3ode Citations

Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity.

J Biol Chem 286 10690-701 (2011)
Related entries: 3od8, 3oda, 3odc

Cited: 136 times
EuropePMC logo PMID: 21233213

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) has two homologous zinc finger domains, Zn1 and Zn2, that bind to a variety of DNA structures to stimulate poly(ADP-ribose) synthesis activity and to mediate PARP-1 interaction with chromatin. The structural basis for interaction with DNA is unknown, which limits our understanding of PARP-1 regulation and involvement in DNA repair and transcription. Here, we have determined crystal structures for the individual Zn1 and Zn2 domains in complex with a DNA double strand break, providing the first views of PARP-1 zinc fingers bound to DNA. The Zn1-DNA and Zn2-DNA structures establish a novel, bipartite mode of sequence-independent DNA interaction that engages a continuous region of the phosphodiester backbone and the hydrophobic faces of exposed nucleotide bases. Biochemical and cell biological analysis indicate that the Zn1 and Zn2 domains perform distinct functions. The Zn2 domain exhibits high binding affinity to DNA compared with the Zn1 domain. However, the Zn1 domain is essential for DNA-dependent PARP-1 activity in vitro and in vivo, whereas the Zn2 domain is not strictly required. Structural differences between the Zn1-DNA and Zn2-DNA complexes, combined with mutational and structural analysis, indicate that a specialized region of the Zn1 domain is re-configured through the hydrophobic interaction with exposed nucleotide bases to initiate PARP-1 activation.

Reviews - 3ode mentioned but not cited (1)

  1. What Combined Measurements From Structures and Imaging Tell Us About DNA Damage Responses. Brosey CA, Ahmed Z, Lees-Miller SP, Tainer JA. Meth. Enzymol. 592 417-455 (2017)

Articles - 3ode mentioned but not cited (4)

  1. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. Langelier MF, Planck JL, Roy S, Pascal JM. J. Biol. Chem. 286 10690-10701 (2011)
  2. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. Eustermann S, Videler H, Yang JC, Cole PT, Gruszka D, Veprintsev D, Neuhaus D. J. Mol. Biol. 407 149-170 (2011)
  3. Fluorescent sensors of PARP-1 structural dynamics and allosteric regulation in response to DNA damage. Steffen JD, McCauley MM, Pascal JM. Nucleic Acids Res. 44 9771-9783 (2016)
  4. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)


Reviews citing this publication (51)

  1. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Gibson BA, Kraus WL. Nat. Rev. Mol. Cell Biol. 13 411-424 (2012)
  2. The role of PARP in DNA repair and its therapeutic exploitation. Javle M, Curtin NJ. Br. J. Cancer 105 1114-1122 (2011)
  3. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Exp. Cell Res. 329 18-25 (2014)
  4. Poly(ADP-ribose) signaling in cell death. Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ. Mol. Aspects Med. 34 1153-1167 (2013)
  5. PARPs and ADP-ribosylation: recent advances linking molecular functions to biological outcomes. Gupte R, Liu Z, Kraus WL. Genes Dev. 31 101-126 (2017)
  6. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. Dantuma NP, van Attikum H. EMBO J. 35 6-23 (2016)
  7. The recognition and removal of cellular poly(ADP-ribose) signals. Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. FEBS J. 280 3491-3507 (2013)
  8. Structural Implications for Selective Targeting of PARPs. Steffen JD, Brody JR, Armen RS, Pascal JM. Front Oncol 3 301 (2013)
  9. Poly(ADP-ribosyl)ation in regulation of chromatin structure and the DNA damage response. Tallis M, Morra R, Barkauskaite E, Ahel I. Chromosoma 123 79-90 (2014)
  10. The rise and fall of poly(ADP-ribose): An enzymatic perspective. Pascal JM, Ellenberger T. DNA Repair (Amst.) 32 10-16 (2015)
  11. Structural biology of the writers, readers, and erasers in mono- and poly(ADP-ribose) mediated signaling. Karlberg T, Langelier MF, Pascal JM, Schüler H. Mol. Aspects Med. 34 1088-1108 (2013)
  12. The role of ADP-ribosylation in regulating DNA double-strand break repair. Pears CJ, Couto CA, Wang HY, Borer C, Kiely R, Lakin ND. Cell Cycle 11 48-56 (2012)
  13. Coordination of DNA single strand break repair. Abbotts R, Wilson DM. Free Radic. Biol. Med. 107 228-244 (2017)
  14. PARP inhibitors: mechanism of action and their potential role in the prevention and treatment of cancer. Basu B, Sandhu SK, de Bono JS. Drugs 72 1579-1590 (2012)
  15. PARP, transcription and chromatin modeling. Posavec Marjanović M, Crawford K, Ahel I. Semin. Cell Dev. Biol. 63 102-113 (2017)
  16. The PARP family: insights into functional aspects of poly (ADP-ribose) polymerase-1 in cell growth and survival. Jubin T, Kadam A, Jariwala M, Bhatt S, Sutariya S, Gani AR, Gautam S, Begum R. Cell Prolif. 49 421-437 (2016)
  17. PARP goes the weasel! Emerging role of PARP inhibitors in acute leukemias. Fritz C, Portwood SM, Przespolewski A, Wang ES. Blood Rev 45 100696 (2021)
  18. ADP-ribosylation of RNA and DNA: from in vitro characterization to in vivo function. Weixler L, Schäringer K, Momoh J, Lüscher B, Feijs KLH, Žaja R. Nucleic Acids Res 49 3634-3650 (2021)
  19. G4-quadruplex-binding proteins: review and insights into selectivity. Meier-Stephenson V. Biophys Rev 14 635-654 (2022)
  20. PARP family enzymes: regulation and catalysis of the poly(ADP-ribose) posttranslational modification. Langelier MF, Eisemann T, Riccio AA, Pascal JM. Curr. Opin. Struct. Biol. 53 187-198 (2018)
  21. PARP Power: A Structural Perspective on PARP1, PARP2, and PARP3 in DNA Damage Repair and Nucleosome Remodelling. van Beek L, McClay É, Patel S, Schimpl M, Spagnolo L, Maia de Oliveira T. Int J Mol Sci 22 5112 (2021)
  22. Targeting poly(ADP-ribose)polymerase1 in neurological diseases: A promising trove for new pharmacological interventions to enter clinical translation. Sriram CS, Jangra A, Kasala ER, Bodduluru LN, Bezbaruah BK. Neurochem. Int. 76 70-81 (2014)
  23. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Huang D, Kraus WL. Mol Cell 82 2315-2334 (2022)
  24. Poly(adenosine diphosphate-ribose) polymerase as therapeutic target: lessons learned from its inhibitors. Cseh AM, Fábián Z, Sümegi B, Scorrano L. Oncotarget 8 50221-50239 (2017)
  25. Rapid Detection and Signaling of DNA Damage by PARP-1. Pandey N, Black BE. Trends Biochem Sci 46 744-757 (2021)
  26. Concepts and Molecular Aspects in the Polypharmacology of PARP-1 Inhibitors. Passeri D, Camaioni E, Liscio P, Sabbatini P, Ferri M, Carotti A, Giacchè N, Pellicciari R, Gioiello A, Macchiarulo A. ChemMedChem 11 1219-1226 (2016)
  27. PARP1: Structural insights and pharmacological targets for inhibition. Spiegel JO, Van Houten B, Durrant JD. DNA Repair (Amst) 103 103125 (2021)
  28. The Enigmatic Function of PARP1: From PARylation Activity to PAR Readers. Kamaletdinova T, Fanaei-Kahrani Z, Wang ZQ. Cells 8 (2019)
  29. Conservation of the three-dimensional structure in non-homologous or unrelated proteins. Sousounis K, Haney CE, Cao J, Sunchu B, Tsonis PA. Hum. Genomics 6 10 (2012)
  30. Poly(ADP-Ribose)Polymerase (PARP) Inhibitors and Radiation Therapy. Jannetti SA, Zeglis BM, Zalutsky MR, Reiner T. Front Pharmacol 11 170 (2020)
  31. The comings and goings of PARP-1 in response to DNA damage. Pascal JM. DNA Repair (Amst.) 71 177-182 (2018)
  32. [PARP inhibitors and radiotherapy: rational and prospects for a clinical use]. Pernin V, Mégnin-Chanet F, Pennaneach V, Fourquet A, Kirova Y, Hall J. Cancer Radiother 18 790-8; quiz 799-802 (2014)
  33. A comprehensive look of poly(ADP-ribose) polymerase inhibition strategies and future directions for cancer therapy. Kumar C, Rani N, Velan Lakshmi PT, Arunachalam A. Future Med Chem 9 37-60 (2017)
  34. Proteomic Analysis of the Downstream Signaling Network of PARP1. Zhen Y, Yu Y. Biochemistry 57 429-440 (2018)
  35. Virus-Host Interplay Between Poly (ADP-Ribose) Polymerase 1 and Oncogenic Gammaherpesviruses. Chung WC, Song MJ. Front Microbiol 12 811671 (2021)
  36. From Powerhouse to Perpetrator-Mitochondria in Health and Disease. Fakouri NB, Hansen TL, Desler C, Anugula S, Rasmussen LJ. Biology (Basel) 8 (2019)
  37. PARP Inhibitors and Myeloid Neoplasms: A Double-Edged Sword. Csizmar CM, Saliba AN, Swisher EM, Kaufmann SH. Cancers (Basel) 13 6385 (2021)
  38. Regulation of Biomolecular Condensates by Poly(ADP-ribose). Rhine K, Odeh HM, Shorter J, Myong S. Chem Rev 123 9065-9093 (2023)
  39. DNA Alkylation Damage by Nitrosamines and Relevant DNA Repair Pathways. Fahrer J, Christmann M. Int J Mol Sci 24 4684 (2023)
  40. Epigenetic Insights on PARP-1 Activity in Cancer Therapy. Pinton G, Boumya S, Ciriolo MR, Ciccarone F. Cancers (Basel) 15 6 (2022)
  41. Functional roles of ADP-ribosylation writers, readers and erasers. Li P, Lei Y, Qi J, Liu W, Yao K. Front Cell Dev Biol 10 941356 (2022)
  42. Human PARP1 substrates and regulators of its catalytic activity: An updated overview. Zhu T, Zheng JY, Huang LL, Wang YH, Yao DF, Dai HB. Front Pharmacol 14 1137151 (2023)
  43. PARPs and ADP-Ribosylation in Chronic Inflammation: A Focus on Macrophages. Santinelli-Pestana DV, Aikawa E, Singh SA, Aikawa M. Pathogens 12 964 (2023)
  44. Poly adenosine diphosphate-ribosylation, a promising target for colorectal cancer treatment. Jeong KY, Park M. World J Gastrointest Oncol 13 574-588 (2021)
  45. Recent advancements in PARP inhibitors-based targeted cancer therapy. Zhou P, Wang J, Mishail D, Wang CY. Precis Clin Med 3 187-201 (2020)
  46. Research Progress on PARP14 as a Drug Target. Qin W, Wu HJ, Cao LQ, Li HJ, He CX, Zhao D, Xing L, Li PQ, Jin X, Cao HL. Front Pharmacol 10 172 (2019)
  47. Revisiting regulatory roles of replication protein A in plant DNA metabolism. Chowdhury S, Chowdhury AB, Kumar M, Chakraborty S. Planta 253 130 (2021)
  48. Targeting DNA-Protein Crosslinks via Post-Translational Modifications. Leng X, Duxin JP. Front Mol Biosci 9 944775 (2022)
  49. The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Sobczak M, Zyma M, Robaszkiewicz A. Cells 9 (2020)
  50. The Role of Poly(ADP-ribose) Polymerase 1 in Nuclear and Mitochondrial Base Excision Repair. Herrmann GK, Yin YW. Biomolecules 13 1195 (2023)
  51. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. Front Mol Biosci 9 1073797 (2022)

Articles citing this publication (80)

  1. Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Langelier MF, Planck JL, Roy S, Pascal JM. Science 336 728-732 (2012)
  2. The zinc-finger domains of PARP1 cooperate to recognize DNA strand breaks. Ali AAE, Timinszky G, Arribas-Bosacoma R, Kozlowski M, Hassa PO, Hassler M, Ladurner AG, Pearl LH, Oliver AW. Nat. Struct. Mol. Biol. 19 685-692 (2012)
  3. Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG. J. Biol. Chem. 286 22855-22863 (2011)
  4. PARP-2 and PARP-3 are selectively activated by 5' phosphorylated DNA breaks through an allosteric regulatory mechanism shared with PARP-1. Langelier MF, Riccio AA, Pascal JM. Nucleic Acids Res. 42 7762-7775 (2014)
  5. Structural basis for allosteric PARP-1 retention on DNA breaks. Zandarashvili L, Langelier MF, Velagapudi UK, Hancock MA, Steffen JD, Billur R, Hannan ZM, Wicks AJ, Krastev DB, Pettitt SJ, Lord CJ, Talele TT, Pascal JM, Black BE. Science 368 eaax6367 (2020)
  6. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells. Daniels CM, Ong SE, Leung AK. J. Proteome Res. 13 3510-3522 (2014)
  7. Structural Basis of Detection and Signaling of DNA Single-Strand Breaks by Human PARP-1. Eustermann S, Wu WF, Langelier MF, Yang JC, Easton LE, Riccio AA, Pascal JM, Neuhaus D. Mol. Cell 60 742-754 (2015)
  8. Visualization of a DNA-PK/PARP1 complex. Spagnolo L, Barbeau J, Curtin NJ, Morris EP, Pearl LH. Nucleic Acids Res. 40 4168-4177 (2012)
  9. Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Muthurajan UM, Hepler MR, Hieb AR, Clark NJ, Kramer M, Yao T, Luger K. Proc. Natl. Acad. Sci. U.S.A. 111 12752-12757 (2014)
  10. The Broad-Spectrum Antiviral Protein ZAP Restricts Human Retrotransposition. Goodier JL, Pereira GC, Cheung LE, Rose RJ, Kazazian HH. PLoS Genet. 11 e1005252 (2015)
  11. Fluorescence strategies for high-throughput quantification of protein interactions. Hieb AR, D'Arcy S, Kramer MA, White AE, Luger K. Nucleic Acids Res. 40 e33 (2012)
  12. PARP-1 Activation Requires Local Unfolding of an Autoinhibitory Domain. Dawicki-McKenna JM, Langelier MF, DeNizio JE, Riccio AA, Cao CD, Karch KR, McCauley M, Steffen JD, Black BE, Pascal JM. Mol. Cell 60 755-768 (2015)
  13. Alternative modes of binding of poly(ADP-ribose) polymerase 1 to free DNA and nucleosomes. Clark NJ, Kramer M, Muthurajan UM, Luger K. J. Biol. Chem. 287 32430-32439 (2012)
  14. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Postel-Vinay S, Bajrami I, Friboulet L, Elliott R, Fontebasso Y, Dorvault N, Olaussen KA, André F, Soria JC, Lord CJ, Ashworth A. Oncogene 32 5377-5387 (2013)
  15. Functional Aspects of PARP1 in DNA Repair and Transcription. Ko HL, Ren EC. Biomolecules 2 524-548 (2012)
  16. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. PLoS One 15 e0240932 (2020)
  17. The role of Kif4A in doxorubicin-induced apoptosis in breast cancer cells. Wang H, Lu C, Li Q, Xie J, Chen T, Tan Y, Wu C, Jiang J. Mol. Cells 37 812-818 (2014)
  18. Targeting PARP-1 allosteric regulation offers therapeutic potential against cancer. Steffen JD, Tholey RM, Langelier MF, Planck JL, Schiewer MJ, Lal S, Bildzukewicz NA, Yeo CJ, Knudsen KE, Brody JR, Pascal JM. Cancer Res. 74 31-37 (2014)
  19. PARP-2 domain requirements for DNA damage-dependent activation and localization to sites of DNA damage. Riccio AA, Cingolani G, Pascal JM. Nucleic Acids Res. 44 1691-1702 (2016)
  20. Hyperactivation of PARP triggers nonhomologous end-joining in repair-deficient mouse fibroblasts. Gassman NR, Stefanick DF, Kedar PS, Horton JK, Wilson SH. PLoS ONE 7 e49301 (2012)
  21. DNA-dependent SUMO modification of PARP-1. Zilio N, Williamson CT, Eustermann S, Shah R, West SC, Neuhaus D, Ulrich HD. DNA Repair (Amst.) 12 761-773 (2013)
  22. HPF1 remodels the active site of PARP1 to enable the serine ADP-ribosylation of histones. Sun FH, Zhao P, Zhang N, Kong LL, Wong CCL, Yun CH. Nat Commun 12 1028 (2021)
  23. The guanine-quadruplex structure in the human c-myc gene's promoter is converted into B-DNA form by the human poly(ADP-ribose)polymerase-1. Fekete A, Kenesi E, Hunyadi-Gulyas E, Durgo H, Berko B, Dunai ZA, Bauer PI. PLoS ONE 7 e42690 (2012)
  24. Epstein-Barr Virus Oncoprotein LMP1 Mediates Epigenetic Changes in Host Gene Expression through PARP1. Martin KA, Lupey LN, Tempera I. J. Virol. 90 8520-8530 (2016)
  25. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release. Chandrasekaran S, Caparon MG. Cell. Microbiol. 17 1376-1390 (2015)
  26. NAD+ analog reveals PARP-1 substrate-blocking mechanism and allosteric communication from catalytic center to DNA-binding domains. Langelier MF, Zandarashvili L, Aguiar PM, Black BE, Pascal JM. Nat Commun 9 844 (2018)
  27. Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Mansoorabadi SO, Wu M, Tao Z, Gao P, Pingali SV, Guo L, Liu HW. Biochemistry 53 1779-1788 (2014)
  28. Discovery of 1-substituted benzyl-quinazoline-2,4(1H,3H)-dione derivatives as novel poly(ADP-ribose)polymerase-1 inhibitors. Yao H, Ji M, Zhu Z, Zhou J, Cao R, Chen X, Xu B. Bioorg. Med. Chem. 23 681-693 (2015)
  29. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining. Kukshal V, Kim IK, Hura GL, Tomkinson AE, Tainer JA, Ellenberger T. Nucleic Acids Res. 43 7021-7031 (2015)
  30. Minor grove binding ligands disrupt PARP-1 activation pathways. Kirsanov KI, Kotova E, Makhov P, Golovine K, Lesovaya EA, Kolenko VM, Yakubovskaya MG, Tulin AV. Oncotarget 5 428-437 (2014)
  31. A PARP1-ERK2 synergism is required for the induction of LTP. Visochek L, Grigoryan G, Kalal A, Milshtein-Parush H, Gazit N, Slutsky I, Yeheskel A, Shainberg A, Castiel A, Seger R, Langelier MF, Dantzer F, Pascal JM, Segal M, Cohen-Armon M. Sci Rep 6 24950 (2016)
  32. PARP1 changes from three-dimensional DNA damage searching to one-dimensional diffusion after auto-PARylation or in the presence of APE1. Liu L, Kong M, Gassman NR, Freudenthal BD, Prasad R, Zhen S, Watkins SC, Wilson SH, Van Houten B. Nucleic Acids Res. 45 12834-12847 (2017)
  33. TNKS1BP1 functions in DNA double-strand break repair though facilitating DNA-PKcs autophosphorylation dependent on PARP-1. Zou LH, Shang ZF, Tan W, Liu XD, Xu QZ, Song M, Wang Y, Guan H, Zhang SM, Yu L, Zhong CG, Zhou PK. Oncotarget 6 7011-7022 (2015)
  34. The C terminus of Pcf11 forms a novel zinc-finger structure that plays an essential role in mRNA 3'-end processing. Yang F, Hsu P, Lee SD, Yang W, Hoskinson D, Xu W, Moore C, Varani G. RNA 23 98-107 (2017)
  35. Molecular Evolution and Functional Diversification of Replication Protein A1 in Plants. Aklilu BB, Culligan KM. Front Plant Sci 7 33 (2016)
  36. Site-specific analysis of the Asp- and Glu-ADP-ribosylated proteome by quantitative mass spectrometry. Li P, Zhen Y, Yu Y. Methods Enzymol 626 301-321 (2019)
  37. Synthesis and biological evaluation of isoindoloisoquinolinone, pyroloisoquinolinone and benzoquinazolinone derivatives as poly(ADP-ribose) polymerase-1 inhibitors. Suyavaran A, Ramamurthy C, Mareeswaran R, Shanthi YV, Selvakumar J, Mangalaraj S, Kumar MS, Ramanathan CR, Thirunavukkarasu C. Bioorg. Med. Chem. 23 488-498 (2015)
  38. The HLTF-PARP1 interaction in the progression and stability of damaged replication forks caused by methyl methanesulfonate. Shiu JL, Wu CK, Chang SB, Sun YJ, Chen YJ, Lai CC, Chiu WT, Chang WT, Myung K, Su WP, Liaw H. Oncogenesis 9 104 (2020)
  39. Activation of PARP2/ARTD2 by DNA damage induces conformational changes relieving enzyme autoinhibition. Obaji E, Maksimainen MM, Galera-Prat A, Lehtiö L. Nat Commun 12 3479 (2021)
  40. HPF1 dynamically controls the PARP1/2 balance between initiating and elongating ADP-ribose modifications. Langelier MF, Billur R, Sverzhinsky A, Black BE, Pascal JM. Nat Commun 12 6675 (2021)
  41. Investigating the allosteric reverse signalling of PARP inhibitors with microsecond molecular dynamic simulations and fluorescence anisotropy. Marchand JR, Carotti A, Passeri D, Filipponi P, Liscio P, Camaioni E, Pellicciari R, Gioiello A, Macchiarulo A. Biochim. Biophys. Acta 1844 1765-1772 (2014)
  42. Nonspecific Binding of RNA to PARP1 and PARP2 Does Not Lead to Catalytic Activation. Nakamoto MY, Rudolph J, Wuttke DS, Luger K. Biochemistry 58 5107-5111 (2019)
  43. Real-time monitoring of PARP1-dependent PARylation by ATR-FTIR spectroscopy. Krüger A, Bürkle A, Hauser K, Mangerich A. Nat Commun 11 2174 (2020)
  44. Increased PARP1-DNA binding due to autoPARylation inhibition of PARP1 on DNA rather than PARP1-DNA trapping is correlated with PARP1 inhibitor's cytotoxicity. Chen HD, Chen CH, Wang YT, Guo N, Tian YN, Huan XJ, Song SS, He JX, Miao ZH. Int J Cancer 145 714-727 (2019)
  45. Comment PARP pairs up to PARsylate. Coquelle N, Glover JN. Nat. Struct. Mol. Biol. 19 660-661 (2012)
  46. S-nitrosation on zinc finger motif of PARP-1 as a mechanism of DNA repair inhibition by arsenite. Zhou X, Cooper KL, Huestis J, Xu H, Burchiel SW, Hudson LG, Liu KJ. Oncotarget 7 80482-80492 (2016)
  47. Poly(ADP-ribose) Polymerase 1, PARP1, modifies EZH2 and inhibits EZH2 histone methyltransferase activity after DNA damage. Caruso LB, Martin KA, Lauretti E, Hulse M, Siciliano M, Lupey-Green LN, Abraham A, Skorski T, Tempera I. Oncotarget 9 10585-10605 (2018)
  48. Updated protein domain annotation of the PARP protein family sheds new light on biological function. Suskiewicz MJ, Munnur D, Strømland Ø, Yang JC, Easton LE, Chatrin C, Zhu K, Baretić D, Goffinont S, Schuller M, Wu WF, Elkins JM, Ahel D, Sanyal S, Neuhaus D, Ahel I. Nucleic Acids Res 51 8217-8236 (2023)
  49. A PARP1-Erk2 synergism is required for stimulation-induced expression of immediate early genes. Cohen-Armon M. Gene Transl Bioinform 2 (2016)
  50. Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation. Ravishankar K, Jiang X, Leddin EM, Morcos F, Cisneros GA. Biophys J 121 3663-3673 (2022)
  51. Detection of functional protein domains by unbiased genome-wide forward genetic screening. Herzog M, Puddu F, Coates J, Geisler N, Forment JV, Jackson SP. Sci Rep 8 6161 (2018)
  52. Diastereomeric Recognition of 5',8-cyclo-2'-Deoxyadenosine Lesions by Human Poly(ADP-ribose) Polymerase 1 in a Biomimetic Model. Masi A, Sabbia A, Ferreri C, Manoli F, Lai Y, Laverde E, Liu Y, Krokidis MG, Chatgilialoglu C, Faraone Mennella MR. Cells 8 (2019)
  53. Genomic and biological aspects of resistance to selective poly(ADP-ribose) glycohydrolase inhibitor PDD00017273 in human colorectal cancer cells. Tsuda K, Kurasaka C, Ogino Y, Sato A. Cancer Rep (Hoboken) 6 e1709 (2023)
  54. Multiple roles for PARP1 in ALC1-dependent nucleosome remodeling. Ooi SK, Sato S, Tomomori-Sato C, Zhang Y, Wen Z, Banks CAS, Washburn MP, Unruh JR, Florens L, Conaway RC, Conaway JW. Proc Natl Acad Sci U S A 118 e2107277118 (2021)
  55. Poly(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an NAD-dependent manner. Herrmann GK, Russell WK, Garg NJ, Yin YW. J Biol Chem 296 100309 (2021)
  56. Single-molecule measurements reveal that PARP1 condenses DNA by loop stabilization. Bell NAW, Haynes PJ, Brunner K, de Oliveira TM, Flocco MM, Hoogenboom BW, Molloy JE. Sci Adv 7 eabf3641 (2021)
  57. Structural dynamics of DNA strand break sensing by PARP-1 at a single-molecule level. Sefer A, Kallis E, Eilert T, Röcker C, Kolesnikova O, Neuhaus D, Eustermann S, Michaelis J. Nat Commun 13 6569 (2022)
  58. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. Mol Cell 81 4994-5006.e5 (2021)
  59. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel MJ, Poirier GG, Masson JY. NAR Cancer 5 zcad043 (2023)
  60. In Silico Simulations Reveal Molecular Mechanism of Uranyl Ion Toxicity towards DNA-Binding Domain of PARP-1 Protein. Bulavko ES, Pak MA, Ivankov DN. Biomolecules 13 1269 (2023)
  61. Acute Liver Failure Induces Glial Reactivity, Oxidative Stress and Impairs Brain Energy Metabolism in Rats. Guazzelli PA, Cittolin-Santos GF, Meira-Martins LA, Grings M, Nonose Y, Lazzarotto GS, Nogara D, da Silva JS, Fontella FU, Wajner M, Leipnitz G, Souza DO, de Assis AM. Front Mol Neurosci 12 327 (2019)
  62. An atypical BRCT-BRCT interaction with the XRCC1 scaffold protein compacts human DNA Ligase IIIα within a flexible DNA repair complex. Hammel M, Rashid I, Sverzhinsky A, Pourfarjam Y, Tsai MS, Ellenberger T, Pascal JM, Kim IK, Tainer JA, Tomkinson AE. Nucleic Acids Res 49 306-321 (2021)
  63. Cas9 is mostly orthogonal to human systems of DNA break sensing and repair. Maltseva EA, Vasil'eva IA, Moor NA, Kim DV, Dyrkheeva NS, Kutuzov MM, Vokhtantsev IP, Kulishova LM, Zharkov DO, Lavrik OI. PLoS One 18 e0294683 (2023)
  64. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA. Langelier MF, Lin X, Zha S, Pascal JM. Sci Adv 9 eadf7175 (2023)
  65. Deciphering the functional mechanism of zinc ions of PARP1 binding with single strand breaks and double strand breaks. Sun S, Wang X, Lin R, Wang K. RSC Adv 12 19029-19039 (2022)
  66. G-Quadruplex loops regulate PARP-1 enzymatic activation. Edwards AD, Marecki JC, Byrd AK, Gao J, Raney KD. Nucleic Acids Res 49 416-431 (2021)
  67. HMGA2 as a functional antagonist of PARP1 inhibitors in tumor cells. Hombach-Klonisch S, Kalantari F, Medapati MR, Natarajan S, Krishnan SN, Kumar-Kanojia A, Thanasupawat T, Begum F, Xu FY, Hatch GM, Los M, Klonisch T. Mol Oncol 13 153-170 (2019)
  68. Hit and run versus long-term activation of PARP-1 by its different domains fine-tunes nuclear processes. Thomas C, Ji Y, Wu C, Datz H, Boyle C, MacLeod B, Patel S, Ampofo M, Currie M, Harbin J, Pechenkina K, Lodhi N, Johnson SJ, Tulin AV. Proc. Natl. Acad. Sci. U.S.A. 116 9941-9946 (2019)
  69. PARP1 associates with R-loops to promote their resolution and genome stability. Laspata N, Kaur P, Mersaoui SY, Muoio D, Liu ZS, Bannister MH, Nguyen HD, Curry C, Pascal JM, Poirier GG, Wang H, Masson JY, Fouquerel E. Nucleic Acids Res 51 2215-2237 (2023)
  70. PARP1 recruits DNA translocases to restrain DNA replication and facilitate DNA repair. Ho YC, Ku CS, Tsai SS, Shiu JL, Jiang YZ, Miriam HE, Zhang HW, Chen YT, Chiu WT, Chang SB, Shen CH, Myung K, Chi P, Liaw H. PLoS Genet 18 e1010545 (2022)
  71. Partial-Methylated HeyL Promoter Predicts the Severe Illness in Egyptian COVID-19 Patients. Fadel HH, Ahmed MAE, Gharbeya KM, Mohamed MAK, Roushdy MN, Almiry R. Dis Markers 2022 6780710 (2022)
  72. Poly(ADP-ribose) polymerase 1 searches DNA via a 'monkey bar' mechanism. Rudolph J, Mahadevan J, Dyer P, Luger K. Elife 7 (2018)
  73. Poly(ADP-ribose) polymerase-1 antagonizes DNA resection at double-strand breaks. Caron MC, Sharma AK, O'Sullivan J, Myler LR, Ferreira MT, Rodrigue A, Coulombe Y, Ethier C, Gagné JP, Langelier MF, Pascal JM, Finkelstein IJ, Hendzel MJ, Poirier GG, Masson JY. Nat Commun 10 2954 (2019)
  74. Quantitative Analysis of the Protein Methylome Reveals PARP1 Methylation is involved in DNA Damage Response. Wang X, Mi S, Zhao M, Lu C, Jia C, Chen Y. Front Mol Biosci 9 878646 (2022)
  75. Recruitment of ubiquitin-activating enzyme UBA1 to DNA by poly(ADP-ribose) promotes ATR signalling. Kumbhar R, Vidal-Eychenié S, Kontopoulos DG, Larroque M, Larroque C, Basbous J, Kossida S, Ribeyre C, Constantinou A. Life Sci Alliance 1 e201800096 (2018)
  76. Single-particle analysis of full-length human poly(ADP-ribose) polymerase 1. Kouyama K, Mayanagi K, Nakae S, Nishi Y, Miwa M, Shirai T. Biophys Physicobiol 16 59-67 (2019)
  77. Synthesis of Bispecific Antibody Conjugates Using Functionalized Poly-ADP-ribose Polymers. Cheng Q, Zhang XN, Li J, Chen J, Wang Y, Zhang Y. Biochemistry 62 1138-1144 (2023)
  78. The function and regulation of ADP-ribosylation in the DNA damage response. Duma L, Ahel I. Biochem Soc Trans 51 995-1008 (2023)
  79. Truncated PARP1 mediates ADP-ribosylation of RNA polymerase III for apoptosis. Chen Q, Ma K, Liu X, Chen SH, Li P, Yu Y, Leung AKL, Yu X. Cell Discov 8 3 (2022)
  80. Unanchored tri-NEDD8 inhibits PARP-1 to protect from oxidative stress-induced cell death. Keuss MJ, Hjerpe R, Hsia O, Gourlay R, Burchmore R, Trost M, Kurz T. EMBO J. 38 (2019)