3nyl Citations

The X-ray structure of an antiparallel dimer of the human amyloid precursor protein E2 domain.

Mol Cell 15 343-53 (2004)
Cited: 92 times
EuropePMC logo PMID: 15304215

Abstract

Amyloid beta-peptide, which forms neuronal and vascular amyloid deposits in Alzheimer's disease, is derived from an integral membrane protein precursor. The biological function of the precursor is currently unclear. Here we describe the X-ray structure of E2, the largest of the three conserved domains of the precursor. The structure of E2 consists of two coiled-coil substructures connected through a continuous helix and bears an unexpected resemblance to the spectrin family of protein structures. E2 can reversibly dimerize in the solution, and the dimerization occurs along the longest dimension of the molecule in an antiparallel orientation, which enables the N-terminal substructure of one monomer to pack against the C-terminal substructure of a second monomer. Heparan sulfate proteoglycans, the putative ligand for the precursor present in extracellular matrix, bind to E2 at a conserved and positively charged site near the dimer interface.

Reviews - 3nyl mentioned but not cited (1)

  1. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)

Articles - 3nyl mentioned but not cited (5)

  1. The E2 domains of APP and APLP1 share a conserved mode of dimerization. Lee S, Xue Y, Hu J, Wang Y, Liu X, Demeler B, Ha Y. Biochemistry 50 5453-5464 (2011)
  2. Analysis of the overall structure of the multi-domain amyloid precursor protein (APP). Coburger I, Dahms SO, Roeser D, Gührs KH, Hortschansky P, Than ME. PLoS ONE 8 e81926 (2013)
  3. TIMP-1 is a novel ligand of Amyloid Precursor Protein and triggers a proinflammatory phenotype in human monocytes. Eckfeld C, Schoeps B, Häußler D, Frädrich J, Bayerl F, Böttcher JP, Knolle P, Heisz S, Prokopchuk O, Hauner H, Munkhbaatar E, Demir IE, Hermann CD, Krüger A. J Cell Biol 222 e202206095 (2023)
  4. From EST to structure models for functional inference of APP, BACE1, PSEN1, PSEN2 genes. Aathi M, Piramanayagam S. Bioinformation 15 760-771 (2019)
  5. Packing Density of the Amyloid Precursor Protein in the Cell Membrane. de Coninck D, Schmidt TH, Schloetel JG, Lang T. Biophys. J. 114 1128-1141 (2018)


Reviews citing this publication (31)

  1. APP processing in Alzheimer's disease. Zhang YW, Thompson R, Zhang H, Xu H. Mol Brain 4 3 (2011)
  2. Alzheimer's disease as homeostatic responses to age-related myelin breakdown. Bartzokis G. Neurobiol. Aging 32 1341-1371 (2011)
  3. The amyloid-beta precursor protein: integrating structure with biological function. Reinhard C, Hébert SS, Hébert SS, De Strooper B. EMBO J. 24 3996-4006 (2005)
  4. Proteolytic processing of Alzheimer's β-amyloid precursor protein. Zhang H, Ma Q, Zhang YW, Xu H. J. Neurochem. 120 Suppl 1 9-21 (2012)
  5. Physiological functions of APP family proteins. Müller UC, Zheng H. Cold Spring Harb Perspect Med 2 a006288 (2012)
  6. Molecular mechanisms for Alzheimer's disease: implications for neuroimaging and therapeutics. Masters CL, Cappai R, Barnham KJ, Villemagne VL. J. Neurochem. 97 1700-1725 (2006)
  7. Structure and functions of the human amyloid precursor protein: the whole is more than the sum of its parts. Gralle M, Ferreira ST. Prog. Neurobiol. 82 11-32 (2007)
  8. Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Jacobsen KT, Iverfeldt K. Cell. Mol. Life Sci. 66 2299-2318 (2009)
  9. Toward structural elucidation of the gamma-secretase complex. Li H, Wolfe MS, Selkoe DJ. Structure 17 326-334 (2009)
  10. APP Receptor? To Be or Not To Be. Deyts C, Thinakaran G, Parent AT. Trends Pharmacol. Sci. 37 390-411 (2016)
  11. The Neuroprotective Properties of the Amyloid Precursor Protein Following Traumatic Brain Injury. Plummer S, Van den Heuvel C, Thornton E, Corrigan F, Cappai R. Aging Dis 7 163-179 (2016)
  12. Copper binding to the Alzheimer's disease amyloid precursor protein. Kong GK, Miles LA, Crespi GA, Morton CJ, Ng HL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. Eur. Biophys. J. 37 269-279 (2008)
  13. Understanding the molecular basis of Alzheimer's disease using a Caenorhabditis elegans model system. Ewald CY, Li C. Brain Struct Funct 214 263-283 (2010)
  14. Structural aspects and physiological consequences of APP/APLP trans-dimerization. Baumkötter F, Wagner K, Eggert S, Wild K, Kins S. Exp Brain Res 217 389-395 (2012)
  15. Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Bignante EA, Heredia F, Morfini G, Lorenzo A. Neurobiol. Aging 34 2525-2537 (2013)
  16. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Arbor SC, LaFontaine M, Cumbay M. Yale J Biol Med 89 5-21 (2016)
  17. Restoring Soluble Amyloid Precursor Protein α Functions as a Potential Treatment for Alzheimer's Disease. Habib A, Sawmiller D, Tan J. J. Neurosci. Res. 95 973-991 (2017)
  18. Amyloid precursor protein and BACE function as oligomers. Multhaup G. Neurodegener Dis 3 270-274 (2006)
  19. Caenorhabditis elegans as a model organism to study APP function. Ewald CY, Li C. Exp Brain Res 217 397-411 (2012)
  20. Regulation of the alternative β-secretase meprin β by ADAM-mediated shedding. Scharfenberg F, Armbrust F, Marengo L, Pietrzik C, Becker-Pauly C. Cell Mol Life Sci 76 3193-3206 (2019)
  21. Trafficking in neurons: searching for new targets for Alzheimer's disease future therapies. Musardo S, Saraceno C, Pelucchi S, Marcello E. Eur. J. Pharmacol. 719 84-106 (2013)
  22. γ-Secretase-regulated mechanisms similar to notch signaling may play a role in signaling events, including APP signaling, which leads to Alzheimer's disease. Nakayama K, Nagase H, Koh CS, Ohkawara T. Cell. Mol. Neurobiol. 31 887-900 (2011)
  23. Small things matter: Implications of APP intracellular domain AICD nuclear signaling in the progression and pathogenesis of Alzheimer's disease. Bukhari H, Glotzbach A, Kolbe K, Leonhardt G, Loosse C, Müller T. Prog. Neurobiol. 156 189-213 (2017)
  24. The Metalloprotease Meprin β Is an Alternative β-Secretase of APP. Becker-Pauly C, Pietrzik CU. Front Mol Neurosci 9 159 (2016)
  25. Structural Determinant of β-Amyloid Formation: From Transmembrane Protein Dimerization to β-Amyloid Aggregates. Papadopoulos N, Suelves N, Perrin F, Vadukul DM, Vrancx C, Constantinescu SN, Kienlen-Campard P. Biomedicines 10 2753 (2022)
  26. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer's disease and normal physiology. Pfundstein G, Nikonenko AG, Sytnyk V. Front Cell Dev Biol 10 969547 (2022)
  27. Amyloidogenicity at a Distance: How Distal Protein Regions Modulate Aggregation in Disease. Lucato CM, Lupton CJ, Halls ML, Ellisdon AM. J. Mol. Biol. 429 1289-1304 (2017)
  28. Soluble amyloid precursor protein 770 is a novel biomarker candidate for acute coronary syndrome. Kitazume S, Yoshihisa A, Yamaki T, Oikawa M, Tachida Y, Ogawa K, Imamaki R, Takeishi Y, Yamamoto N, Taniguchi N. Proteomics Clin Appl 7 657-663 (2013)
  29. Cholesterol-dependent amyloid β production: space for multifarious interactions between amyloid precursor protein, secretases, and cholesterol. Rudajev V, Novotny J. Cell Biosci 13 171 (2023)
  30. High resolution approaches for the identification of amyloid fragments in brain. Ross JA, Mathews PM, Van Bockstaele EJ. J Neurosci Methods 319 7-15 (2019)
  31. Structural biology of cell surface receptors implicated in Alzheimer's disease. Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Biophys Rev 14 233-255 (2022)

Articles citing this publication (55)

  1. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer's disease. Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA, Cho HH, Galatis D, Moir RD, Masters CL, McLean C, Tanzi RE, Cappai R, Barnham KJ, Ciccotosto GD, Rogers JT, Bush AI. Cell 142 857-867 (2010)
  2. GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of Abeta42. Munter LM, Voigt P, Harmeier A, Kaden D, Gottschalk KE, Weise C, Pipkorn R, Schaefer M, Langosch D, Multhaup G. EMBO J. 26 1702-1712 (2007)
  3. Homo- and heterodimerization of APP family members promotes intercellular adhesion. Soba P, Eggert S, Wagner K, Zentgraf H, Siehl K, Kreger S, Löwer A, Langer A, Merdes G, Paro R, Masters CL, Müller U, Kins S, Beyreuther K. EMBO J. 24 3624-3634 (2005)
  4. The amyloid precursor protein: beyond amyloid. Zheng H, Koo EH. Mol Neurodegener 1 5 (2006)
  5. Presynaptic and postsynaptic interaction of the amyloid precursor protein promotes peripheral and central synaptogenesis. Wang Z, Wang B, Yang L, Guo Q, Aithmitti N, Songyang Z, Zheng H. J. Neurosci. 29 10788-10801 (2009)
  6. Biology and pathophysiology of the amyloid precursor protein. Zheng H, Koo EH. Mol Neurodegener 6 27 (2011)
  7. Structural studies of the transmembrane C-terminal domain of the amyloid precursor protein (APP): does APP function as a cholesterol sensor? Beel AJ, Mobley CK, Kim HJ, Tian F, Hadziselimovic A, Jap B, Prestegard JH, Sanders CR. Biochemistry 47 9428-9446 (2008)
  8. Abeta induces cell death by direct interaction with its cognate extracellular domain on APP (APP 597-624). Shaked GM, Kummer MP, Lu DC, Galvan V, Bredesen DE, Koo EH. FASEB J. 20 1254-1256 (2006)
  9. Neuroprotective secreted amyloid precursor protein acts by disrupting amyloid precursor protein dimers. Gralle M, Botelho MG, Wouters FS. J. Biol. Chem. 284 15016-15025 (2009)
  10. APL-1, a Caenorhabditis elegans protein related to the human beta-amyloid precursor protein, is essential for viability. Hornsten A, Lieberthal J, Fadia S, Malins R, Ha L, Xu X, Daigle I, Markowitz M, O'Connor G, Plasterk R, Li C. Proc. Natl. Acad. Sci. U.S.A. 104 1971-1976 (2007)
  11. Amyloid beta 42 peptide (Abeta42)-lowering compounds directly bind to Abeta and interfere with amyloid precursor protein (APP) transmembrane dimerization. Richter L, Munter LM, Ness J, Hildebrand PW, Dasari M, Unterreitmeier S, Bulic B, Beyermann M, Gust R, Reif B, Weggen S, Langosch D, Multhaup G. Proc. Natl. Acad. Sci. U.S.A. 107 14597-14602 (2010)
  12. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Suh J, Choi SH, Romano DM, Gannon MA, Lesinski AN, Kim DY, Tanzi RE. Neuron 80 385-401 (2013)
  13. Homophilic interactions of the amyloid precursor protein (APP) ectodomain are regulated by the loop region and affect beta-secretase cleavage of APP. Kaden D, Munter LM, Joshi M, Treiber C, Weise C, Bethge T, Voigt P, Schaefer M, Beyermann M, Reif B, Multhaup G. J Biol Chem 283 7271-7279 (2008)
  14. Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer's disease. Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, Multhaup G. J. Biol. Chem. 279 51958-51964 (2004)
  15. Structure and biochemical analysis of the heparin-induced E1 dimer of the amyloid precursor protein. Dahms SO, Hoefgen S, Roeser D, Schlott B, Gührs KH, Than ME. Proc. Natl. Acad. Sci. U.S.A. 107 5381-5386 (2010)
  16. Induced dimerization of the amyloid precursor protein leads to decreased amyloid-beta protein production. Eggert S, Midthune B, Cottrell B, Koo EH. J. Biol. Chem. 284 28943-28952 (2009)
  17. Quantitative modelling of amyloidogenic processing and its influence by SORLA in Alzheimer's disease. Schmidt V, Baum K, Lao A, Rateitschak K, Schmitz Y, Teichmann A, Wiesner B, Petersen CM, Nykjaer A, Wolf J, Wolkenhauer O, Willnow TE. EMBO J. 31 187-200 (2012)
  18. Aberrant amyloid precursor protein (APP) processing in hereditary forms of Alzheimer disease caused by APP familial Alzheimer disease mutations can be rescued by mutations in the APP GxxxG motif. Munter LM, Botev A, Richter L, Hildebrand PW, Althoff V, Weise C, Kaden D, Multhaup G. J. Biol. Chem. 285 21636-21643 (2010)
  19. Structural studies of the Alzheimer's amyloid precursor protein copper-binding domain reveal how it binds copper ions. Kong GK, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW. J. Mol. Biol. 367 148-161 (2007)
  20. The neuroprotective domains of the amyloid precursor protein, in traumatic brain injury, are located in the two growth factor domains. Corrigan F, Pham CL, Vink R, Blumbergs PC, Masters CL, van den Heuvel C, Cappai R. Brain Res. 1378 137-143 (2011)
  21. Metal binding dictates conformation and function of the amyloid precursor protein (APP) E2 domain. Dahms SO, Könnig I, Roeser D, Gührs KH, Mayer MC, Kaden D, Multhaup G, Than ME. J. Mol. Biol. 416 438-452 (2012)
  22. Brain endothelial cells produce amyloid {beta} from amyloid precursor protein 770 and preferentially secrete the O-glycosylated form. Kitazume S, Tachida Y, Kato M, Yamaguchi Y, Honda T, Hashimoto Y, Wada Y, Saito T, Iwata N, Saido T, Taniguchi N. J. Biol. Chem. 285 40097-40103 (2010)
  23. Solution conformation and heparin-induced dimerization of the full-length extracellular domain of the human amyloid precursor protein. Gralle M, Oliveira CL, Guerreiro LH, McKinstry WJ, Galatis D, Masters CL, Cappai R, Parker MW, Ramos CH, Torriani I, Ferreira ST. J. Mol. Biol. 357 493-508 (2006)
  24. Visualization of APP dimerization and APP-Notch2 heterodimerization in living cells using bimolecular fluorescence complementation. Chen CD, Oh SY, Hinman JD, Abraham CR. J. Neurochem. 97 30-43 (2006)
  25. Dimerization of the transmembrane domain of amyloid precursor proteins and familial Alzheimer's disease mutants. Gorman PM, Kim S, Guo M, Melnyk RA, McLaurin J, Fraser PE, Bowie JU, Chakrabartty A. BMC Neurosci 9 17 (2008)
  26. Amyloid precursor protein dimerization and synaptogenic function depend on copper binding to the growth factor-like domain. Baumkötter F, Schmidt N, Vargas C, Schilling S, Weber R, Wagner K, Fiedler S, Klug W, Radzimanowski J, Nickolaus S, Keller S, Eggert S, Wild K, Kins S. J. Neurosci. 34 11159-11172 (2014)
  27. beta-amyloid precursor protein can be transported independent of any sorting signal to the axonal and dendritic compartment. Back S, Haas P, Tschäpe JA, Gruebl T, Kirsch J, Müller U, Beyreuther K, Kins S. J. Neurosci. Res. 85 2580-2590 (2007)
  28. Amyloid precursor protein cross-linking stimulates beta amyloid production and pro-inflammatory cytokine release in monocytic lineage cells. Sondag CM, Combs CK. J. Neurochem. 97 449-461 (2006)
  29. Structural features of the KPI domain control APP dimerization, trafficking, and processing. Ben Khalifa N, Tyteca D, Marinangeli C, Depuydt M, Collet JF, Courtoy PJ, Renauld JC, Constantinescu S, Octave JN, Kienlen-Campard P. FASEB J. 26 855-867 (2012)
  30. Cross-linking of cell surface amyloid precursor protein leads to increased β-amyloid peptide production in hippocampal neurons: implications for Alzheimer's disease. Lefort R, Pozueta J, Shelanski M. J. Neurosci. 32 10674-10685 (2012)
  31. The "CPC clip motif": a conserved structural signature for heparin-binding proteins. Torrent M, Nogués MV, Andreu D, Boix E. PLoS ONE 7 e42692 (2012)
  32. APP dimer formation is initiated in the endoplasmic reticulum and differs between APP isoforms. Isbert S, Wagner K, Eggert S, Schweitzer A, Multhaup G, Weggen S, Kins S, Pietrzik CU. Cell. Mol. Life Sci. 69 1353-1375 (2012)
  33. N-cadherin enhances APP dimerization at the extracellular domain and modulates Aβ production. Asada-Utsugi M, Uemura K, Noda Y, Kuzuya A, Maesako M, Ando K, Kubota M, Watanabe K, Takahashi M, Kihara T, Shimohama S, Takahashi R, Berezovska O, Kinoshita A. J. Neurochem. 119 354-363 (2011)
  34. Amyloid precursor protein mediates a tyrosine kinase-dependent activation response in endothelial cells. Austin SA, Sens MA, Combs CK. J. Neurosci. 29 14451-14462 (2009)
  35. Crystal structure of amyloid precursor-like protein 1 and heparin complex suggests a dual role of heparin in E2 dimerization. Xue Y, Lee S, Ha Y. Proc. Natl. Acad. Sci. U.S.A. 108 16229-16234 (2011)
  36. Structural characterization of the E2 domain of APL-1, a Caenorhabditis elegans homolog of human amyloid precursor protein, and its heparin binding site. Hoopes JT, Liu X, Xu X, Demeler B, Folta-Stogniew E, Li C, Ha Y. J. Biol. Chem. 285 2165-2173 (2010)
  37. Lowering of amyloid beta peptide production with a small molecule inhibitor of amyloid-β precursor protein dimerization. So PP, Zeldich E, Seyb KI, Huang MM, Concannon JB, King GD, Chen CD, Cuny GD, Glicksman MA, Abraham CR. Am J Neurodegener Dis 1 75-87 (2012)
  38. What is the role of amyloid precursor protein dimerization? Khalifa NB, Van Hees J, Tasiaux B, Huysseune S, Smith SO, Constantinescu SN, Octave JN, Kienlen-Campard P. Cell Adh Migr 4 268-272 (2010)
  39. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP) does not catalytically oxidize iron. Ebrahimi KH, Hagedoorn PL, Hagen WR. PLoS ONE 7 e40287 (2012)
  40. Amyloid precursor protein mediates monocyte adhesion in AD tissue and apoE(-)/(-) mice. Austin SA, Combs CK. Neurobiol. Aging 31 1854-1866 (2010)
  41. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Laulagnier K, Javalet C, Hemming FJ, Chivet M, Lachenal G, Blot B, Chatellard C, Sadoul R. Cell. Mol. Life Sci. 75 757-773 (2018)
  42. Heparin induced dimerization of APP is primarily mediated by E1 and regulated by its acidic domain. Hoefgen S, Coburger I, Roeser D, Schaub Y, Dahms SO, Than ME. J. Struct. Biol. 187 30-37 (2014)
  43. The crystal structure of the heparin-binding reelin-N domain of f-spondin. Tan K, Duquette M, Liu JH, Lawler J, Wang JH. J. Mol. Biol. 381 1213-1223 (2008)
  44. Altering APP proteolysis: increasing sAPPalpha production by targeting dimerization of the APP ectodomain. Libeu CA, Descamps O, Zhang Q, John V, Bredesen DE. PLoS ONE 7 e40027 (2012)
  45. Crystal structure of the E2 domain of amyloid precursor protein-like protein 1 in complex with sucrose octasulfate. Xue Y, Lee S, Wang Y, Ha Y. J. Biol. Chem. 286 29748-29757 (2011)
  46. Novel zinc-binding site in the E2 domain regulates amyloid precursor-like protein 1 (APLP1) oligomerization. Mayer MC, Kaden D, Schauenburg L, Hancock MA, Voigt P, Roeser D, Barucker C, Than ME, Schaefer M, Multhaup G. J. Biol. Chem. 289 19019-19030 (2014)
  47. The amyloid precursor protein forms plasmalemmal clusters via its pathogenic amyloid-β domain. Schreiber A, Fischer S, Lang T. Biophys. J. 102 1411-1417 (2012)
  48. The amyloid precursor protein shows a pH-dependent conformational switch in its E1 domain. Hoefgen S, Dahms SO, Oertwig K, Than ME. J. Mol. Biol. 427 433-442 (2015)
  49. The crystal structure of DR6 in complex with the amyloid precursor protein provides insight into death receptor activation. Xu K, Olsen O, Tzvetkova-Robev D, Tessier-Lavigne M, Nikolov DB. Genes Dev. 29 785-790 (2015)
  50. Structural and functional alterations in amyloid-β precursor protein induced by amyloid-β peptides. Libeu CP, Poksay KS, John V, Bredesen DE. J. Alzheimers Dis. 25 547-566 (2011)
  51. A comparative analysis of resonance energy transfer methods for Alzheimer related protein-protein interactions in living cells. Kim J, Lee J, Kwon D, Lee H, Grailhe R. Mol Biosyst 7 2991-2996 (2011)
  52. Comparable dimerization found in wildtype and familial Alzheimer's disease amyloid precursor protein mutants. So PP, Khodr CE, Chen CD, Abraham CR. Am J Neurodegener Dis 2 15-28 (2013)
  53. Peptides of presenilin-1 bind the amyloid precursor protein ectodomain and offer a novel and specific therapeutic approach to reduce ß-amyloid in Alzheimer's disease. Dewji NN, Singer SJ, Masliah E, Rockenstein E, Kim M, Harber M, Horwood T. PLoS ONE 10 e0122451 (2015)
  54. APP family member dimeric complexes are formed predominantly in synaptic compartments. Schilling S, August A, Meleux M, Conradt C, Tremmel LM, Teigler S, Adam V, Müller UC, Koo EH, Kins S, Eggert S. Cell Biosci 13 141 (2023)
  55. Peptide Interference with APP and Tau Association: Relevance to Alzheimer's Disease Amelioration. Maron R, Armony G, Tsoory M, Wilchek M, Frenkel D, Arnon R. Int J Mol Sci 21 (2020)