3ma7 Citations

Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire.

Abstract

Cardiolipin (CL), a major phospholipid in bacterial cell walls, is sequestered from the immune system in mammalian mitochondria and is, therefore, a potential danger signal. Based on growing evidence that phospholipids constitute natural ligands for CD1 and that CD1d-restricted T cells recognize phospholipids, we hypothesized that CD1d binds and presents CL and that T cells in the normal immune repertoire respond to CL in a CD1d-restricted manner. We determined the murine CD1d-CL crystal structure at 2.3 Å resolution and established through additional lipid loading experiments that CL, a tetra-acylated phospholipid, binds to murine CD1d with two alkyl chains buried inside the CD1d binding groove and the remaining two exposed into the solvent. We furthermore demonstrate the functional stimulatory activity of CL, showing that splenic and hepatic γδ T cells from healthy mice proliferate in vitro in response to mammalian or bacterial CL in a dose-dependent and CD1d-restricted manner, rapidly secreting the cytokines IFN-γ and RANTES. Finally, we show that hepatic γδ T cells are activated in vivo by CD1d-bearing dendritic cells that have been pulsed with CL, but not phosphatidylcholine. Together, these findings demonstrate that CD1d is able to bind and present CL to a subset of CL-responsive γδ T cells that exist in the spleen and liver of healthy mice and suggest that these cells could play a role in host responses to bacterial lipids and, potentially, self-CL. We propose that CL-responsive γδ T cells play a role in immune surveillance during infection and tissue injury.

Articles - 3ma7 mentioned but not cited (3)

  1. Cardiolipin binds to CD1d and stimulates CD1d-restricted γδ T cells in the normal murine repertoire. Dieudé M, Striegl H, Tyznik AJ, Wang J, Behar SM, Piccirillo CA, Levine JS, Zajonc DM, Rauch J. J Immunol 186 4771-4781 (2011)
  2. Cardiolipin Interactions with Proteins. Planas-Iglesias J, Dwarakanath H, Mohammadyani D, Yanamala N, Kagan VE, Klein-Seetharaman J. Biophys J 109 1282-1294 (2015)
  3. Lysophospholipid presentation by CD1d and recognition by a human Natural Killer T-cell receptor. López-Sagaseta J, Sibener LV, Kung JE, Gumperz J, Adams EJ. EMBO J 31 2047-2059 (2012)


Reviews citing this publication (48)

  1. Mitochondria: master regulators of danger signalling. Galluzzi L, Kepp O, Kroemer G. Nat Rev Mol Cell Biol 13 780-788 (2012)
  2. γδ T cells: first line of defense and beyond. Chien YH, Meyer C, Bonneville M. Annu Rev Immunol 32 121-155 (2014)
  3. The complexity of cardiolipin in health and disease. Claypool SM, Koehler CM. Trends Biochem Sci 37 32-41 (2012)
  4. Linking cellular stress responses to systemic homeostasis. Galluzzi L, Yamazaki T, Kroemer G. Nat Rev Mol Cell Biol 19 731-745 (2018)
  5. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Grazioli S, Pugin J. Front Immunol 9 832 (2018)
  6. Human gamma delta T cells: Evolution and ligand recognition. Adams EJ, Gu S, Luoma AM. Cell Immunol 296 31-40 (2015)
  7. Mitochondrial control of inflammation. Marchi S, Guilbaud E, Tait SWG, Yamazaki T, Galluzzi L. Nat Rev Immunol 23 159-173 (2023)
  8. Thymic development of unconventional T cells: how NKT cells, MAIT cells and γδ T cells emerge. Pellicci DG, Koay HF, Berzins SP. Nat Rev Immunol 20 756-770 (2020)
  9. Targeting mitochondria for cardiovascular disorders: therapeutic potential and obstacles. Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P, Galluzzi L. Nat Rev Cardiol 16 33-55 (2019)
  10. γδ-T cells: an unpolished sword in human anti-infection immunity. Zheng J, Liu Y, Lau YL, Tu W. Cell Mol Immunol 10 50-57 (2013)
  11. γδ T cells and their potential for immunotherapy. Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W. Int J Biol Sci 10 119-135 (2014)
  12. Prognostic and Predictive Value of DAMPs and DAMP-Associated Processes in Cancer. Fucikova J, Moserova I, Urbanova L, Bezu L, Kepp O, Cremer I, Salek C, Strnad P, Kroemer G, Galluzzi L, Spisek R. Front Immunol 6 402 (2015)
  13. Diversity of γδ T-cell antigens. Born WK, Kemal Aydintug M, O'Brien RL. Cell Mol Immunol 10 13-20 (2013)
  14. Molecular basis of lipid antigen presentation by CD1d and recognition by natural killer T cells. Girardi E, Zajonc DM. Immunol Rev 250 167-179 (2012)
  15. CD1 and mycobacterial lipids activate human T cells. Van Rhijn I, Moody DB. Immunol Rev 264 138-153 (2015)
  16. Human αβ and γδ T Cells in Skin Immunity and Disease. Cruz MS, Diamond A, Russell A, Jameson JM. Front Immunol 9 1304 (2018)
  17. The Extended Family of CD1d-Restricted NKT Cells: Sifting through a Mixed Bag of TCRs, Antigens, and Functions. Macho-Fernandez E, Brigl M. Front Immunol 6 362 (2015)
  18. The immunoregulatory role of type I and type II NKT cells in cancer and other diseases. Terabe M, Berzofsky JA. Cancer Immunol Immunother 63 199-213 (2014)
  19. Insights into the Relationship between Toll Like Receptors and Gamma Delta T Cell Responses. Dar AA, Patil RS, Chiplunkar SV. Front Immunol 5 366 (2014)
  20. Ligand recognition by the γδ TCR and discrimination between homeostasis and stress conditions. Deseke M, Prinz I. Cell Mol Immunol 17 914-924 (2020)
  21. The sensing of mitochondrial DAMPs by non-immune cells. Rodríguez-Nuevo A, Zorzano A. Cell Stress 3 195-207 (2019)
  22. γδ T cell surveillance via CD1 molecules. Luoma AM, Castro CD, Adams EJ. Trends Immunol 35 613-621 (2014)
  23. All hands on DE(T)C: Epithelial-resident γδ T cells respond to tissue injury. Ramirez K, Witherden DA, Havran WL. Cell Immunol 296 57-61 (2015)
  24. Natural Killer T Cells and Mucosal-Associated Invariant T Cells in Lung Infections. Trottein F, Paget C. Front Immunol 9 1750 (2018)
  25. The Jekyll and Hyde story of IL17-Producing γδT Cells. Patil RS, Bhat SA, Dar AA, Chiplunkar SV. Front Immunol 6 37 (2015)
  26. Protective Role of γδ T Cells in Different Pathogen Infections and Its Potential Clinical Application. Zhao Y, Lin L, Xiao Z, Li M, Wu X, Li W, Li X, Zhao Q, Wu Y, Zhang H, Yin J, Zhang L, Cho CH, Shen J. J Immunol Res 2018 5081634 (2018)
  27. CD1d- and MR1-Restricted T Cells in Sepsis. Szabo PA, Anantha RV, Shaler CR, McCormick JK, Haeryfar SM. Front Immunol 6 401 (2015)
  28. Coevolution of T-cell receptors with MHC and non-MHC ligands. Castro CD, Luoma AM, Adams EJ. Immunol Rev 267 30-55 (2015)
  29. Mechanisms and Consequences of Antigen Presentation by CD1. Van Kaer L, Wu L, Joyce S. Trends Immunol 37 738-754 (2016)
  30. Activation of human T cells by CD1 and self-lipids. de Jong A. Immunol Rev 267 16-29 (2015)
  31. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile. Bradley RM, Stark KD, Duncan RE. Mol Nutr Food Res 60 1804-1818 (2016)
  32. The Conventional Nature of Non-MHC-Restricted T Cells. Lepore M, Mori L, De Libero G. Front Immunol 9 1365 (2018)
  33. Mitochondria-Derived Damage-Associated Molecular Patterns in Sepsis: From Bench to Bedside. Li S, Hu Q, Huang J, Wu X, Ren J, Ren J. Oxid Med Cell Longev 2019 6914849 (2019)
  34. The Aging of γδ T Cells. Xu W, Lau ZWX, Fulop T, Larbi A. Cells 9 E1181 (2020)
  35. Mitochondrial DAMPs and altered mitochondrial dynamics in OxLDL burden in atherosclerosis. Khwaja B, Thankam FG, Agrawal DK. Mol Cell Biochem 476 1915-1928 (2021)
  36. The complex existence of γδ T cells following transplantation: the good, the bad and the simply confusing. Sullivan LC, Shaw EM, Stankovic S, Snell GI, Brooks AG, Westall GP. Clin Transl Immunology 8 e1078 (2019)
  37. Possible Therapeutic Application of Targeting Type II Natural Killer T Cell-Mediated Suppression of Tumor Immunity. Kato S, Berzofsky JA, Terabe M. Front Immunol 9 314 (2018)
  38. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Chowdhury A, Witte S, Aich A. Front Cell Dev Biol 10 796066 (2022)
  39. The CD1 family: serving lipid antigens to T cells since the Mesozoic era. Zajonc DM. Immunogenetics 68 561-576 (2016)
  40. The role of mitochondria in rheumatic diseases. Becker YLC, Duvvuri B, Fortin PR, Lood C, Boilard E. Nat Rev Rheumatol 18 621-640 (2022)
  41. CD1-Restricted T Cells at the Crossroad of Innate and Adaptive Immunity. Pereira CS, Macedo MF. J Immunol Res 2016 2876275 (2016)
  42. T cells specific for lipid antigens. Mori L, De Libero G. Immunol Res 53 191-199 (2012)
  43. The Yin and Yang of Alarmins in Regulation of Acute Kidney Injury. Sabapathy V, Venkatadri R, Dogan M, Sharma R. Front Med (Lausanne) 7 441 (2020)
  44. A Special Connection between γδ T Cells and Natural Antibodies? Born WK, Huang Y, Zeng W, Torres RM, O'Brien RL. Arch Immunol Ther Exp (Warsz) 64 455-462 (2016)
  45. CD1: A Singed Cat of the Three Antigen Presentation Systems. Kaczmarek R, Pasciak M, Szymczak-Kulus K, Czerwinski M. Arch Immunol Ther Exp (Warsz) 65 201-214 (2017)
  46. Regulation and Functions of Protumoral Unconventional T Cells in Solid Tumors. Barsac E, de Amat Herbozo C, Gonzalez L, Baranek T, Mallevaey T, Paget C. Cancers (Basel) 13 3578 (2021)
  47. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Front Cell Dev Biol 11 1252318 (2023)
  48. Novel lipid antigens for NKT cells in cancer. Lee MS, Webb TJ. Front Immunol 14 1173375 (2023)

Articles citing this publication (26)

  1. CD1d-lipid antigen recognition by the γδ TCR. Uldrich AP, Le Nours J, Pellicci DG, Gherardin NA, McPherson KG, Lim RT, Patel O, Beddoe T, Gras S, Rossjohn J, Godfrey DI. Nat Immunol 14 1137-1145 (2013)
  2. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Nakahira K, Hisata S, Choi AM. Antioxid Redox Signal 23 1329-1350 (2015)
  3. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. de Jong A, Cheng TY, Huang S, Gras S, Birkinshaw RW, Kasmar AG, Van Rhijn I, Peña-Cruz V, Ruan DT, Altman JD, Rossjohn J, Moody DB. Nat Immunol 15 177-185 (2014)
  4. The microbiota maintain homeostasis of liver-resident γδT-17 cells in a lipid antigen/CD1d-dependent manner. Li F, Hao X, Chen Y, Bai L, Gao X, Lian Z, Wei H, Sun R, Tian Z. Nat Commun 7 13839 (2017)
  5. Cutting edge: CD1d restriction and Th1/Th2/Th17 cytokine secretion by human Vδ3 T cells. Mangan BA, Dunne MR, O'Reilly VP, Dunne PJ, Exley MA, Exley MA, O'Shea D, Scotet E, Hogan AE, Doherty DG. J Immunol 191 30-34 (2013)
  6. Recognition of CD1d-sulfatide mediated by a type II natural killer T cell antigen receptor. Patel O, Pellicci DG, Gras S, Sandoval-Romero ML, Uldrich AP, Mallevaey T, Clarke AJ, Le Nours J, Theodossis A, Cardell SL, Gapin L, Godfrey DI, Rossjohn J. Nat Immunol 13 857-863 (2012)
  7. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Tatituri RV, Watts GF, Bhowruth V, Barton N, Rothchild A, Hsu FF, Almeida CF, Cox LR, Eggeling L, Cardell S, Rossjohn J, Godfrey DI, Behar SM, Besra GS, Brenner MB, Brigl M. Proc Natl Acad Sci U S A 110 1827-1832 (2013)
  8. Immunosurveillance as a regulator of tissue homeostasis. Senovilla L, Galluzzi L, Zitvogel L, Kroemer G. Trends Immunol 34 471-481 (2013)
  9. γδ T Cells Shape Preimmune Peripheral B Cell Populations. Huang Y, Getahun A, Heiser RA, Detanico TO, Aviszus K, Kirchenbaum GA, Casper TL, Huang C, Aydintug MK, Carding SR, Ikuta K, Huang H, Wysocki LJ, Cambier JC, O'Brien RL, Born WK. J Immunol 196 217-231 (2016)
  10. UVB-induced skin inflammation and cutaneous tissue injury is dependent on the MHC class I-like protein, CD1d. Ryser S, Schuppli M, Gauthier B, Hernandez DR, Roye O, Hohl D, German B, Holzwarth JA, Moodycliffe AM. J Invest Dermatol 134 192-202 (2014)
  11. Host-derived lipids orchestrate pulmonary γδ T cell response to provide early protection against influenza virus infection. Wang X, Lin X, Zheng Z, Lu B, Wang J, Tan AH, Zhao M, Loh JT, Ng SW, Chen Q, Xiao F, Huang E, Ko KH, Huang Z, Li J, Kok KH, Lu G, Liu X, Lam KP, Liu W, Zhang Y, Yuen KY, Mak TW, Lu L. Nat Commun 12 1914 (2021)
  12. Identification and Characterization of Adipose Tissue-Derived Human Antibodies With "Anti-self" Specificity. Frasca D, Diaz A, Romero M, Garcia D, Jayram D, Thaller S, Del Carmen Piqueras M, Bhattacharya S, Blomberg BB. Front Immunol 11 392 (2020)
  13. The co-stimulatory effects of MyD88-dependent Toll-like receptor signaling on activation of murine γδ T cells. Zhang J, Wang J, Pang L, Xie G, Welte T, Saxena V, Wicker J, Mann B, Soong L, Barrett A, Born W, O'Brien R, Wang T. PLoS One 9 e108156 (2014)
  14. Biosynthesis of oxidized lipid mediators via lipoprotein-associated phospholipase A2 hydrolysis of extracellular cardiolipin induces endothelial toxicity. Buland JR, Wasserloos KJ, Tyurin VA, Tyurina YY, Amoscato AA, Mallampalli RK, Chen BB, Zhao J, Zhao Y, Ofori-Acquah S, Kagan VE, Pitt BR. Am J Physiol Lung Cell Mol Physiol 311 L303-16 (2016)
  15. Involvement of IL-17A-producing TCR γδ T cells in late protective immunity against pulmonary Mycobacterium tuberculosis infection. Umemura M, Okamoto-Yoshida Y, Yahagi A, Touyama S, Nakae S, Iwakura Y, Matsuzaki G. Immun Inflamm Dis 4 401-412 (2016)
  16. Towards multivalent CD1d ligands: synthesis and biological activity of homodimeric α-galactosyl ceramide analogues. Jervis PJ, Moulis M, Jukes JP, Ghadbane H, Cox LR, Cerundolo V, Besra GS. Carbohydr Res 356 152-162 (2012)
  17. Sphingosine Kinase Blockade Leads to Increased Natural Killer T Cell Responses to Mantle Cell Lymphoma. Lee MS, Sun W, Webb TJ. Cells 9 E1030 (2020)
  18. Cell cycle arrest and cell survival induce reverse trends of cardiolipin remodeling. Chao YJ, Chang WH, Ting HC, Chao WT, Hsu YH. PLoS One 9 e113680 (2014)
  19. Dysregulated CD25 and Cytokine Expression by γδ T Cells of Systemic Sclerosis Patients Stimulated With Cardiolipin and Zoledronate. Migalovich Sheikhet H, Villacorta Hidalgo J, Fisch P, Balbir-Gurman A, Braun-Moscovici Y, Bank I. Front Immunol 9 753 (2018)
  20. Identification and characterization of TCRγ and TCRδ chains in channel catfish, Ictalurus punctatus. Moulana M, Taylor EB, Edholm ES, Quiniou SM, Wilson M, Bengtén E. Immunogenetics 66 545-561 (2014)
  21. Phospholipid metabolites of the gut microbiota promote hypoxia-induced intestinal injury via CD1d-dependent γδ T cells. Li Y, Wang Y, Shi F, Zhang X, Zhang Y, Bi K, Chen X, Li L, Diao H. Gut Microbes 14 2096994 (2022)
  22. Type II NKT Cell Agonist, Sulfatide, Is an Effective Adjuvant for Oral Heat-Killed Cholera Vaccines. Albutti A, Longet S, McEntee CP, Quinn S, Liddicoat A, Rîmniceanu C, Lycke N, Lynch L, Cardell S, Lavelle EC. Vaccines (Basel) 9 619 (2021)
  23. Self-glycerophospholipids activate murine phospholipid-reactive T cells and inhibit iNKT cell activation by competing with ligands for CD1d loading. Halder RC, Tran C, Prasad P, Wang J, Nallapothula D, Ishikawa T, Wang M, Zajonc DM, Singh RR. Eur J Immunol 49 242-254 (2019)
  24. Expression of CD1d by astrocytes corresponds with relative activity in multiple sclerosis lesions. Muir FGW, Samadi-Bahrami Z, Moore GRW, Quandt JA. Brain Pathol 30 26-35 (2020)
  25. Regulation of Synovial γδ T Cell Ligand Expression by Mitochondrial Reactive Oxygen Species and Gasdermin-D. Collins CC, Hahn P, Jiang Z, Fitzgerald KA, Xiao TS, Budd RC. J Immunol 210 61-71 (2023)
  26. Structural basis of NKT cell inhibition using the T-cell receptor-blocking anti-CD1d antibody 1B1. Ying G, Wang J, Mallevaey T, Van Calenbergh S, Zajonc DM. J Biol Chem 294 12947-12956 (2019)