3mdd Citations

Crystal structures of medium-chain acyl-CoA dehydrogenase from pig liver mitochondria with and without substrate.

Proc Natl Acad Sci U S A 90 7523-7 (1993)
Cited: 151 times
EuropePMC logo PMID: 8356049

Abstract

The three-dimensional structure of medium-chain acyl-CoA dehydrogenase from pig mitochondria in the native form and that of a complex of the enzyme and a substrate (product) have been solved and refined by x-ray crystallographic methods at 2.4-A resolution to R factors of 0.172 and 0.173, respectively. The overall polypeptide folding and the quaternary structure of the tetramer are essentially unchanged upon binding of the ligand, octanoyl (octenoyl)-CoA. The ligand binds to the enzyme at the rectus (re) face of the FAD in the crevice between the two alpha-helix domains and the beta-sheet domain of the enzyme. The fatty acyl chain of the thioester substrate is buried inside of the polypeptide and the 3'-AMP moiety is close to the surface of the tetrameric enzyme molecule. The alkyl chain displaces the tightly bound water molecules found in the native enzyme and the carbonyl oxygen of the thioester interacts with the ribityl 2'-hydroxyl group of the FAD and the main-chain carbonyl oxygen of Glu-376. The C alpha--C beta of the fatty acyl moiety lies between the flavin and the gamma-carboxylate of Glu-376, supporting the role of Glu-376 as the base that abstracts the alpha proton in the alpha--beta dehydrogenation reaction catalyzed by the enzyme. Trp-166 and Met-165 are located at the sinister (si) side of the flavin ring at the surface of the enzyme, suggesting that they might be involved in the interactions with electron transferring flavoprotein. Lys-304, the prevalent mutation site found in patients with medium-chain acyl-CoA dehydrogenase deficiency, is located approximately 20 A away from the active site of the enzyme.

Reviews - 3mdd mentioned but not cited (1)

  1. Innovation and tinkering in the evolution of oxidases. Jabłońska J, Tawfik DS. Protein Sci 31 e4310 (2022)

Articles - 3mdd mentioned but not cited (7)

  1. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. de Souza SJ, Long M, Klein RJ, Roy S, Lin S, Gilbert W. Proc. Natl. Acad. Sci. U.S.A. 95 5094-5099 (1998)
  2. Intron positions correlate with module boundaries in ancient proteins. de Souza SJ, Long M, Schoenbach L, Roy SW, Gilbert W. Proc Natl Acad Sci U S A 93 14632-14636 (1996)
  3. Acyl-CoA dehydrogenases: Dynamic history of protein family evolution. Swigonová Z, Mohsen AW, Vockley J. J. Mol. Evol. 69 176-193 (2009)
  4. Combined quantum mechanical and molecular mechanical simulations of one- and two-electron reduction potentials of flavin cofactor in water, medium-chain acyl-CoA dehydrogenase, and cholesterol oxidase. Bhattacharyya S, Stankovich MT, Truhlar DG, Gao J. J Phys Chem A 111 5729-5742 (2007)
  5. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus. Chang CY, Lohman JR, Cao H, Tan K, Rudolf JD, Ma M, Xu W, Bingman CA, Yennamalli RM, Bigelow L, Babnigg G, Yan X, Joachimiak A, Phillips GN, Shen B. Biochemistry 55 5142-5154 (2016)
  6. Structural basis for the broad substrate specificity of two acyl-CoA dehydrogenases FadE5 from mycobacteria. Chen X, Chen J, Yan B, Zhang W, Guddat LW, Liu X, Rao Z. Proc Natl Acad Sci U S A 117 16324-16332 (2020)
  7. 3-Sulfinopropionyl-coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis DPN7(T): crystal structure and function of a desulfinase with an acyl-CoA dehydrogenase fold. Schürmann M, Meijers R, Schneider TR, Steinbüchel A, Cianci M. Acta Crystallogr. D Biol. Crystallogr. 71 1360-1372 (2015)


Reviews citing this publication (15)

  1. Acyl-CoA dehydrogenases. A mechanistic overview. Ghisla S, Thorpe C. Eur. J. Biochem. 271 494-508 (2004)
  2. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Mattevi A. Trends Biochem. Sci. 31 276-283 (2006)
  3. Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Munro AW, Girvan HM, McLean KJ. Nat Prod Rep 24 585-609 (2007)
  4. Acyl-CoA dehydrogenases and acyl-CoA oxidases. Structural basis for mechanistic similarities and differences. Kim JJ, Miura R. Eur. J. Biochem. 271 483-493 (2004)
  5. The diverse roles of flavin coenzymes--nature's most versatile thespians. Mansoorabadi SO, Thibodeaux CJ, Liu HW. J. Org. Chem. 72 6329-6342 (2007)
  6. Enzymatic chemistry of cyclopropane, epoxide, and aziridine biosynthesis. Thibodeaux CJ, Chang WC, Liu HW. Chem. Rev. 112 1681-1709 (2012)
  7. Versatility and specificity in flavoenzymes: control mechanisms of flavin reactivity. Miura R. Chem Rec 1 183-194 (2001)
  8. Nitroalkane oxidase, a carbanion-forming flavoprotein homologous to acyl-CoA dehydrogenase. Fitzpatrick PF, Orville AM, Nagpal A, Valley MP. Arch. Biochem. Biophys. 433 157-165 (2005)
  9. Structure and function of plant acyl-CoA oxidases. Arent S, Pye VE, Henriksen A. Plant Physiol. Biochem. 46 292-301 (2008)
  10. Structure of D-amino acid oxidase: new insights from an old enzyme. Mattevi A, Vanoni MA, Curti B. Curr. Opin. Struct. Biol. 7 804-810 (1997)
  11. Two crystal structures of N-acetyltransferases reveal a new fold for CoA-dependent enzymes. Modis Y, Wierenga R. Structure 6 1345-1350 (1998)
  12. Structure/function of medium chain acyl-CoA dehydrogenase: the importance of substrate polarization. Stankovich MT, Sabaj KM, Tonge PJ. Arch. Biochem. Biophys. 370 16-21 (1999)
  13. Disturbed bovine mitochondrial lipid metabolism: a review. Han van der Kolk JH, Gross JJ, Gerber V, Bruckmaier RM. Vet Q 37 262-273 (2017)
  14. Newborn screening: After the thrill is gone. Vockley J. Mol. Genet. Metab. 92 6-12 (2007)
  15. Nitroalkane oxidase: Structure and mechanism. Fitzpatrick PF. Arch. Biochem. Biophys. 632 41-46 (2017)

Articles citing this publication (128)

  1. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency. Goyette P, Frosst P, Rosenblatt DS, Rozen R. Am. J. Hum. Genet. 56 1052-1059 (1995)
  2. Medium-chain acyl-CoA dehydrogenase (MCAD) mutations identified by MS/MS-based prospective screening of newborns differ from those observed in patients with clinical symptoms: identification and characterization of a new, prevalent mutation that results in mild MCAD deficiency. Andresen BS, Dobrowolski SF, O'Reilly L, Muenzer J, McCandless SE, Frazier DM, Udvari S, Bross P, Knudsen I, Banas R, Chace DH, Engel P, Naylor EW, Gregersen N. Am. J. Hum. Genet. 68 1408-1418 (2001)
  3. Conversion of L-proline to pyrrolyl-2-carboxyl-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Thomas MG, Burkart MD, Walsh CT. Chem. Biol. 9 171-184 (2002)
  4. Characterization of the desulfurization genes from Rhodococcus sp. strain IGTS8. Denome SA, Oldfield C, Nash LJ, Young KD. J. Bacteriol. 176 6707-6716 (1994)
  5. Molecular basis of human mitochondrial very-long-chain acyl-CoA dehydrogenase deficiency causing cardiomyopathy and sudden death in childhood. Strauss AW, Powell CK, Hale DE, Anderson MM, Ahuja A, Brackett JC, Sims HF. Proc. Natl. Acad. Sci. U.S.A. 92 10496-10500 (1995)
  6. Genetic dissection of tropodithietic acid biosynthesis by marine roseobacters. Geng H, Bruhn JB, Nielsen KF, Gram L, Belas R. Appl. Environ. Microbiol. 74 1535-1545 (2008)
  7. Molecular heterogeneity in very-long-chain acyl-CoA dehydrogenase deficiency causing pediatric cardiomyopathy and sudden death. Mathur A, Sims HF, Gopalakrishnan D, Gibson B, Rinaldo P, Vockley J, Hug G, Strauss AW. Circulation 99 1337-1343 (1999)
  8. Crystal structures and inhibitor binding in the octameric flavoenzyme vanillyl-alcohol oxidase: the shape of the active-site cavity controls substrate specificity. Mattevi A, Fraaije MW, Mozzarelli A, Olivi L, Coda A, van Berkel WJ. Structure 5 907-920 (1997)
  9. Three-dimensional structure of human electron transfer flavoprotein to 2.1-A resolution. Roberts DL, Frerman FE, Kim JJ. Proc. Natl. Acad. Sci. U.S.A. 93 14355-14360 (1996)
  10. The molecular basis of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in compound heterozygous patients: is there correlation between genotype and phenotype? Andresen BS, Bross P, Udvari S, Kirk J, Gray G, Kmoch S, Chamoles N, Knudsen I, Winter V, Wilcken B, Yokota I, Hart K, Packman S, Harpey JP, Saudubray JM, Hale DE, Bolund L, Kølvraa S, Gregersen N. Hum. Mol. Genet. 6 695-707 (1997)
  11. Glutaryl-CoA dehydrogenase deficiency in Spain: evidence of two groups of patients, genetically, and biochemically distinct. Busquets C, Merinero B, Christensen E, Gelpí JL, Campistol J, Pineda M, Fernández-Alvarez E, Prats JM, Sans A, Arteaga R, Martí M, Campos J, Martínez-Pardo M, Martínez-Bermejo A, Ruiz-Falcó ML, Vaquerizo J, Orozco M, Ugarte M, Coll MJ, Ribes A. Pediatr. Res. 48 315-322 (2000)
  12. Cloning, sequencing, and expression of clustered genes encoding beta-hydroxybutyryl-coenzyme A (CoA) dehydrogenase, crotonase, and butyryl-CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Boynton ZL, Bennet GN, Rudolph FB. J. Bacteriol. 178 3015-3024 (1996)
  13. MS/MS-based newborn and family screening detects asymptomatic patients with very-long-chain acyl-CoA dehydrogenase deficiency. Spiekerkoetter U, Sun B, Zytkovicz T, Wanders R, Strauss AW, Wendel U. J. Pediatr. 143 335-342 (2003)
  14. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. Hanley PJ, Gopalan KV, Lareau RA, Srivastava DK, von Meltzer M, Daut J. J. Physiol. (Lond.) 547 387-393 (2003)
  15. Effects of two mutations detected in medium chain acyl-CoA dehydrogenase (MCAD)-deficient patients on folding, oligomer assembly, and stability of MCAD enzyme. Bross P, Jespersen C, Jensen TG, Andresen BS, Kristensen MJ, Winter V, Nandy A, Kräutle F, Ghisla S, Bolundi L. J. Biol. Chem. 270 10284-10290 (1995)
  16. Ethylmalonic aciduria is associated with an amino acid variant of short chain acyl-coenzyme A dehydrogenase. Corydon MJ, Gregersen N, Lehnert W, Ribes A, Rinaldo P, Kmoch S, Christensen E, Kristensen TJ, Andresen BS, Bross P, Winter V, Martinez G, Neve S, Jensen TG, Bolund L, Kølvraa S. Pediatr. Res. 39 1059-1066 (1996)
  17. The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity. Izard T, Geerlof A. EMBO J. 18 2021-2030 (1999)
  18. Gene structure and mutations of glutaryl-coenzyme A dehydrogenase: impaired association of enzyme subunits that is due to an A421V substitution causes glutaric acidemia type I in the Amish. Biery BJ, Stein DE, Morton DH, Goodman SI. Am. J. Hum. Genet. 59 1006-1011 (1996)
  19. Structures of beta-ketoacyl-acyl carrier protein synthase I complexed with fatty acids elucidate its catalytic machinery. Olsen JG, Kadziola A, von Wettstein-Knowles P, Siggaard-Andersen M, Larsen S. Structure 9 233-243 (2001)
  20. Human acyl-CoA dehydrogenase-9 plays a novel role in the mitochondrial beta-oxidation of unsaturated fatty acids. Ensenauer R, He M, Willard JM, Goetzman ES, Corydon TJ, Vandahl BB, Mohsen AW, Isaya G, Vockley J. J Biol Chem 280 32309-32316 (2005)
  21. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X. Biochem. Biophys. Res. Commun. 297 1033-1042 (2002)
  22. (2S)-Methylsuccinyl-CoA dehydrogenase closes the ethylmalonyl-CoA pathway for acetyl-CoA assimilation. Erb TJ, Fuchs G, Alber BE. Mol. Microbiol. 73 992-1008 (2009)
  23. Crystal structure of 4-hydroxybutyryl-CoA dehydratase: radical catalysis involving a [4Fe-4S] cluster and flavin. Martins BM, Dobbek H, Cinkaya I, Buckel W, Messerschmidt A. Proc. Natl. Acad. Sci. U.S.A. 101 15645-15649 (2004)
  24. Crystal structure of rat short chain acyl-CoA dehydrogenase complexed with acetoacetyl-CoA: comparison with other acyl-CoA dehydrogenases. Battaile KP, Molin-Case J, Paschke R, Wang M, Bennett D, Vockley J, Kim JJ. J. Biol. Chem. 277 12200-12207 (2002)
  25. Genetic basis for correction of very-long-chain acyl-coenzyme A dehydrogenase deficiency by bezafibrate in patient fibroblasts: toward a genotype-based therapy. Gobin-Limballe S, Djouadi F, Aubey F, Olpin S, Andresen BS, Yamaguchi S, Mandel H, Fukao T, Ruiter JP, Wanders RJ, McAndrew R, Kim JJ, Bastin J. Am. J. Hum. Genet. 81 1133-1143 (2007)
  26. Very long chain acyl-coenzyme A dehydrogenase deficiency with adult onset. Smelt AH, Poorthuis BJ, Onkenhout W, Scholte HR, Andresen BS, van Duinen SG, Gregersen N, Wintzen AR. Ann. Neurol. 43 540-544 (1998)
  27. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Liavonchanka A, Hornung E, Feussner I, Rudolph MG. Proc. Natl. Acad. Sci. U.S.A. 103 2576-2581 (2006)
  28. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase. Alfieri A, Fersini F, Ruangchan N, Prongjit M, Chaiyen P, Mattevi A. Proc. Natl. Acad. Sci. U.S.A. 104 1177-1182 (2007)
  29. Anaerobic toluene catabolism of Thauera aromatica: the bbs operon codes for enzymes of beta oxidation of the intermediate benzylsuccinate. Leuthner B, Heider J. J. Bacteriol. 182 272-277 (2000)
  30. Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2'-OH group in regulating PutA--membrane binding. Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF. Biochemistry 46 483-491 (2007)
  31. Structural basis for substrate fatty acyl chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. McAndrew RP, Wang Y, Mohsen AW, He M, Vockley J, Kim JJ. J. Biol. Chem. 283 9435-9443 (2008)
  32. X-ray structure of 12-oxophytodienoate reductase 1 provides structural insight into substrate binding and specificity within the family of OYE. Breithaupt C, Strassner J, Breitinger U, Huber R, Macheroux P, Schaller A, Clausen T. Structure 9 419-429 (2001)
  33. Conserved expression of alternative splicing variants of peroxisomal acyl-CoA oxidase 1 in vertebrates and developmental and nutritional regulation in fish. Morais S, Knoll-Gellida A, André M, Barthe C, Babin PJ. Physiol. Genomics 28 239-252 (2007)
  34. Identification of isobutyryl-CoA dehydrogenase and its deficiency in humans. Nguyen TV, Andresen BS, Corydon TJ, Ghisla S, Abd-El Razik N, Mohsen AW, Cederbaum SD, Roe DS, Roe CR, Lench NJ, Vockley J. Mol. Genet. Metab. 77 68-79 (2002)
  35. Structures of isobutyryl-CoA dehydrogenase and enzyme-product complex: comparison with isovaleryl- and short-chain acyl-CoA dehydrogenases. Battaile KP, Nguyen TV, Vockley J, Kim JJ. J. Biol. Chem. 279 16526-16534 (2004)
  36. On the potential role of the amino nitrogen atom as a hydrogen bond acceptor in macromolecules. Luisi B, Orozco M, Sponer J, Luque FJ, Shakked Z. J. Mol. Biol. 279 1123-1136 (1998)
  37. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. Webb BN, Ballinger JW, Kim E, Belchik SM, Lam KS, Youn B, Nissen MS, Xun L, Kang C. J. Biol. Chem. 285 2014-2027 (2010)
  38. Acyl-CoA Dehydrogenase Drives Heat Adaptation by Sequestering Fatty Acids. Ma DK, Li Z, Lu AY, Sun F, Chen S, Rothe M, Menzel R, Sun F, Horvitz HR. Cell 161 1152-1163 (2015)
  39. The mutational spectrum in very long-chain acyl-CoA dehydrogenase deficiency. Andresen BS, Vianey-Saban C, Bross P, Divry P, Roe CR, Nada MA, Knudsen I, Gregersen N. J Inherit Metab Dis 19 169-172 (1996)
  40. Crystal structures of nitroalkane oxidase: insights into the reaction mechanism from a covalent complex of the flavoenzyme trapped during turnover. Nagpal A, Valley MP, Fitzpatrick PF, Orville AM. Biochemistry 45 1138-1150 (2006)
  41. Expression and characterization of mutations in human very long-chain acyl-CoA dehydrogenase using a prokaryotic system. Goetzman ES, Wang Y, He M, Mohsen AW, Ninness BK, Vockley J. Mol. Genet. Metab. 91 138-147 (2007)
  42. Cloning of nitroalkane oxidase from Fusarium oxysporum identifies a new member of the acyl-CoA dehydrogenase superfamily. Daubner SC, Gadda G, Valley MP, Fitzpatrick PF. Proc. Natl. Acad. Sci. U.S.A. 99 2702-2707 (2002)
  43. Crystal structure of an Acyl-ACP dehydrogenase from the FK520 polyketide biosynthetic pathway: insights into extender unit biosynthesis. Watanabe K, Khosla C, Stroud RM, Tsai SC. J. Mol. Biol. 334 435-444 (2003)
  44. The Y42H mutation in medium-chain acyl-CoA dehydrogenase, which is prevalent in babies identified by MS/MS-based newborn screening, is temperature sensitive. O'Reilly L, Bross P, Corydon TJ, Olpin SE, Hansen J, Kenney JM, McCandless SE, Frazier DM, Winter V, Gregersen N, Engel PC, Andresen BS. Eur. J. Biochem. 271 4053-4063 (2004)
  45. A novel mutation in medium chain acyl-CoA dehydrogenase causes sudden neonatal death. Brackett JC, Sims HF, Steiner RD, Nunge M, Zimmerman EM, deMartinville B, Rinaldo P, Slaugh R, Strauss AW. J. Clin. Invest. 94 1477-1483 (1994)
  46. A perspective on mechanisms of protein tetramer formation. Powers ET, Powers DL. Biophys. J. 85 3587-3599 (2003)
  47. Zwittermicin A biosynthetic cluster. Stohl EA, Milner JL, Handelsman J. Gene 237 403-411 (1999)
  48. microRNA-309 targets the Homeobox gene SIX4 and controls ovarian development in the mosquito Aedes aegypti. Zhang Y, Zhao B, Roy S, Saha TT, Kokoza VA, Li M, Raikhel AS. Proc. Natl. Acad. Sci. U.S.A. 113 E4828-36 (2016)
  49. A novel approach to the characterization of substrate specificity in short/branched chain Acyl-CoA dehydrogenase. He M, Burghardt TP, Vockley J. J. Biol. Chem. 278 37974-37986 (2003)
  50. Acyl-CoA oxidase 1 from Arabidopsis thaliana. Structure of a key enzyme in plant lipid metabolism. Pedersen L, Henriksen A. J. Mol. Biol. 345 487-500 (2005)
  51. Catalytic mechanism investigation of lysine-specific demethylase 1 (LSD1): a computational study. Kong X, Ouyang S, Liang Z, Lu J, Chen L, Shen B, Li D, Zheng M, Li KK, Luo C, Jiang H. PLoS ONE 6 e25444 (2011)
  52. Unraveling Cholesterol Catabolism in Mycobacterium tuberculosis: ChsE4-ChsE5 α2β2 Acyl-CoA Dehydrogenase Initiates β-Oxidation of 3-Oxo-cholest-4-en-26-oyl CoA. Yang M, Lu R, Guja KE, Wipperman MF, St Clair JR, Bonds AC, Garcia-Diaz M, Sampson NS. ACS Infect Dis 1 110-125 (2015)
  53. Crystal structures of intermediates in the nitroalkane oxidase reaction. Héroux A, Bozinovski DM, Valley MP, Fitzpatrick PF, Orville AM. Biochemistry 48 3407-3416 (2009)
  54. Isolation and characterisation of a cDNA encoding the precursor for a novel member of the acyl-CoA dehydrogenase gene family. Telford EA, Moynihan LM, Markham AF, Lench NJ. Biochim. Biophys. Acta 1446 371-376 (1999)
  55. Novel mutations causing medium chain acyl-CoA dehydrogenase deficiency: under-representation of the common c.985 A > G mutation in the New York state population. Nichols MJ, Saavedra-Matiz CA, Pass KA, Caggana M. Am. J. Med. Genet. A 146A 610-619 (2008)
  56. Biochemical characterization of purified, human recombinant Lys304-->Glu medium-chain acyl-CoA dehydrogenase containing the common disease-causing mutation and comparison with the normal enzyme. Kieweg V, Kräutle FG, Nandy A, Engst S, Vock P, Abdel-Ghany AG, Bross P, Gregersen N, Rasched I, Strauss A, Ghisla S. Eur. J. Biochem. 246 548-556 (1997)
  57. Disease-causing mutations in exon 11 of the medium-chain acyl-CoA dehydrogenase gene. Andresen BS, Jensen TG, Bross P, Knudsen I, Winter V, Kølvraa S, Bolund L, Ding JH, Chen YT, Van Hove JL. Am. J. Hum. Genet. 54 975-988 (1994)
  58. Sensitivity of molecular dynamics simulations to the choice of the X-ray structure used to model an enzymatic reaction. Garcia-Viloca M, Poulsen TD, Truhlar DG, Gao J. Protein Sci. 13 2341-2354 (2004)
  59. Structure and mechanism of ORF36, an amino sugar oxidizing enzyme in everninomicin biosynthesis . Vey JL, Al-Mestarihi A, Hu Y, Funk MA, Bachmann BO, Iverson TM. Biochemistry 49 9306-9317 (2010)
  60. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach. Sengupta A, Sasikala WD, Mukherjee A, Hazra P. Chemphyschem 13 2142-2153 (2012)
  61. Comparison between medium-chain acyl-CoA dehydrogenase mutant proteins overexpressed in bacterial and mammalian cells. Jensen TG, Bross P, Andresen BS, Lund TB, Kristensen TJ, Jensen UB, Winther V, Kølvraa S, Gregersen N, Bolund L. Hum. Mutat. 6 226-231 (1995)
  62. Diet-sensitive sources of reactive oxygen species in liver mitochondria: role of very long chain acyl-CoA dehydrogenases. Cardoso AR, Kakimoto PA, Kowaltowski AJ. PLoS ONE 8 e77088 (2013)
  63. Glutaric aciduria type I in the Arab and Jewish communities in Israel. Anikster Y, Shaag A, Joseph A, Mandel H, Ben-Zeev B, Christensen E, Elpeleg ON. Am. J. Hum. Genet. 59 1012-1018 (1996)
  64. A novel 3-sulfinopropionyl coenzyme A (3SP-CoA) desulfinase from Advenella mimigardefordensis strain DPN7T acting as a key enzyme during catabolism of 3,3'-dithiodipropionic acid is a member of the acyl-CoA dehydrogenase superfamily. Schürmann M, Deters A, Wübbeler JH, Steinbüchel A. J. Bacteriol. 195 1538-1551 (2013)
  65. Cloning and partial characterization of zwittermicin A resistance gene cluster from Bacillus thuringiensis subsp. kurstaki strain HD1. Nair JR, Narasimman G, Sekar V. J. Appl. Microbiol. 97 495-503 (2004)
  66. Compared effects of missense mutations in Very-Long-Chain Acyl-CoA Dehydrogenase deficiency: Combined analysis by structural, functional and pharmacological approaches. Gobin-Limballe S, McAndrew RP, Djouadi F, Kim JJ, Bastin J. Biochim. Biophys. Acta 1802 478-484 (2010)
  67. Functional insights into human HMG-CoA lyase from structures of Acyl-CoA-containing ternary complexes. Fu Z, Runquist JA, Montgomery C, Miziorko HM, Kim JJ. J. Biol. Chem. 285 26341-26349 (2010)
  68. Geometric restraint drives on- and off-pathway catalysis by the Escherichia coli menaquinol:fumarate reductase. Tomasiak TM, Archuleta TL, Andréll J, Luna-Chávez C, Davis TA, Sarwar M, Ham AJ, McDonald WH, Yankovskaya V, Stern HA, Johnston JN, Maklashina E, Cecchini G, Iverson TM. J. Biol. Chem. 286 3047-3056 (2011)
  69. Identification of the catalytic residue of human short/branched chain acyl-CoA dehydrogenase by in vitro mutagenesis. Binzak B, Willard J, Vockley J. Biochim. Biophys. Acta 1382 137-142 (1998)
  70. Selenium significantly inhibits adipocyte hypertrophy and abdominal fat accumulation in OLETF rats via induction of fatty acid β-oxidation. Kim JE, Choi SI, Lee HR, Hwang IS, Lee YJ, An BS, Lee SH, Kim HJ, Kang BC, Hwang DY. Biol Trace Elem Res 150 360-370 (2012)
  71. Structure and DNA binding of alkylation response protein AidB. Bowles T, Metz AH, O'Quin J, Wawrzak Z, Eichman BF. Proc. Natl. Acad. Sci. U.S.A. 105 15299-15304 (2008)
  72. Biochemical characterization of a variant human medium-chain acyl-CoA dehydrogenase with a disease-associated mutation localized in the active site. Küchler B, Abdel-Ghany AG, Bross P, Nandy A, Rasched I, Ghisla S. Biochem. J. 337 ( Pt 2) 225-230 (1999)
  73. Identification of a novel mutation in patients with medium-chain acyl-CoA dehydrogenase deficiency. Yang BZ, Ding JH, Zhou C, Dimachkie MM, Sweetman L, Dasouki MJ, Wilkinson J, Roe CR. Mol. Genet. Metab. 69 259-262 (2000)
  74. Characterization of human and pig kidney long-chain-acyl-CoA dehydrogenases and their role in beta-oxidation. Eder M, Kräutle F, Dong Y, Vock P, Kieweg V, Kim JJ, Strauss AW, Ghisla S. Eur. J. Biochem. 245 600-607 (1997)
  75. Potential of mean force calculation for the proton and hydride transfer reactions catalyzed by medium-chain acyl-CoA dehydrogenase: effect of mutations on enzyme catalysis. Bhattacharyya S, Ma S, Stankovich MT, Truhlar DG, Gao J. Biochemistry 44 16549-16562 (2005)
  76. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein. Dwyer TM, Zhang L, Muller M, Marrugo F, Frerman F. Biochim. Biophys. Acta 1433 139-152 (1999)
  77. Crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Liu S, Zhang C, Su T, Wei T, Zhu D, Wang K, Huang Y, Dong Y, Yin K, Xu S, Xu P, Gu L. Proteins 82 1708-1720 (2014)
  78. Atypical presentation of VLCAD deficiency associated with a novel ACADVL splicing mutation. Shchelochkov O, Wong LJ, Shaibani A, Shinawi M. Muscle Nerve 39 374-382 (2009)
  79. Crystallization and preliminary analysis of active nitroalkane oxidase in three crystal forms. Nagpal A, Valley MP, Fitzpatrick PF, Orville AM. Acta Crystallogr. D Biol. Crystallogr. 60 1456-1460 (2004)
  80. Identification of Caenorhabditis elegans isovaleryl-CoA dehydrogenase and structural comparison with other acyl-CoA dehydrogenases. Mohsen AW, Navarette B, Vockley J. Mol. Genet. Metab. 73 126-137 (2001)
  81. Influence of Glu-376 --> Gln mutation on enthalpy and heat capacity changes for the binding of slightly altered ligands to medium chain acyl-CoA dehydrogenase. Peterson KM, Gopalan KV, Nandy A, Srivastava DK. Protein Sci. 10 1822-1834 (2001)
  82. Pathogenic mutations in the carboxyl-terminal domain of glutaryl-CoA dehydrogenase: effects on catalytic activity and the stability of the tetramer. Westover JB, Goodman SI, Frerman FE. Mol. Genet. Metab. 79 245-256 (2003)
  83. Three-dimensional structure of rat-liver acyl-CoA oxidase in complex with a fatty acid: insights into substrate-recognition and reactivity toward molecular oxygen. Tokuoka K, Nakajima Y, Hirotsu K, Miyahara I, Nishina Y, Shiga K, Tamaoki H, Setoyama C, Tojo H, Miura R. J. Biochem. 139 789-795 (2006)
  84. Identification and characterization of temperature-sensitive mild mutations in three Japanese patients with nonsevere forms of very-long-chain acyl-CoA dehydrogenase deficiency. Takusa Y, Fukao T, Kimura M, Uchiyama A, Abo W, Tsuboi Y, Hirose S, Fujioka H, Kondo N, Yamaguchi S. Mol. Genet. Metab. 75 227-234 (2002)
  85. Red Liriope platyphylla contains a large amount of polyphenolic compounds which stimulate insulin secretion and suppress fatty liver formation through the regulation of fatty acid oxidation in OLETF rats. Lee HR, Kim JE, Goo JS, Choi SI, Hwang IS, Lee YJ, Son HJ, Lee HS, Lee JS, Hwang DY. Int. J. Mol. Med. 30 905-913 (2012)
  86. Structural characterization of acyl-CoA oxidases reveals a direct link between pheromone biosynthesis and metabolic state in Caenorhabditis elegans. Zhang X, Li K, Jones RA, Bruner SD, Butcher RA. Proc. Natl. Acad. Sci. U.S.A. 113 10055-10060 (2016)
  87. Very-long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency: monitoring of treatment by carnitine/acylcarnitine analysis in blood spots. Spiekerkötter U, Schwahn B, Korall H, Trefz FK, Andresen BS, Wendel U. Acta Paediatr. 89 492-495 (2000)
  88. Arginine 387 of human isovaleryl-CoA dehydrogenase plays a crucial role in substrate/product binding. Volchenboum SL, Mohsen AW, Kim JJ, Vockley J. Mol. Genet. Metab. 74 226-237 (2001)
  89. Cloning and expression of an acyl-CoA dehydrogenase from Mycobacterium tuberculosis. Mahadevan U, Padmanaban G. Biochem. Biophys. Res. Commun. 244 893-897 (1998)
  90. Evidence for involvement of medium chain acyl-CoA dehydrogenase in the metabolism of phenylbutyrate. Kormanik K, Kang H, Cuebas D, Vockley J, Mohsen AW. Mol. Genet. Metab. 107 684-689 (2012)
  91. Inactivation of medium-chain acyl-CoA dehydrogenase by oct-4-en-2-ynoyl-CoA. Zeng J, Deng G, Yu W, Li D. Bioorg. Med. Chem. Lett. 16 1445-1448 (2006)
  92. Mammalian electron transferring flavoprotein.flavoprotein dehydrogenase complexes observed by microelectrospray ionization-mass spectrometry and surface plasmon resonance. Hoard-Fruchey HM, Goetzman E, Benson L, Naylor S, Vockley J. J. Biol. Chem. 279 13786-13791 (2004)
  93. Stereoelectronic requirements for optimal hydrogen-bond-catalyzed enolization. Pápai I, Hamza A, Pihko PM, Wierenga RK. Chemistry 17 2859-2866 (2011)
  94. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution. Rudik I, Thorpe C. Arch. Biochem. Biophys. 392 341-348 (2001)
  95. Two novel variants of human medium chain acyl-CoA dehydrogenase (MCAD). K364R, a folding mutation, and R256T, a catalytic-site mutation resulting in a well-folded but totally inactive protein. O'Reilly LP, Andresen BS, Engel PC. FEBS J. 272 4549-4557 (2005)
  96. Developmental and tissue-specific expression of 2-methyl branched-chain enoyl CoA reductase isoforms in the parasitic nematode, Ascaris suum. Duran E, Walker DJ, Johnson KR, Komuniecki PR, Komuniecki RW. Mol. Biochem. Parasitol. 91 307-318 (1998)
  97. Structure of the prolyl-acyl carrier protein oxidase involved in the biosynthesis of the cyanotoxin anatoxin-a. Moncoq K, Regad L, Mann S, Méjean A, Ploux O. Acta Crystallogr. D Biol. Crystallogr. 69 2340-2352 (2013)
  98. The roles of threonine-136 and glutamate-137 of human medium chain acyl-CoA dehydrogenase in FAD binding and peptide folding using site-directed mutagenesis: creation of an FAD-dependent mutant, T136D. Saijo T, Kim JJ, Kuroda Y, Tanaka K. Arch. Biochem. Biophys. 358 49-57 (1998)
  99. Activation of substrate/product couples by medium-chain acyl-CoA dehydrogenase. Lamm TR, Kohls TD, Stankovich MT. Arch. Biochem. Biophys. 404 136-146 (2002)
  100. Flavin-induced oligomerization in Escherichia coli adaptive response protein AidB. Hamill MJ, Jost M, Wong C, Elliott SJ, Drennan CL. Biochemistry 50 10159-10169 (2011)
  101. Functional role of a distal (3'-phosphate) group of CoA in the recombinant human liver medium-chain acyl-CoA dehydrogenase-catalysed reaction. Peterson KL, Srivastava DK. Biochem. J. 325 ( Pt 3) 751-760 (1997)
  102. Identification of 3-sulfinopropionyl coenzyme A (CoA) desulfinases within the Acyl-CoA dehydrogenase superfamily. Schürmann M, Demming RM, Krewing M, Rose J, Wübbeler JH, Steinbüchel A. J. Bacteriol. 196 882-893 (2014)
  103. Letter Molecular basis of the flavin-based electron-bifurcating caffeyl-CoA reductase reaction. Demmer JK, Bertsch J, Öppinger C, Wohlers H, Kayastha K, Demmer U, Ermler U, Müller V. FEBS Lett. 592 332-342 (2018)
  104. A novel mutation of late-onset very-long-chain acyl-CoA dehydrogenase deficiency. Straussberg R, Strauss AW. Pediatr. Neurol. 27 136-137 (2002)
  105. Flavin-adenine-dinucleotide gold complex nanoparticles: chemical modeling design, physico-chemical assessment and perspectives in nanomedicine. Arib C, Bouchemal N, Barile M, Paleni D, Djaker N, Dupont N, Spadavecchia J. Nanoscale Adv 3 6144-6156 (2021)
  106. Medium-chain acyl CoA dehydrogenase: evidence for phosphorylation. Macheroux P, Sanner C, Büttner H, Kieweg V, Rüterjans H, Ghisla S. Biol. Chem. 378 1381-1385 (1997)
  107. Molecular Basis for Converting (2S)-Methylsuccinyl-CoA Dehydrogenase into an Oxidase. Burgener S, Schwander T, Romero E, Fraaije MW, Erb TJ. Molecules 23 (2017)
  108. Molecular defect of isovaleryl-CoA dehydrogenase in the skunk mutant of silkworm, Bombyx mori. Urano K, Daimon T, Banno Y, Mita K, Terada T, Shimizu K, Katsuma S, Shimada T. FEBS J. 277 4452-4463 (2010)
  109. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket. Chai AF, Bulloch EM, Evans GL, Lott JS, Baker EN, Johnston JM. Acta Crystallogr. D Biol. Crystallogr. 71 862-872 (2015)
  110. Comparison of ligand polarization and enzyme activation in medium- and short-chain acyl-coenzyme A dehydrogenase-novel analog complexes. Lamm TR, Kohls TD, Saenger AK, Stankovich MT. Arch. Biochem. Biophys. 409 251-261 (2003)
  111. Conversion of cis-2-carboxycyclohexylacetyl-CoA in the downstream pathway of anaerobic naphthalene degradation. Weyrauch P, Zaytsev AV, Stephan S, Kocks L, Schmitz OJ, Golding BT, Meckenstock RU. Environ. Microbiol. 19 2819-2830 (2017)
  112. Electrochemical characterization of Escherichia coli adaptive response protein AidB. Hamill MJ, Jost M, Wong C, Bene NC, Drennan CL, Elliott SJ. Int J Mol Sci 13 16899-16915 (2012)
  113. Functional analysis of acyl-CoA dehydrogenase catalytic residue mutants using surface plasmon resonance and circular dichroism. Goetzman ES, He M, Nguyen TV, Vockley J. Mol. Genet. Metab. 87 233-242 (2006)
  114. Mechanism-based inactivation of human glutaryl-CoA dehydrogenase by 2-pentynoyl-CoA: rationale for enhanced reactivity. Rao KS, Albro M, Vockley J, Frerman FE. J. Biol. Chem. 278 26342-26350 (2003)
  115. Modulation of the flavin-protein interactions in NADH peroxidase and mercuric ion reductase: a resonance Raman study. Keirsse-Haquin J, Picaud T, Bordes L, de Gracia AG, Desbois A. Eur. Biophys. J. 47 205-223 (2018)
  116. Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase. Carro J, Martínez-Júlvez M, Medina M, Martínez AT, Ferreira P. Phys Chem Chem Phys 19 28666-28675 (2017)
  117. Structural basis for substrate specificity of methylsuccinyl-CoA dehydrogenase, an unusual member of the acyl-CoA dehydrogenase family. Schwander T, McLean R, Zarzycki J, Erb TJ. J. Biol. Chem. 293 1702-1712 (2018)
  118. Theoretical study on charge-transfer interaction between acyl-CoA dehydrogenase and 3-thiaacyl-CoA using density functional method. Tanaka T, Tamaoki H, Nishina Y, Shiga K, Ohno T, Miura R. J. Biochem. 139 847-855 (2006)
  119. A cellular platform for production of C4 monomers. Davis MA, Yu VY, Fu B, Wen M, Koleski EJ, Silverman J, Berdan CA, Nomura DK, Chang MCY. Chem Sci 14 11718-11726 (2023)
  120. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase. Nishina Y, Sato K, Tamaoki H, Setoyama C, Miura R, Shiga K. J. Biochem. 146 351-357 (2009)
  121. High-Resolution Structural Proteomics of Mitochondria Using the 'Build and Retrieve' Methodology. Zhang Z, Tringides ML, Morgan CE, Miyagi M, Mears JA, Hoppel CL, Yu EW. Mol Cell Proteomics 22 100666 (2023)
  122. Insights into Medium-chain Acyl-CoA Dehydrogenase Structure by Molecular Dynamics Simulations. Bonito CA, Leandro P, Ventura FV, Guedes RC. Chem Biol Drug Des 88 281-292 (2016)
  123. Insights into Thiotemplated Pyrrole Biosynthesis Gained from the Crystal Structure of Flavin-Dependent Oxidase in Complex with Carrier Protein. Thapa HR, Robbins JM, Moore BS, Agarwal V. Biochemistry 58 918-929 (2019)
  124. Intermediate MCAD Deficiency Associated with a Novel Mutation of the ACADM Gene: c.1052C>T. Drendel HM, Pike JE, Schumacher K, Ouyang K, Wang J, Stuy M, Dlouhy S, Bai S. Case Rep Genet 2015 532090 (2015)
  125. Mechanistic insight into 3-methylmercaptopropionate metabolism and kinetical regulation of demethylation pathway in marine dimethylsulfoniopropionate-catabolizing bacteria. Shao X, Cao HY, Zhao F, Peng M, Wang P, Li CY, Shi WL, Wei TD, Yuan Z, Zhang XH, Chen XL, Todd JD, Zhang YZ. Mol. Microbiol. 111 1057-1073 (2019)
  126. Non-active Site Residue in Loop L4 Alters Substrate Capture and Product Release in d-Arginine Dehydrogenase. Ouedraogo D, Souffrant M, Yao XQ, Hamelberg D, Gadda G. Biochemistry 62 1070-1081 (2023)
  127. Structural basis for defective membrane targeting of mutant enzyme in human VLCAD deficiency. Prew MS, Camara CM, Botzanowski T, Moroco JA, Bloch NB, Levy HR, Seo HS, Dhe-Paganon S, Bird GH, Herce HD, Gygi MA, Escudero S, Wales TE, Engen JR, Walensky LD. Nat Commun 13 3669 (2022)
  128. The 2'-hydroxy group of flavin mononucleotide influences the catalytic function and promiscuity of the flavoprotein iodotyrosine dehalogenase. Kozyryev A, Boucher PA, Quiñones-Jurgensen CM, Rokita SE. RSC Chem Biol 4 698-705 (2023)


Related citations provided by authors (1)