3o2g Citations

Structural and mechanistic studies on γ-butyrobetaine hydroxylase.

Abstract

The final step in carnitine biosynthesis is catalyzed by γ-butyrobetaine (γBB) hydroxylase (BBOX), an iron/2-oxoglutarate (2OG) dependent oxygenase. BBOX is inhibited by trimethylhydrazine-propionate (THP), a clinically used compound. We report structural and mechanistic studies on BBOX and its reaction with THP. Crystallographic and sequence analyses reveal that BBOX and trimethyllysine hydroxylase form a subfamily of 2OG oxygenases that dimerize using an N-terminal domain. The crystal structure reveals the active site is enclosed and how THP competes with γBB. THP is a substrate giving formaldehyde (supporting structural links with histone demethylases), dimethylamine, malonic acid semi-aldehyde, and an unexpected product with an additional carbon-carbon bond resulting from N-demethylation coupled to oxidative rearrangement, likely via an unusual radical mechanism. The results provide a basis for development of improved BBOX inhibitors and may inspire the discovery of additional rearrangement reactions.

Reviews - 3o2g mentioned but not cited (4)

  1. Imposing function down a (cupin)-barrel: secondary structure and metal stereochemistry in the αKG-dependent oxygenases. Hangasky JA, Taabazuing CY, Valliere MA, Knapp MJ. Metallomics 5 287-301 (2013)
  2. TET-dioxygenase deficiency in oncogenesis and its targeting for tumor-selective therapeutics. Guan Y, Hasipek M, Tiwari AD, Maciejewski JP, Jha BK. Semin Hematol 58 27-34 (2021)
  3. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Int J Mol Sci 21 E9451 (2020)
  4. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses. Gao SS, Naowarojna N, Cheng R, Liu X, Liu P. Nat Prod Rep 35 792-837 (2018)

Articles - 3o2g mentioned but not cited (8)

  1. Structure of the ribosomal oxygenase OGFOD1 provides insights into the regio- and stereoselectivity of prolyl hydroxylases. Horita S, Scotti JS, Thinnes C, Mottaghi-Taromsari YS, Thalhammer A, Ge W, Aik W, Loenarz C, Schofield CJ, McDonough MA. Structure 23 639-652 (2015)
  2. Cation-π Interactions Contribute to Substrate Recognition in γ-Butyrobetaine Hydroxylase Catalysis. Kamps JJ, Khan A, Choi H, Lesniak RK, Brem J, Rydzik AM, McDonough MA, Schofield CJ, Claridge TD, Mecinović J. Chemistry 22 1270-1276 (2016)
  3. Modulating carnitine levels by targeting its biosynthesis pathway - selective inhibition of γ-butyrobetaine hydroxylase. Rydzik AM, Chowdhury R, Kochan GT, Williams ST, McDonough MA, Kawamura A, Schofield CJ. Chem Sci 5 1765-1771 (2014)
  4. Oxygenase-catalyzed desymmetrization of N,N-dialkyl-piperidine-4-carboxylic acids. Rydzik AM, Leung IK, Kochan GT, McDonough MA, Claridge TD, Schofield CJ. Angew. Chem. Int. Ed. Engl. 53 10925-10927 (2014)
  5. Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist. Martinez S, Fellner M, Herr CQ, Ritchie A, Hu J, Hausinger RP. J. Am. Chem. Soc. 139 11980-11988 (2017)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. 19F NMR studies on γ-butyrobetaine hydroxylase provide mechanistic insights and suggest a dual inhibition mode. Leśniak RK, Rydzik AM, Kamps JJAG, Kahn A, Claridge TDW, Schofield CJ. Chem Commun (Camb) 55 14717-14720 (2019)
  8. A New Microbial Pathway for Organophosphonate Degradation Catalyzed by Two Previously Misannotated Non-Heme-Iron Oxygenases. Rajakovich LJ, Pandelia ME, Mitchell AJ, Chang WC, Zhang B, Boal AK, Krebs C, Bollinger JM. Biochemistry 58 1627-1647 (2019)


Reviews citing this publication (8)

  1. Inhibition of 2-oxoglutarate dependent oxygenases. Rose NR, McDonough MA, King ON, Kawamura A, Schofield CJ. Chem Soc Rev 40 4364-4397 (2011)
  2. The roles of Jumonji-type oxygenases in human disease. Johansson C, Tumber A, Che K, Cain P, Nowak R, Gileadi C, Oppermann U. Epigenomics 6 89-120 (2014)
  3. The enzymes of β-lactam biosynthesis. Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. Nat Prod Rep 30 21-107 (2013)
  4. Pharmacological targeting of the HIF hydroxylases--A new field in medicine development. Chan MC, Holt-Martyn JP, Schofield CJ, Ratcliffe PJ. Mol. Aspects Med. 47-48 54-75 (2016)
  5. Autocatalysed oxidative modifications to 2-oxoglutarate dependent oxygenases. Mantri M, Zhang Z, McDonough MA, Schofield CJ. FEBS J. 279 1563-1575 (2012)
  6. 2-Oxoglutarate-Dependent Oxygenases. Islam MS, Leissing TM, Chowdhury R, Hopkinson RJ, Schofield CJ. Annu. Rev. Biochem. 87 585-620 (2018)
  7. Pharmacological effects of meldonium: Biochemical mechanisms and biomarkers of cardiometabolic activity. Dambrova M, Makrecka-Kuka M, Vilskersts R, Makarova E, Kuka J, Liepinsh E. Pharmacol. Res. 113 771-780 (2016)
  8. Adventures in Defining Roles of Oxygenases in the Regulation of Protein Biosynthesis. Walport LJ, Schofield CJ. Chem Rec 18 1760-1781 (2018)

Articles citing this publication (36)

  1. Structural and evolutionary basis for the dual substrate selectivity of human KDM4 histone demethylase family. Hillringhaus L, Yue WW, Rose NR, Ng SS, Gileadi C, Loenarz C, Bello SH, Bray JE, Schofield CJ, Oppermann U. J. Biol. Chem. 286 41616-41625 (2011)
  2. 5-Carboxy-8-hydroxyquinoline is a Broad Spectrum 2-Oxoglutarate Oxygenase Inhibitor which Causes Iron Translocation. Hopkinson RJ, Tumber A, Yapp C, Chowdhury R, Aik W, Che KH, Li XS, Kristensen JBL, King ONF, Chan MC, Yeoh KK, Choi H, Walport LJ, Thinnes CC, Bush JT, Lejeune C, Rydzik AM, Rose NR, Bagg EA, McDonough MA, Krojer T, Yue WW, Ng SS, Olsen L, Brennan PE, Oppermann U, Muller-Knapp S, Klose RJ, Ratcliffe PJ, Schofield CJ, Kawamura A. Chem Sci 4 3110-3117 (2013)
  3. Non-enzymatic chemistry enables 2-hydroxyglutarate-mediated activation of 2-oxoglutarate oxygenases. Tarhonskaya H, Rydzik AM, Leung IK, Loik ND, Chan MC, Kawamura A, McCullagh JS, Claridge TD, Flashman E, Schofield CJ. Nat Commun 5 3423 (2014)
  4. Reporter ligand NMR screening method for 2-oxoglutarate oxygenase inhibitors. Leung IK, Demetriades M, Hardy AP, Lejeune C, Smart TJ, Szöllössi A, Kawamura A, Schofield CJ, Claridge TD. J. Med. Chem. 56 547-555 (2013)
  5. Development and application of a fluoride-detection-based fluorescence assay for γ-butyrobetaine hydroxylase. Rydzik AM, Leung IK, Kochan GT, Thalhammer A, Oppermann U, Claridge TD, Schofield CJ. Chembiochem 13 1559-1563 (2012)
  6. Organophosphonate-degrading PhnZ reveals an emerging family of HD domain mixed-valent diiron oxygenases. Wörsdörfer B, Lingaraju M, Yennawar NH, Boal AK, Krebs C, Bollinger JM, Pandelia ME. Proc. Natl. Acad. Sci. U.S.A. 110 18874-18879 (2013)
  7. Control of histone H3 lysine 9 (H3K9) methylation state via cooperative two-step demethylation by Jumonji domain containing 1A (JMJD1A) homodimer. Goda S, Isagawa T, Chikaoka Y, Kawamura T, Aburatani H. J. Biol. Chem. 288 36948-36956 (2013)
  8. Crystal structure of a novel N-substituted L-amino acid dioxygenase from Burkholderia ambifaria AMMD. Qin HM, Miyakawa T, Jia MZ, Nakamura A, Ohtsuka J, Xue YL, Kawashima T, Kasahara T, Hibi M, Ogawa J, Tanokura M. PLoS ONE 8 e63996 (2013)
  9. Identification of BBOX1 as a Therapeutic Target in Triple-Negative Breast Cancer. Liao C, Zhang Y, Fan C, Herring LE, Liu J, Locasale JW, Takada M, Zhou J, Zurlo G, Hu L, Simon JM, Ptacek TS, Andrianov VG, Loza E, Peng Y, Yang H, Perou CM, Zhang Q. Cancer Discov 10 1706-1721 (2020)
  10. Distribution and prediction of catalytic domains in 2-oxoglutarate dependent dioxygenases. Kundu S. BMC Res Notes 5 410 (2012)
  11. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. Mol Inform 40 e2100028 (2021)
  12. Comparison of the substrate selectivity and biochemical properties of human and bacterial γ-butyrobetaine hydroxylase. Rydzik AM, Leung IK, Kochan GT, Loik ND, Henry L, McDonough MA, Claridge TD, Schofield CJ. Org. Biomol. Chem. 12 6354-6358 (2014)
  13. JMJD6 Is a Druggable Oxygenase That Regulates AR-V7 Expression in Prostate Cancer. Paschalis A, Welti J, Neeb AJ, Yuan W, Figueiredo I, Pereira R, Ferreira A, Riisnaes R, Rodrigues DN, Jiménez-Vacas JM, Kim S, Uo T, Micco PD, Tumber A, Islam MS, Moesser MA, Abboud M, Kawamura A, Gurel B, Christova R, Gil VS, Buroni L, Crespo M, Miranda S, Lambros MB, Carreira S, Tunariu N, Alimonti A, Al-Lazikani B, Schofield CJ, Plymate SR, Sharp A, de Bono JS, , SU2C/PCF International Prostate Cancer Dream Team. Cancer Res 81 1087-1100 (2021)
  14. Microbiome-derived carnitine mimics as previously unknown mediators of gut-brain axis communication. Hulme H, Meikle LM, Strittmatter N, van der Hooft JJJ, Swales J, Bragg RA, Villar VH, Ormsby MJ, Barnes S, Brown SL, Dexter A, Kamat MT, Komen JC, Walker D, Milling S, Osterweil EK, MacDonald AS, Schofield CJ, Tardito S, Bunch J, Douce G, Edgar JM, Edrada-Ebel R, Goodwin RJA, Burchmore R, Wall DM. Sci Adv 6 eaax6328 (2020)
  15. Substrate scope for trimethyllysine hydroxylase catalysis. Al Temimi AH, Pieters BJ, Reddy YV, White PB, Mecinović J. Chem. Commun. (Camb.) 52 12849-12852 (2016)
  16. Fluoromethylated derivatives of carnitine biosynthesis intermediates--synthesis and applications. Rydzik AM, Leung IK, Thalhammer A, Kochan GT, Claridge TD, Schofield CJ. Chem. Commun. (Camb.) 50 1175-1177 (2014)
  17. Human carnitine biosynthesis proceeds via (2S,3S)-3-hydroxy-Nε-trimethyllysine. Leśniak RK, Markolovic S, Tars K, Schofield CJ. Chem. Commun. (Camb.) 53 440-442 (2016)
  18. Studies on the Glutathione-Dependent Formaldehyde-Activating Enzyme from Paracoccus denitrificans. Hopkinson RJ, Leung IK, Smart TJ, Rose NR, Henry L, Claridge TD, Schofield CJ. PLoS ONE 10 e0145085 (2015)
  19. An Unusual Oxidative Rearrangement Catalyzed by a Divergent Member of the 2-Oxoglutarate-Dependent Dioxygenase Superfamily during Biosynthesis of Dehydrofosmidomycin. Parkinson EI, Lakkis HG, Alwali AA, Metcalf MEM, Modi R, Metcalf WW. Angew Chem Int Ed Engl 61 e202206173 (2022)
  20. Inhibitors of both the N-methyl lysyl- and arginyl-demethylase activities of the JmjC oxygenases. Bonnici J, Tumber A, Kawamura A, Schofield CJ. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 373 (2018)
  21. Synthesis of Novel Pyridine-Carboxylates as Small-Molecule Inhibitors of Human Aspartate/Asparagine-β-Hydroxylase. Brewitz L, Tumber A, Thalhammer A, Salah E, Christensen KE, Schofield CJ. ChemMedChem 15 1139-1149 (2020)
  22. Catalysis by the Non-Heme Iron(II) Histone Demethylase PHF8 Involves Iron Center Rearrangement and Conformational Modulation of Substrate Orientation. Chaturvedi SS, Ramanan R, Lehnert N, Schofield CJ, Karabencheva-Christova TG, Christov CZ. ACS Catal 10 1195-1209 (2020)
  23. Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase. Rydzik AM, Brem J, Struwe WB, Kochan GT, Benesch JL, Schofield CJ. Bioorg. Med. Chem. Lett. 24 4954-4957 (2014)
  24. Hypoxia induces DOT1L in articular cartilage to protect against osteoarthritis. De Roover A, Núñez AE, Cornelis FM, Cherifi C, Casas-Fraile L, Sermon A, Cailotto F, Lories RJ, Monteagudo S. JCI Insight 6 e150451 (2021)
  25. Mechanism of Methyldehydrofosmidomycin Maturation: Use Olefination to Enable Chain Elongation. Li X, Xue S, Guo Y, Chang WC. J Am Chem Soc 144 8257-8266 (2022)
  26. NMR analyses on N-hydroxymethylated nucleobases - implications for formaldehyde toxicity and nucleic acid demethylases. Shishodia S, Zhang D, El-Sagheer AH, Brown T, Claridge TDW, Schofield CJ, Hopkinson RJ. Org. Biomol. Chem. 16 4021-4032 (2018)
  27. A novel enzymatic rearrangement. Fujimori DG. Chem. Biol. 17 1269-1270 (2010)
  28. Binding versus Enzymatic Processing of ε-Trimethyllysine Dioxygenase Substrate Analogues. Zelencova-Gopejenko D, Grandane A, Loza E, Lola D, Sipola A, Liepinsh E, Arsenyan P, Jaudzems K. ACS Med Chem Lett 13 1723-1729 (2022)
  29. Biochemical and biophysical analyses of hypoxia sensing prolyl hydroxylases from Dictyostelium discoideum and Toxoplasma gondii. Liu T, Abboud MI, Chowdhury R, Tumber A, Hardy AP, Lippl K, Lohans CT, Pires E, Wickens J, McDonough MA, West CM, Schofield CJ. J Biol Chem 295 16545-16561 (2020)
  30. Buffalo milk and rumen fluid metabolome are significantly affected by green feed. Neglia G, Cotticelli A, Vassetti A, Matera R, Staropoli A, Vinale F, Salzano A, Campanile G. Sci Rep 13 1381 (2023)
  31. Chemoautotrophic production of gaseous hydrocarbons, bioplastics and osmolytes by a novel Halomonas species. Faulkner M, Hoeven R, Kelly PP, Sun Y, Park H, Liu LN, Toogood HS, Scrutton NS. Biotechnol Biofuels Bioprod 16 152 (2023)
  32. Development of NMR and thermal shift assays for the evaluation of Mycobacterium tuberculosis isocitrate lyase inhibitors. Bhusal RP, Patel K, Kwai BXC, Swartjes A, Bashiri G, Reynisson J, Sperry J, Leung IKH. Medchemcomm 8 2155-2163 (2017)
  33. Fluorinated trimethyllysine as a 19F NMR probe for trimethyllysine hydroxylase catalysis. Vijayendar Reddy Y, Al Temimi AH, Mecinović J. Org. Biomol. Chem. 15 1350-1354 (2017)
  34. Fosmidomycin biosynthesis diverges from related phosphonate natural products. Parkinson EI, Erb A, Eliot AC, Ju KS, Metcalf WW. Nat Chem Biol 15 1049-1056 (2019)
  35. Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes. Kaur S, Tam NY, McDonough MA, Schofield CJ, Aik WS. Nucleic Acids Res 50 4148-4160 (2022)
  36. The Discovery of Highly Potent THP Derivatives as OCTN2 Inhibitors: From Structure-Based Virtual Screening to In Vivo Biological Activity. Di Cristo F, Calarco A, Digilio FA, Sinicropi MS, Rosano C, Galderisi U, Melone MAB, Saturnino C, Peluso G. Int J Mol Sci 21 E7431 (2020)