3p0u Citations

The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor.

J Biol Chem 286 2877-85 (2011)
Cited: 52 times
EuropePMC logo PMID: 21068381

Abstract

Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.

Reviews - 3p0u mentioned but not cited (2)

Articles - 3p0u mentioned but not cited (6)

  1. The orphan nuclear receptor TR4 is a vitamin A-activated nuclear receptor. Zhou XE, Suino-Powell KM, Xu Y, Chan CW, Tanabe O, Kruse SW, Reynolds R, Engel JD, Xu HE. J. Biol. Chem. 286 2877-2885 (2011)
  2. The crystal structure of the orphan nuclear receptor NR2E3/PNR ligand binding domain reveals a dimeric auto-repressed conformation. Tan MH, Zhou XE, Soon FF, Li X, Li J, Yong EL, Melcher K, Xu HE. PLoS ONE 8 e74359 (2013)
  3. Analysis of C. elegans NR2E nuclear receptors defines three conserved clades and ligand-independent functions. Weber KP, Alvaro CG, Baer GM, Reinert K, Cheng G, Clever S, Wightman B. BMC Evol Biol 12 81 (2012)
  4. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  5. Structures of human TR4LBD-JAZF1 and TR4DBD-DNA complexes reveal the molecular basis of transcriptional regulation. Liu Y, Ma L, Li M, Tian Z, Yang M, Wu X, Wang X, Shang G, Xie M, Chen Y, Liu X, Jiang L, Wu W, Xu C, Xia L, Li G, Dai S, Chen Z. Nucleic Acids Res 51 1443-1457 (2023)
  6. TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and Hypertrophy. Li X, You J, Dai F, Wang S, Yang FH, Wang X, Ding Z, Huang J, Chen L, Abudureyimu M, Tang H, Yang X, Xiang Y, Backx PH, Ren J, Ge J, Zou Y, Wu J. JACC Basic Transl Sci 8 1555-1573 (2023)


Reviews citing this publication (19)

  1. Vitamin A and retinoid signaling: genomic and nongenomic effects. Al Tanoury Z, Piskunov A, Rochette-Egly C. J. Lipid Res. 54 1761-1775 (2013)
  2. Minireview: role of orphan nuclear receptors in cancer and potential as drug targets. Safe S, Jin UH, Hedrick E, Reeder A, Lee SO. Mol. Endocrinol. 28 157-172 (2014)
  3. Nuclear retinoic acid receptors: conductors of the retinoic acid symphony during development. Samarut E, Rochette-Egly C. Mol. Cell. Endocrinol. 348 348-360 (2012)
  4. Understanding nuclear receptor form and function using structural biology. Rastinejad F, Huang P, Chandra V, Khorasanizadeh S. J. Mol. Endocrinol. 51 T1-T21 (2013)
  5. Retinoic acid actions through mammalian nuclear receptors. Huang P, Chandra V, Rastinejad F. Chem. Rev. 114 233-254 (2014)
  6. Fetal globin gene repressors as drug targets for molecular therapies to treat the β-globinopathies. Suzuki M, Yamamoto M, Engel JD. Mol. Cell. Biol. 34 3560-3569 (2014)
  7. ROR nuclear receptors: structures, related diseases, and drug discovery. Zhang Y, Luo XY, Wu DH, Xu Y. Acta Pharmacol. Sin. 36 71-87 (2015)
  8. The orphan nuclear receptors at their 25-year reunion. Mullican SE, Dispirito JR, Lazar MA. J. Mol. Endocrinol. 51 T115-40 (2013)
  9. Modulation of retinoid signaling: therapeutic opportunities in organ fibrosis and repair. Wang S, Yu J, Kane MA, Moise AR. Pharmacol Ther 205 107415 (2020)
  10. Advances in our structural understanding of orphan nuclear receptors. Gallastegui N, Mackinnon JA, Fletterick RJ, Estébanez-Perpiñá E. Trends Biochem. Sci. 40 25-35 (2015)
  11. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. Blaner WS. Pharmacol Ther 197 153-178 (2019)
  12. The roles of endogenous retinoid signaling in organ and appendage regeneration. Blum N, Begemann G. Cell. Mol. Life Sci. 70 3907-3927 (2013)
  13. Differential roles of PPARγ vs TR4 in prostate cancer and metabolic diseases. Liu S, Lin SJ, Li G, Kim E, Chen YT, Yang DR, Tan MH, Yong EL, Chang C. Endocr. Relat. Cancer 21 R279-300 (2014)
  14. Insights into Orphan Nuclear Receptors as Prognostic Markers and Novel Therapeutic Targets for Breast Cancer. Aesoy R, Clyne CD, Chand AL. Front Endocrinol (Lausanne) 6 115 (2015)
  15. How does retinoic acid (RA) signaling pathway regulate spermatogenesis? Zhang HZ, Hao SL, Yang WX. Histol Histopathol 37 1053-1064 (2022)
  16. Recent insights on the role and regulation of retinoic acid signaling during epicardial development. Wang S, Moise AR. Genesis 57 e23303 (2019)
  17. Nuclear Receptors as Regulators of Pituitary Corticotroph Pro-Opiomelanocortin Transcription. Zhang D, Heaney AP. Cells 9 (2020)
  18. Synthetic Retinoids as Potential Therapeutics in Prostate Cancer-An Update of the Last Decade of Research: A Review. Hałubiec P, Łazarczyk A, Szafrański O, Bohn T, Dulińska-Litewka J. Int J Mol Sci 22 10537 (2021)
  19. TLX, an Orphan Nuclear Receptor With Emerging Roles in Physiology and Disease. Nelson AT, Wang Y, Nelson ER. Endocrinology 162 bqab184 (2021)

Articles citing this publication (25)

  1. The Concise Guide to PHARMACOLOGY 2013/14: nuclear hormone receptors. Alexander SP, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ, CGTP Collaborators. Br. J. Pharmacol. 170 1652-1675 (2013)
  2. Nuclear receptors TR2 and TR4 recruit multiple epigenetic transcriptional corepressors that associate specifically with the embryonic β-type globin promoters in differentiated adult erythroid cells. Cui S, Kolodziej KE, Obara N, Amaral-Psarris A, Demmers J, Shi L, Engel JD, Grosveld F, Strouboulis J, Tanabe O. Mol. Cell. Biol. 31 3298-3311 (2011)
  3. Forced TR2/TR4 expression in sickle cell disease mice confers enhanced fetal hemoglobin synthesis and alleviated disease phenotypes. Campbell AD, Cui S, Shi L, Urbonya R, Mathias A, Bradley K, Bonsu KO, Douglas RR, Halford B, Schmidt L, Harro D, Giacherio D, Tanimoto K, Tanabe O, Engel JD. Proc. Natl. Acad. Sci. U.S.A. 108 18808-18813 (2011)
  4. Retinoic acid has different effects on UCP1 expression in mouse and human adipocytes. Murholm M, Isidor MS, Basse AL, Winther S, Sørensen C, Skovgaard-Petersen J, Nielsen MM, Hansen AS, Quistorff B, Hansen JB. BMC Cell Biol. 14 41 (2013)
  5. Structural insights into gene repression by the orphan nuclear receptor SHP. Zhi X, Zhou XE, He Y, Zechner C, Suino-Powell KM, Kliewer SA, Melcher K, Mangelsdorf DJ, Xu HE. Proc. Natl. Acad. Sci. U.S.A. 111 839-844 (2014)
  6. Discovery of 2-oxo-1,2-dihydrobenzo[cd]indole-6-sulfonamide derivatives as new RORγ inhibitors using virtual screening, synthesis and biological evaluation. Zhang Y, Xue X, Jin X, Song Y, Li J, Luo X, Song M, Yan W, Song H, Xu Y. Eur J Med Chem 78 431-441 (2014)
  7. Discovery of a protein-metabolite interaction between unsaturated fatty acids and the nuclear receptor Nur77 using a metabolomics approach. Vinayavekhin N, Saghatelian A. J. Am. Chem. Soc. 133 17168-17171 (2011)
  8. PGC-1 coactivator activity is required for murine erythropoiesis. Cui S, Tanabe O, Lim KC, Xu HE, Zhou XE, Lin JD, Shi L, Schmidt L, Campbell A, Shimizu R, Yamamoto M, Engel JD. Mol. Cell. Biol. 34 1956-1965 (2014)
  9. Expression profiles of the nuclear receptors and their transcriptional coregulators during differentiation of neural stem cells. Androutsellis-Theotokis A, Chrousos GP, McKay RD, DeCherney AH, Kino T. Horm. Metab. Res. 45 159-168 (2013)
  10. Testicular nuclear receptor 4 (TR4) regulates UV light-induced responses via Cockayne syndrome B protein-mediated transcription-coupled DNA repair. Liu S, Yan SJ, Lee YF, Liu NC, Ting HJ, Li G, Wu Q, Chen LM, Chang C. J. Biol. Chem. 286 38103-38108 (2011)
  11. Structural basis for corepressor assembly by the orphan nuclear receptor TLX. Zhi X, Zhou XE, He Y, Searose-Xu K, Zhang CL, Tsai CC, Melcher K, Xu HE. Genes Dev. 29 440-450 (2015)
  12. Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Cui S, Tanabe O, Sierant M, Shi L, Campbell A, Lim KC, Engel JD. Blood 125 1477-1487 (2015)
  13. Recent advances in the study of testicular nuclear receptor 4. Ding XF, Yu SC, Chen BD, Lin SJ, Chang C, Li GH. J Zhejiang Univ Sci B 14 171-177 (2013)
  14. Biased, non-equivalent gene-proximal and -distal binding motifs of orphan nuclear receptor TR4 in primary human erythroid cells. Shi L, Sierant MC, Gurdziel K, Zhu F, Cui S, Kolodziej KE, Strouboulis J, Guan Y, Tanabe O, Lim KC, Engel JD. PLoS Genet. 10 e1004339 (2014)
  15. Design, Synthesis, and Actions of an Innovative Bispecific Designer Peptide. Meems LMG, Andersen IA, Pan S, Harty G, Chen Y, Zheng Y, Harders GE, Ichiki T, Heublein DM, Iyer SR, Sangaralingham SJ, McCormick DJ, Burnett JC. Hypertension 73 900-909 (2019)
  16. Local motifs involved in the canonical structure of the ligand-binding domain in the nuclear receptor superfamily. Tsuji M. J. Struct. Biol. 185 355-365 (2014)
  17. Identification of N-phenyl-2-(N-phenylphenylsulfonamido)acetamides as new RORγ inverse agonists: Virtual screening, structure-based optimization, and biological evaluation. Song Y, Xue X, Wu X, Wang R, Xing Y, Yan W, Zhou Y, Qian CN, Zhang Y, Xu Y. Eur J Med Chem 116 13-26 (2016)
  18. Retinoic acid receptor subtype-specific transcriptotypes in the early zebrafish embryo. Samarut E, Gaudin C, Hughes S, Gillet B, de Bernard S, Jouve PE, Buffat L, Allot A, Lecompte O, Berekelya L, Rochette-Egly C, Laudet V. Mol. Endocrinol. 28 260-272 (2014)
  19. Targeting the TR4 nuclear receptor with antagonist bexarotene can suppress the proopiomelanocortin signalling in AtT-20 cells. Xia L, Shen D, Zhang Y, Lu J, Wang M, Wang H, Chen Y, Xue D, Xie D, Li G. J Cell Mol Med 25 2404-2417 (2021)
  20. Identification of Small-Molecule Regulators of Testicular Receptor 4 via a Drug Repurposing Screening. Xia L, Shen D, Wang H, Ren L, Chen Y, Li G. ACS Omega 5 30625-30632 (2020)
  21. Structural overview and perspectives of the nuclear receptors, a major family as the direct targets for small-molecule drugs. Li F, Song C, Zhang Y, Wu D. Acta Biochim Biophys Sin (Shanghai) 54 12-24 (2022)
  22. BAP1 regulation of the key adaptor protein NCoR1 is critical for γ-globin gene repression. Yu L, Jearawiriyapaisarn N, Lee MP, Hosoya T, Wu Q, Myers G, Lim KC, Kurita R, Nakamura Y, Vojtek AB, Rual JF, Engel JD. Genes Dev. 32 1537-1549 (2018)
  23. Definition of functionally and structurally distinct repressive states in the nuclear receptor PPARγ. Heidari Z, Chrisman IM, Nemetchek MD, Novick SJ, Blayo AL, Patton T, Mendes DE, Diaz P, Kamenecka TM, Griffin PR, Hughes TS. Nat Commun 10 5825 (2019)
  24. Targeting TR4 nuclear receptor with antagonist bexarotene increases docetaxel sensitivity to better suppress the metastatic castration-resistant prostate cancer progression. Hu L, Sun Y, Luo J, He X, Ye M, Li G, Zhang Y, Bai J, Zhang D, Chang C. Oncogene 39 1891-1903 (2020)
  25. Targeting the TR4 nuclear receptor-mediated lncTASR/AXL signaling with tretinoin increases the sunitinib sensitivity to better suppress the RCC progression. Shi H, Sun Y, He M, Yang X, Hamada M, Fukunaga T, Zhang X, Chang C. Oncogene 39 530-545 (2020)