. Pancera M, Changela A, Kwong PD. Curr Opin HIV AIDS 12 229-240 (2017)
  27. Algorithms for protein design. Gainza P, Nisonoff HM, Donald BR. Curr. Opin. Struct. Biol. 39 16-26 (2016)
  28. Peptides for immunological purposes: design, strategies and applications. Gori A, Longhi R, Peri C, Colombo G. Amino Acids 45 257-268 (2013)
  29. Vaccines based on structure-based design provide protection against infectious diseases. Thomas S, Luxon BA. Expert Rev Vaccines 12 1301-1311 (2013)
  30. Structure-based immunogen design-leading the way to the new age of precision vaccines. Sesterhenn F, Bonet J, Correia BE. Curr Opin Struct Biol 51 163-169 (2018)
  31. An accurate binding interaction model in de novo computational protein design of interactions: if you build it, they will bind. London N, Ambroggio X. J. Struct. Biol. 185 136-146 (2014)
  32. The use of databases, data mining and immunoinformatics in vaccinology: where are we? Hegde NR, Gauthami S, Sampath Kumar HM, Bayry J. Expert Opin Drug Discov 13 117-130 (2018)
  33. Protein structural motifs in prediction and design. Mackenzie CO, Grigoryan G. Curr. Opin. Struct. Biol. 44 161-167 (2017)
  34. Targeting Viral Surface Proteins through Structure-Based Design. Narkhede YB, Gonzalez KJ, Strauch EM. Viruses 13 1320 (2021)
  35. Bringing immunofocusing into focus. Musunuri S, Weidenbacher PAB, Kim PS. NPJ Vaccines 9 11 (2024)
  36. Broadly Neutralizing Antibody-Guided Carbohydrate-Based HIV Vaccine Design: Challenges and Opportunities. Liu CC, Zheng XJ, Ye XS. ChemMedChem 11 357-362 (2016)
  37. Computational Protein Design for COVID-19 Research and Emerging Therapeutics. Kalita P, Tripathi T, Padhi AK. ACS Cent Sci 9 602-613 (2023)
  38. Computational design and experimental optimization of protein binders with prospects for biomedical applications. Bonadio A, Shifman JM. Protein Eng Des Sel 34 gzab020 (2021)
  39. Computational design of structured loops for new protein functions. Kundert K, Kortemme T. Biol. Chem. 400 275-288 (2019)
  40. Creation of artificial protein-protein interactions using α-helices as interfaces. Yagi S, Akanuma S, Yamagishi A. Biophys Rev 10 411-420 (2018)
  41. Moving from Empirical to Rational Vaccine Design in the 'Omics' Era. Sharma M, Krammer F, García-Sastre A, Tripathi S. Vaccines (Basel) 7 (2019)
  42. On the irrationality of rational design of an HIV vaccine in light of protein intrinsic disorder. Uversky VN. Arch Virol (2021)
  43. Targeting Ras with protein engineering. Tomazini A, Shifman JM. Oncotarget 14 672-687 (2023)
  44. The nature of the rate-limiting step of blue multicopper oxidases: Homogeneous studies versus heterogeneous. Stines-Chaumeil C, Roussarie E, Mano N. Biochim Open 4 36-40 (2017)
  45. Toward rational vaccine engineering. Vishweshwaraiah YL, Dokholyan NV. Adv Drug Deliv Rev 183 114142 (2022)

Articles citing this publication (96)

  1. Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. McLellan JS, Pancera M, Carrico C, Gorman J, Julien JP, Khayat R, Louder R, Pejchal R, Sastry M, Dai K, O'Dell S, Patel N, Shahzad-ul-Hussan S, Yang Y, Zhang B, Zhou T, Zhu J, Boyington JC, Chuang GY, Diwanji D, Georgiev I, Kwon YD, Lee D, Louder MK, Moquin S, Schmidt SD, Yang ZY, Bonsignori M, Crump JA, Kapiga SH, Sam NE, Haynes BF, Burton DR, Koff WC, Walker LM, Phogat S, Wyatt R, Orwenyo J, Wang LX, Arthos J, Bewley CA, Mascola JR, Nabel GJ, Schief WR, Ward AB, Wilson IA, Kwong PD. Nature 480 336-343 (2011)
  2. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. McLellan JS, Chen M, Joyce MG, Sastry M, Stewart-Jones GB, Yang Y, Zhang B, Chen L, Srivatsan S, Zheng A, Zhou T, Graepel KW, Kumar A, Moin S, Boyington JC, Chuang GY, Soto C, Baxa U, Bakker AQ, Spits H, Beaumont T, Zheng Z, Xia N, Ko SY, Todd JP, Rao S, Graham BS, Kwong PD. Science 342 592-598 (2013)
  3. B-cell-lineage immunogen design in vaccine development with HIV-1 as a case study. Haynes BF, Kelsoe G, Harrison SC, Kepler TB. Nat. Biotechnol. 30 423-433 (2012)
  4. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Kong L, Lee JH, Doores KJ, Murin CD, Julien JP, McBride R, Liu Y, Marozsan A, Cupo A, Klasse PJ, Hoffenberg S, Caulfield M, King CR, Hua Y, Le KM, Khayat R, Deller MC, Clayton T, Tien H, Feizi T, Sanders RW, Paulson JC, Moore JP, Stanfield RL, Burton DR, Ward AB, Wilson IA. Nat. Struct. Mol. Biol. 20 796-803 (2013)
  5. Principles for designing ideal protein structures. Koga N, Koga N, Tatsumi-Koga R, Liu G, Xiao R, Acton TB, Montelione GT, Baker D. Nature 491 222-227 (2012)
  6. Proof of principle for epitope-focused vaccine design. Correia BE, Bates JT, Loomis RJ, Baneyx G, Carrico C, Jardine JG, Rupert P, Correnti C, Kalyuzhniy O, Vittal V, Connell MJ, Stevens E, Schroeter A, Chen M, Macpherson S, Serra AM, Adachi Y, Holmes MA, Li Y, Klevit RE, Graham BS, Wyatt RT, Baker D, Strong RK, Crowe JE, Johnson PR, Schief WR. Nature 507 201-206 (2014)
  7. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Pinto D, Sauer MM, Czudnochowski N, Low JS, Tortorici MA, Housley MP, Noack J, Walls AC, Bowen JE, Guarino B, Rosen LE, di Iulio J, Jerak J, Kaiser H, Islam S, Jaconi S, Sprugasci N, Culap K, Abdelnabi R, Foo C, Coelmont L, Bartha I, Bianchi S, Silacci-Fregni C, Bassi J, Marzi R, Vetti E, Cassotta A, Ceschi A, Ferrari P, Cippà PE, Giannini O, Ceruti S, Garzoni C, Riva A, Benigni F, Cameroni E, Piccoli L, Pizzuto MS, Smithey M, Hong D, Telenti A, Lempp FA, Neyts J, Havenar-Daughton C, Lanzavecchia A, Sallusto F, Snell G, Virgin HW, Beltramello M, Corti D, Veesler D. Science 373 1109-1116 (2021)
  8. A common solution to group 2 influenza virus neutralization. Friesen RH, Lee PS, Stoop EJ, Hoffman RM, Ekiert DC, Bhabha G, Yu W, Juraszek J, Koudstaal W, Jongeneelen M, Korse HJ, Ophorst C, Brinkman-van der Linden EC, Throsby M, Kwakkenbos MJ, Bakker AQ, Beaumont T, Spits H, Kwaks T, Vogels R, Ward AB, Goudsmit J, Wilson IA. Proc. Natl. Acad. Sci. U.S.A. 111 445-450 (2014)
  9. A protein engineered to bind uranyl selectively and with femtomolar affinity. Zhou L, Bosscher M, Zhang C, Ozçubukçu S, Zhang L, Zhang W, Li CJ, Liu J, Jensen MP, Lai L, He C. Nat Chem 6 236-241 (2014)
  10. Improvements to robotics-inspired conformational sampling in rosetta. Stein A, Kortemme T. PLoS ONE 8 e63090 (2013)
  11. Structural basis for broad coronavirus neutralization. Sauer MM, Tortorici MA, Park YJ, Walls AC, Homad L, Acton OJ, Bowen JE, Wang C, Xiong X, de van der Schueren W, Quispe J, Hoffstrom BG, Bosch BJ, McGuire AT, Veesler D. Nat Struct Mol Biol 28 478-486 (2021)
  12. Anti-HIV B Cell lines as candidate vaccine biosensors. Ota T, Doyle-Cooper C, Cooper AB, Huber M, Falkowska E, Doores KJ, Hangartner L, Le K, Sok D, Jardine J, Lifson J, Wu X, Mascola JR, Poignard P, Binley JM, Chakrabarti BK, Schief WR, Wyatt RT, Burton DR, Nemazee D. J. Immunol. 189 4816-4824 (2012)
  13. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Sesterhenn F, Yang C, Bonet J, Cramer JT, Wen X, Wang Y, Chiang CI, Abriata LA, Kucharska I, Castoro G, Vollers SS, Galloux M, Dheilly E, Rosset S, Corthésy P, Georgeon S, Villard M, Richard CA, Descamps D, Delgado T, Oricchio E, Rameix-Welti MA, Más V, Ervin S, Eléouët JF, Riffault S, Bates JT, Julien JP, Li Y, Jardetzky T, Krey T, Correia BE. Science 368 eaay5051 (2020)
  14. Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Briney BS, Willis JR, Crowe JE. Genes Immun. 13 523-529 (2012)
  15. Systematic analysis of human lysine acetylation proteins and accurate prediction of human lysine acetylation through bi-relative adapted binomial score Bayes feature representation. Shao J, Xu D, Hu L, Kwan YW, Wang Y, Kong X, Ngai SM. Mol Biosyst 8 2964-2973 (2012)
  16. Transplanting supersites of HIV-1 vulnerability. Zhou T, Zhu J, Yang Y, Gorman J, Ofek G, Srivatsan S, Druz A, Lees CR, Lu G, Soto C, Stuckey J, Burton DR, Koff WC, Connors M, Kwong PD. PLoS ONE 9 e99881 (2014)
  17. Basic research in HIV vaccinology is hampered by reductionist thinking. Van Regenmortel MH. Front Immunol 3 194 (2012)
  18. Autoreactivity and exceptional CDR plasticity (but not unusual polyspecificity) hinder elicitation of the anti-HIV antibody 4E10. Finton KA, Larimore K, Larman HB, Friend D, Correnti C, Rupert PB, Elledge SJ, Greenberg PD, Strong RK. PLoS Pathog. 9 e1003639 (2013)
  19. Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Janda CY, Dang LT, You C, Chang J, de Lau W, Zhong ZA, Yan KS, Marecic O, Siepe D, Li X, Moody JD, Williams BO, Clevers H, Piehler J, Baker D, Kuo CJ, Garcia KC. Nature 545 234-237 (2017)
  20. Antigenicity and Immunogenicity in HIV-1 Antibody-Based Vaccine Design. Kong L, Sattentau QJ. J AIDS Clin Res S8 3 (2012)
  21. Immunogenicity of membrane-bound HIV-1 gp41 membrane-proximal external region (MPER) segments is dominated by residue accessibility and modulated by stereochemistry. Kim M, Song L, Moon J, Sun ZY, Bershteyn A, Hanson M, Cain D, Goka S, Kelsoe G, Wagner G, Irvine D, Reinherz EL. J. Biol. Chem. 288 31888-31901 (2013)
  22. A highly efficient cocaine-detoxifying enzyme obtained by computational design. Zheng F, Xue L, Hou S, Liu J, Zhan M, Yang W, Zhan CG. Nat Commun 5 3457 (2014)
  23. Potential neutralizing antibodies discovered for novel corona virus using machine learning. Magar R, Yadav P, Barati Farimani A. Sci Rep 11 5261 (2021)
  24. Mucosal priming with a replicating-vaccinia virus-based vaccine elicits protective immunity to simian immunodeficiency virus challenge in rhesus monkeys. Sun C, Chen Z, Tang X, Zhang Y, Feng L, Du Y, Xiao L, Liu L, Zhu W, Chen L, Zhang L. J. Virol. 87 5669-5677 (2013)
  25. Structure-based redesign of the binding specificity of anti-apoptotic Bcl-x(L). Chen TS, Palacios H, Keating AE. J. Mol. Biol. 425 171-185 (2013)
  26. B cells from knock-in mice expressing broadly neutralizing HIV antibody b12 carry an innocuous B cell receptor responsive to HIV vaccine candidates. Ota T, Doyle-Cooper C, Cooper AB, Doores KJ, Aoki-Ota M, Le K, Schief WR, Wyatt RT, Burton DR, Nemazee D. J. Immunol. 191 3179-3185 (2013)
  27. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site. Strauch EM, Bernard SM, La D, Bohn AJ, Lee PS, Anderson CE, Nieusma T, Holstein CA, Garcia NK, Hooper KA, Ravichandran R, Nelson JW, Sheffler W, Bloom JD, Lee KK, Ward AB, Yager P, Fuller DH, Wilson IA, Baker D. Nat. Biotechnol. 35 667-671 (2017)
  28. Artificial Diiron Enzymes with a De Novo Designed Four-Helix Bundle Structure. Chino M, Maglio O, Nastri F, Pavone V, DeGrado WF, Lombardi A. Eur J Inorg Chem 2015 3371-3390 (2015)
  29. Immune System Regulation in the Induction of Broadly Neutralizing HIV-1 Antibodies. Kelsoe G, Verkoczy L, Haynes BF. Vaccines (Basel) 2 1-14 (2014)
  30. Rapid search for tertiary fragments reveals protein sequence-structure relationships. Zhou J, Grigoryan G. Protein Sci. 24 508-524 (2015)
  31. Simplified protein models: predicting folding pathways and structure using amino acid sequences. Adhikari AN, Freed KF, Sosnick TR. Phys. Rev. Lett. 111 028103 (2013)
  32. Design of an Escherichia coli expressed HIV-1 gp120 fragment immunogen that binds to b12 and induces broad and potent neutralizing antibodies. Bhattacharyya S, Singh P, Rathore U, Purwar M, Wagner D, Arendt H, DeStefano J, LaBranche CC, Montefiori DC, Phogat S, Varadarajan R. J. Biol. Chem. 288 9815-9825 (2013)
  33. Glycan masking of Plasmodium vivax Duffy Binding Protein for probing protein binding function and vaccine development. Sampath S, Carrico C, Janes J, Gurumoorthy S, Gibson C, Melcher M, Chitnis CE, Wang R, Schief WR, Smith JD. PLoS Pathog. 9 e1003420 (2013)
  34. Human T helper cells specific for HIV reverse transcriptase: possible role in intrastructural help for HIV envelope-specific antibodies. Manca F, Fenoglio D, Valle MT, Li Pira G, Kunkl A, Balderas RS, Baccala RG, Kono DH, Ferraris A, Saverino D. Eur. J. Immunol. 25 1217-1223 (1995)
  35. Mining tertiary structural motifs for assessment of designability. Zhang J, Grigoryan G. Meth. Enzymol. 523 21-40 (2013)
  36. Humanization of antibodies using heavy chain complementarity-determining region 3 grafting coupled with in vitro somatic hypermutation. Bowers PM, Neben TY, Tomlinson GL, Dalton JL, Altobell L, Zhang X, Macomber JL, Wu BF, Toobian RM, McConnell AD, Verdino P, Chau B, Horlick RA, King DJ. J. Biol. Chem. 288 7688-7696 (2013)
  37. Computational design of protein antigens that interact with the CDR H3 loop of HIV broadly neutralizing antibody 2F5. Azoitei ML, Ban YA, Kalyuzhny O, Guenaga J, Schroeter A, Porter J, Wyatt R, Schief WR. Proteins 82 2770-2782 (2014)
  38. Epitope engineering and molecular metrics of immunogenicity: a computational approach to VLP-based vaccine design. Joshi H, Lewis K, Singharoy A, Ortoleva PJ. Vaccine 31 4841-4847 (2013)
  39. One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Campeotto I, Goldenzweig A, Davey J, Barfod L, Marshall JM, Silk SE, Wright KE, Draper SJ, Higgins MK, Fleishman SJ. Proc. Natl. Acad. Sci. U.S.A. 114 998-1002 (2017)
  40. Bottom-up de novo design of functional proteins with complex structural features. Yang C, Sesterhenn F, Bonet J, van Aalen EA, Scheller L, Abriata LA, Cramer JT, Wen X, Rosset S, Georgeon S, Jardetzky T, Krey T, Fussenegger M, Merkx M, Correia BE. Nat Chem Biol 17 492-500 (2021)
  41. Quantification of the transferability of a designed protein specificity switch reveals extensive epistasis in molecular recognition. Melero C, Ollikainen N, Harwood I, Karpiak J, Kortemme T. Proc. Natl. Acad. Sci. U.S.A. 111 15426-15431 (2014)
  42. Comment Vaccinology: A sweet cleft in HIV's armour. Sattentau QJ. Nature 480 324-325 (2011)
  43. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Jacobs TM, Yumerefendi H, Kuhlman B, Leaver-Fay A. Nucleic Acids Res. 43 e34 (2015)
  44. Engineering a genetically encoded competitive inhibitor of the KEAP1-NRF2 interaction via structure-based design and phage display. Guntas G, Lewis SM, Mulvaney KM, Cloer EW, Tripathy A, Lane TR, Major MB, Kuhlman B. Protein Eng. Des. Sel. 29 1-9 (2016)
  45. Escherichia [corrected] coli ribose binding protein based bioreporters revisited. Reimer A, Yagur-Kroll S, Belkin S, Roy S, van der Meer JR. Sci Rep 4 5626 (2014)
  46. Frag'r'Us: knowledge-based sampling of protein backbone conformations for de novo structure-based protein design. Bonet J, Segura J, Planas-Iglesias J, Oliva B, Fernandez-Fuentes N. Bioinformatics 30 1935-1936 (2014)
  47. A Framework to Simplify Combined Sampling Strategies in Rosetta. Porter JR, Weitzner BD, Lange OF. PLoS ONE 10 e0138220 (2015)
  48. Cages from coils. Der BS, Kuhlman B. Nat. Biotechnol. 31 809-810 (2013)
  49. GLUE that sticks to HIV: a helix-grafted GLUE protein that selectively binds the HIV gp41 N-terminal helical region. Walker SN, Tennyson RL, Chapman AM, Kennan AJ, McNaughton BR. Chembiochem 16 219-222 (2015)
  50. Generating, Maintaining, and Exploiting Diversity in a Memetic Algorithm for Protein Structure Prediction. Garza-Fabre M, Kandathil SM, Handl J, Knowles J, Lovell SC. Evol Comput 24 577-607 (2016)
  51. Grafting of functional motifs onto protein scaffolds identified by PDB screening--an efficient route to design optimizable protein binders. Tlatli R, Nozach H, Collet G, Beau F, Vera L, Stura E, Dive V, Cuniasse P. FEBS J. 280 139-159 (2013)
  52. Anti-idiotypic monobodies derived from a fibronectin scaffold. Sullivan MA, Brooks LR, Weidenborner P, Domm W, Mattiacio J, Xu Q, Tiberio M, Wentworth T, Kobie J, Bryk P, Zheng B, Murphy M, Sanz I, Dewhurst S. Biochemistry 52 1802-1813 (2013)
  53. DNA vaccine with discontinuous T-cell epitope insertions into HSP65 scaffold as a potential means to improve immunogenicity of multi-epitope Mycobacterium tuberculosis vaccine. Wu M, Li M, Yue Y, Xu W. Microbiol. Immunol. 60 634-645 (2016)
  54. Directed evolution of a yeast-displayed HIV-1 SOSIP gp140 spike protein toward improved expression and affinity for conformational antibodies. Grimm SK, Battles MB, Ackerman ME. PLoS ONE 10 e0117227 (2015)
  55. Motif-directed redesign of enzyme specificity. Borgo B, Havranek JJ. Protein Sci. 23 312-320 (2014)
  56. Combined computational design of a zinc-binding site and a protein-protein interaction: one open zinc coordination site was not a robust hotspot for de novo ubiquitin binding. Der BS, Jha RK, Lewis SM, Thompson PM, Guntas G, Kuhlman B. Proteins 81 1245-1255 (2013)
  57. Differential Antibody Responses to Conserved HIV-1 Neutralizing Epitopes in the Context of Multivalent Scaffolds and Native-Like gp140 Trimers. Morris CD, Azadnia P, de Val N, Vora N, Honda A, Giang E, Saye-Francisco K, Cheng Y, Lin X, Mann CJ, Tang J, Sok D, Burton DR, Law M, Ward AB, He L, Zhu J. MBio 8 (2017)
  58. Modeling Immunity with Rosetta: Methods for Antibody and Antigen Design. Schoeder CT, Schmitz S, Adolf-Bryfogle J, Sevy AM, Finn JA, Sauer MF, Bozhanova NG, Mueller BK, Sangha AK, Bonet J, Sheehan JH, Kuenze G, Marlow B, Smith ST, Woods H, Bender BJ, Martina CE, Del Alamo D, Kodali P, Gulsevin A, Schief WR, Correia BE, Crowe JE, Meiler J, Moretti R. Biochemistry 60 825-846 (2021)
  59. One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Malladi SK, Schreiber D, Pramanick I, Sridevi MA, Goldenzweig A, Dutta S, Fleishman SJ, Varadarajan R. Curr Res Struct Biol 2 45-55 (2020)
  60. Adaptive Assembly: Maximizing the Potential of a Given Functional Peptide with a Tailor-Made Protein Scaffold. Watanabe H, Honda S. Chem. Biol. 22 1165-1173 (2015)
  61. AmyloGraph: a comprehensive database of amyloid-amyloid interactions. Burdukiewicz M, Rafacz D, Barbach A, Hubicka K, Bąkała L, Lassota A, Stecko J, Szymańska N, Wojciechowski JW, Kozakiewicz D, Szulc N, Chilimoniuk J, Jęśkowiak I, Gąsior-Głogowska M, Kotulska M. Nucleic Acids Res 51 D352-D357 (2023)
  62. Computational Design of Hypothetical New Peptides Based on a Cyclotide Scaffold as HIV gp120 Inhibitor. Sangphukieo A, Nawae W, Laomettachit T, Supasitthimethee U, Ruengjitchatchawalya M. PLoS ONE 10 e0139562 (2015)
  63. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site. Cheng HD, Grimm SK, Gilman MS, Gwom LC, Sok D, Sundling C, Donofrio G, Karlsson Hedestam GB, Bonsignori M, Haynes BF, Lahey TP, Maro I, von Reyn CF, Gorny MK, Zolla-Pazner S, Walker BD, Alter G, Burton DR, Robb ML, Krebs SJ, Seaman MS, Bailey-Kellogg C, Ackerman ME. JCI Insight 3 (2018)
  64. Molecular Engineering of Ghfp, the Gonococcal Orthologue of Neisseria meningitidis Factor H Binding Protein. Rippa V, Santini L, Lo Surdo P, Cantini F, Veggi D, Gentile MA, Grassi E, Iannello G, Brunelli B, Ferlicca F, Palmieri E, Pallaoro M, Aricò B, Banci L, Pizza M, Scarselli M. Clin. Vaccine Immunol. 22 769-777 (2015)
  65. Rational design of TNFα binding proteins based on the de novo designed protein DS119. Zhu C, Zhang C, Zhang T, Zhang X, Shen Q, Tang B, Liang H, Lai L. Protein Sci. 25 2066-2075 (2016)
  66. Recent advances on the use of structural biology for the design of novel envelope immunogens of HIV-1. Xiang SH. Curr. HIV Res. 11 464-472 (2013)
  67. Rosetta FunFolDes - A general framework for the computational design of functional proteins. Bonet J, Wehrle S, Schriever K, Yang C, Billet A, Sesterhenn F, Scheck A, Sverrisson F, Veselkova B, Vollers S, Lourman R, Villard M, Rosset S, Krey T, Correia BE. PLoS Comput. Biol. 14 e1006623 (2018)
  68. Structure-based design of chimeric antigens for multivalent protein vaccines. Hollingshead S, Jongerius I, Exley RM, Johnson S, Lea SM, Tang CM. Nat Commun 9 1051 (2018)
  69. A Hemagglutinin Stem Vaccine Designed Rationally by AlphaFold2 Confers Broad Protection against Influenza B Infection. Zeng D, Xin J, Yang K, Guo S, Wang Q, Gao Y, Chen H, Ge J, Lu Z, Zhang L, Chen J, Chen Y, Xia N. Viruses 14 1305 (2022)
  70. Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure. Mao X, Simon AJ, Pei H, Shi J, Li J, Huang Q, Plaxco KW, Fan C. Chem Sci 7 1200-1204 (2016)
  71. Anti-idiotypic antibodies elicit anti-HIV-1-specific B cell responses. Dosenovic P, Pettersson AK, Wall A, Thientosapol ES, Feng J, Weidle C, Bhullar K, Kara EE, Hartweger H, Pai JA, Gray MD, Parks KR, Taylor JJ, Pancera M, Stamatatos L, Nussenzweig MC, McGuire AT. J. Exp. Med. 216 2316-2330 (2019)
  72. Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization. Kong R, Duan H, Sheng Z, Xu K, Acharya P, Chen X, Cheng C, Dingens AS, Gorman J, Sastry M, Shen CH, Zhang B, Zhou T, Chuang GY, Chao CW, Gu Y, Jafari AJ, Louder MK, O'Dell S, Rowshan AP, Viox EG, Wang Y, Choi CW, Corcoran MM, Corrigan AR, Dandey VP, Eng ET, Geng H, Foulds KE, Guo Y, Kwon YD, Lin B, Liu K, Mason RD, Nason MC, Ohr TY, Ou L, Rawi R, Sarfo EK, Schön A, Todd JP, Wang S, Wei H, Wu W, NISC Comparative Sequencing Program, Mullikin JC, Bailer RT, Doria-Rose NA, Karlsson Hedestam GB, Scorpio DG, Overbaugh J, Bloom JD, Carragher B, Potter CS, Shapiro L, Kwong PD, Mascola JR. Cell 178 567-584.e19 (2019)
  73. Combining different design strategies for rational affinity maturation of the MICA-NKG2D interface. Henager SH, Hale MA, Maurice NJ, Dunnington EC, Swanson CJ, Peterson MJ, Ban JJ, Culpepper DJ, Davies LD, Sanders LK, McFarland BJ. Protein Sci. 21 1396-1402 (2012)
  74. News Complex binding sites made to order. Scott JK, Pantophlet R, Craig L. Nat. Biotechnol. 30 154-155 (2012)
  75. De novo design of stable proteins that efficaciously inhibit oncogenic G proteins. Cummins MC, Tripathy A, Sondek J, Kuhlman B. Protein Sci 32 e4713 (2023)
  76. Inhibition of a malaria host-pathogen interaction by a computationally designed inhibitor. Tobin AR, Crow R, Urusova DV, Klima JC, Tolia NH, Strauch EM. Protein Sci 32 e4507 (2023)
  77. Structure and design of broadly-neutralizing antibodies against HIV. Ryu SE, Hendrickson WA. Mol. Cells 34 231-237 (2012)
  78. Towards conformational fidelity of a quaternary HIV-1 epitope: computational design and directed evolution of a minimal V1V2 antigen. Lai JI, Verma D, Bailey-Kellogg C, Ackerman ME. Protein Eng. Des. Sel. 31 121-133 (2018)
  79. Vaccine focusing to cross-subtype HIV-1 gp120 variable loop epitopes. Cardozo T, Wang S, Jiang X, Kong XP, Hioe C, Krachmarov C. Vaccine 32 4916-4924 (2014)
  80. Addressing viral resistance through vaccines. Laughlin C, Schleif A, Heilman CA. Future Virol 10 1011-1022 (2015)
  81. Chimeric Human Papillomavirus-16 Virus-like Particles Presenting P18I10 and T20 Peptides from HIV-1 Envelope Induce HPV16 and HIV-1-Specific Humoral and T Cell-Mediated Immunity in BALB/c Mice. Chen CW, Saubi N, Kilpeläinen A, Joseph-Munné J. Vaccines (Basel) 11 15 (2022)
  82. Cholera toxin B scaffolded, focused SIV V2 epitope elicits antibodies that influence the risk of SIVmac251 acquisition in macaques. Rahman MA, Becerra-Flores M, Patskovsky Y, Silva de Castro I, Bissa M, Basu S, Shen X, Williams LD, Sarkis S, N'guessan KF, LaBranche C, Tomaras GD, Aye PP, Veazey R, Paquin-Proulx D, Rao M, Franchini G, Cardozo T. Front Immunol 14 1139402 (2023)
  83. Computationally grafting an IgE epitope onto a scaffold: Implications for a pan anti-allergy vaccine design. Sabban SS. Comput Struct Biotechnol J 19 4738-4750 (2021)
  84. Designer proteins that competitively inhibit Gαq by targeting its effector site. Hussain M, Cummins MC, Endo-Streeter S, Sondek J, Kuhlman B. J Biol Chem 297 101348 (2021)
  85. DisruPPI: structure-based computational redesign algorithm for protein binding disruption. Choi Y, Furlon JM, Amos RB, Griswold KE, Bailey-Kellogg C. Bioinformatics 34 i245-i253 (2018)
  86. Engineered immunogens to elicit antibodies against conserved coronavirus epitopes. Kapingidza AB, Marston DJ, Harris C, Wrapp D, Winters K, Mielke D, Xiaozhi L, Yin Q, Foulger A, Parks R, Barr M, Newman A, Schäfer A, Eaton A, Flores JM, Harner A, Catanzaro NJ, Mallory ML, Mattocks MD, Beverly C, Rhodes B, Mansouri K, Van Itallie E, Vure P, Dunn B, Keyes T, Stanfield-Oakley S, Woods CW, Petzold EA, Walter EB, Wiehe K, Edwards RJ, Montefiori DC, Ferrari G, Baric R, Cain DW, Saunders KO, Haynes BF, Azoitei ML. Nat Commun 14 7897 (2023)
  87. Epitope-focused immunogen design based on the ebolavirus glycoprotein HR2-MPER region. Schoeder CT, Gilchuk P, Sangha AK, Ledwitch KV, Malherbe DC, Zhang X, Binshtein E, Williamson LE, Martina CE, Dong J, Armstrong E, Sutton R, Nargi R, Rodriguez J, Kuzmina N, Fiala B, King NP, Bukreyev A, Crowe JE, Meiler J. PLoS Pathog 18 e1010518 (2022)
  88. Identification of an Immunogenic Broadly Inhibitory Surface Epitope of the Plasmodium vivax Duffy Binding Protein Ligand Domain. George MT, Schloegel JL, Ntumngia FB, Barnes SJ, King CL, Casey JL, Foley M, Adams JH. mSphere 4 (2019)
  89. Local environment effects on charged mutations for developing aggregation-resistant monoclonal antibodies. Lee J, Chong SH, Ham S. Sci Rep 10 21191 (2020)
  90. Novel chimeric proteins mimicking SARS-CoV-2 spike epitopes with broad inhibitory activity. Cano-Muñoz M, Polo-Megías D, Cámara-Artigas A, Gavira JA, López-Rodríguez MJ, Laumond G, Schmidt S, Demiselle J, Bahram S, Moog C, Conejero-Lara F. Int J Biol Macromol 222 2467-2478 (2022)
  91. Potent neutralization activity against type O foot-and-mouth disease virus elicited by a conserved type O neutralizing epitope displayed on bovine parvovirus virus-like particles. Chang J, Zhang Y, Yang D, Jiang Z, Wang F, Yu L. J Gen Virol 100 187-198 (2019)
  92. Protect, modify, deprotect (PMD): A strategy for creating vaccines to elicit antibodies targeting a specific epitope. Weidenbacher PA, Kim PS. Proc. Natl. Acad. Sci. U.S.A. 116 9947-9952 (2019)
  93. Rationally designed carbohydrate-occluded epitopes elicit HIV-1 Env-specific antibodies. Zhu C, Dukhovlinova E, Council O, Ping L, Faison EM, Prabhu SS, Potter EL, Upton SL, Yin G, Fay JM, Kincer LP, Spielvogel E, Campbell SL, Benhabbour SR, Ke H, Swanstrom R, Dokholyan NV. Nat Commun 10 948 (2019)
  94. Reengineering substrate specificity of E. coli glutamate dehydrogenase using a position-based prediction method. Geng F, Ma CW, Zeng AP. Biotechnol. Lett. 39 599-605 (2017)
  95. Towards an anti-disease malaria vaccine. Lennartz F, Lavstsen T, Higgins MK. Emerg Top Life Sci 1 539-545 (2017)
  96. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Netzer R, Listov D, Lipsh R, Dym O, Albeck S, Knop O, Kleanthous C, Fleishman SJ. Nat Commun 9 5286 (2018)