3kyc Citations

Active site remodelling accompanies thioester bond formation in the SUMO E1.

Nature 463 906-12 (2010)
Cited: 133 times
EuropePMC logo PMID: 20164921

Abstract

E1 enzymes activate ubiquitin (Ub) and ubiquitin-like (Ubl) proteins in two steps by carboxy-terminal adenylation and thioester bond formation to a conserved catalytic cysteine in the E1 Cys domain. The structural basis for these intermediates remains unknown. Here we report crystal structures for human SUMO E1 in complex with SUMO adenylate and tetrahedral intermediate analogues at 2.45 and 2.6 A, respectively. These structures show that side chain contacts to ATP.Mg are released after adenylation to facilitate a 130 degree rotation of the Cys domain during thioester bond formation that is accompanied by remodelling of key structural elements including the helix that contains the E1 catalytic cysteine, the crossover and re-entry loops, and refolding of two helices that are required for adenylation. These changes displace side chains required for adenylation with side chains required for thioester bond formation. Mutational and biochemical analyses indicate these mechanisms are conserved in other E1s.

Reviews - 3kyc mentioned but not cited (4)

  1. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Cappadocia L, Lima CD. Chem Rev 118 889-918 (2018)
  2. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  3. Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK. Cytoskeleton (Hoboken) 72 305-339 (2015)
  4. Targeting adenylate-forming enzymes with designed sulfonyladenosine inhibitors. Lux MC, Standke LC, Tan DS. J Antibiot (Tokyo) 72 325-349 (2019)

Articles - 3kyc mentioned but not cited (9)

  1. Active site remodelling accompanies thioester bond formation in the SUMO E1. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Nature 463 906-912 (2010)
  2. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Olsen SK, Lima CD. Mol Cell 49 884-896 (2013)
  3. Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Lv Z, Yuan L, Atkison JH, Williams KM, Vega R, Sessions EH, Divlianska DB, Davies C, Chen Y, Olsen SK. Nat Commun 9 5145 (2018)
  4. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS One 5 e15805 (2010)
  5. Mutations in UBA3 confer resistance to the NEDD8-activating enzyme inhibitor MLN4924 in human leukemic cells. Xu GW, Toth JI, da Silva SR, Paiva SL, Lukkarila JL, Hurren R, Maclean N, Sukhai MA, Bhattacharjee RN, Goard CA, Medeiros B, Gunning PT, Dhe-Paganon S, Petroski MD, Schimmer AD. PLoS One 9 e93530 (2014)
  6. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1. Lv Z, Yuan L, Atkison JH, Aldana-Masangkay G, Chen Y, Olsen SK. J Biol Chem 292 12089-12099 (2017)
  7. Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems. Reiter KH, Ramachandran A, Xia X, Boucher LE, Bosch J, Matunis MJ. J Biol Chem 291 3860-3870 (2016)
  8. Targeting SUMOylation dependency in human cancer stem cells through a unique SAE2 motif revealed by chemical genomics. Benoit YD, Mitchell RR, Wang W, Orlando L, Boyd AL, Tanasijevic B, Aslostovar L, Shapovalova Z, Doyle M, Bergin CJ, Vojnits K, Casado FL, Di Lu J, Porras DP, García-Rodriguez JL, Russell J, Zouggar A, Masibag AN, Caba C, Koteva K, Kinthada LK, Patel JS, Andres SN, Magolan J, Collins TJ, Wright GD, Bhatia M. Cell Chem Biol 28 1394-1406.e10 (2021)
  9. The CacyBP/SIP protein is sumoylated in neuroblastoma NB2a cells. Wasik U, Filipek A. Neurochem Res 38 2427-2432 (2013)


Reviews citing this publication (36)

  1. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Gareau JR, Lima CD. Nat Rev Mol Cell Biol 11 861-871 (2010)
  2. Sumoylation: a regulatory protein modification in health and disease. Flotho A, Melchior F. Annu Rev Biochem 82 357-385 (2013)
  3. Protein neddylation: beyond cullin-RING ligases. Enchev RI, Schulman BA, Peter M. Nat Rev Mol Cell Biol 16 30-44 (2015)
  4. Covalent inhibitors in drug discovery: from accidental discoveries to avoided liabilities and designed therapies. Bauer RA. Drug Discov Today 20 1061-1073 (2015)
  5. Perilous journey: a tour of the ubiquitin-proteasome system. Kleiger G, Mayor T. Trends Cell Biol 24 352-359 (2014)
  6. Neuronal SUMOylation: mechanisms, physiology, and roles in neuronal dysfunction. Henley JM, Craig TJ, Wilkinson KA. Physiol Rev 94 1249-1285 (2014)
  7. SUMO: From Bench to Bedside. Chang HM, Yeh ETH. Physiol Rev 100 1599-1619 (2020)
  8. K11-linked ubiquitin chains as novel regulators of cell division. Wickliffe KE, Williamson A, Meyer HJ, Kelly A, Rape M. Trends Cell Biol 21 656-663 (2011)
  9. Chemoenzymatic Semisynthesis of Proteins. Thompson RE, Muir TW. Chem Rev 120 3051-3126 (2020)
  10. Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. Hewings DS, Flygare JA, Bogyo M, Wertz IE. FEBS J 284 1555-1576 (2017)
  11. Update on sumoylation: defining core components of the plant SUMO conjugation system by phylogenetic comparison. Novatchkova M, Tomanov K, Hofmann K, Stuible HP, Bachmair A. New Phytol 195 23-31 (2012)
  12. Unraveling the complexity of ubiquitin signaling. Strieter ER, Korasick DA. ACS Chem Biol 7 52-63 (2012)
  13. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol 11 65 (2013)
  14. Advances in the development of SUMO specific protease (SENP) inhibitors. Kumar A, Zhang KY. Comput Struct Biotechnol J 13 204-211 (2015)
  15. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem Soc Trans 44 212-227 (2016)
  16. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. Ther Adv Med Oncol 9 797-816 (2017)
  17. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci 20 1941-1954 (2011)
  18. Protein Engineering in the Ubiquitin System: Tools for Discovery and Beyond. Zhao B, Tsai YC, Jin B, Wang B, Wang Y, Zhou H, Carpenter T, Weissman AM, Yin J. Pharmacol Rev 72 380-413 (2020)
  19. Structural Diversity of Ubiquitin E3 Ligase. Toma-Fukai S, Shimizu T. Molecules 26 6682 (2021)
  20. The Role of Sumoylation in the Response to Hypoxia: An Overview. Filippopoulou C, Simos G, Chachami G. Cells 9 E2359 (2020)
  21. Decoding the messaging of the ubiquitin system using chemical and protein probes. Henneberg LT, Schulman BA. Cell Chem Biol 28 889-902 (2021)
  22. Post-translational Modifications of IκBα: The State of the Art. Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Front Cell Dev Biol 8 574706 (2020)
  23. Development and application of ubiquitin-based chemical probes. Sui X, Wang Y, Du YX, Liang LJ, Zheng Q, Li YM, Liu L. Chem Sci 11 12633-12646 (2020)
  24. SUMO mediated regulation of transcription factors as a mechanism for transducing environmental cues into cellular signaling in plants. Roy D, Sadanandom A. Cell Mol Life Sci 78 2641-2664 (2021)
  25. Trojan horse strategies used by pathogens to influence the small ubiquitin-like modifier (SUMO) system of host eukaryotic cells. Békés M, Drag M. J Innate Immun 4 159-167 (2012)
  26. Protein-protein interface analysis of the non-ribosomal peptide synthetase peptidyl carrier protein and enzymatic domains. Corpuz JC, Sanlley JO, Burkart MD. Synth Syst Biotechnol 7 677-688 (2022)
  27. SUMOylation in the control of cholesterol homeostasis. Talamillo A, Ajuria L, Grillo M, Barroso-Gomila O, Mayor U, Barrio R. Open Biol 10 200054 (2020)
  28. Current Status of SUMOylation Inhibitors. Brackett CM, Blagg BSJ. Curr Med Chem 28 3892-3912 (2021)
  29. SUMOylation in Glioblastoma: A Novel Therapeutic Target. Fox BM, Janssen A, Estevez-Ordonez D, Gessler F, Vicario N, Chagoya G, Elsayed G, Sotoudeh H, Stetler W, Friedman GK, Bernstock JD. Int J Mol Sci 20 E1853 (2019)
  30. SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence. Sahu MS, Patra S, Kumar K, Kaur R. J Fungi (Basel) 6 E32 (2020)
  31. Urm1: A Non-Canonical UBL. Termathe M, Leidel SA. Biomolecules 11 139 (2021)
  32. Developing Practical Therapeutic Strategies that Target Protein SUMOylation. Cox OF, Huber PW. Curr Drug Targets 20 960-969 (2019)
  33. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)
  34. Tools for the discovery of biopolymer producing cysteine relays. Mabbitt PD. Biophys Rev 13 247-258 (2021)
  35. Paradoxes of Cellular SUMOylation Regulation: A Role of Biomolecular Condensates? Cheng X, Yang W, Lin W, Mei F. Pharmacol Rev 75 979-1006 (2023)
  36. The converging path of protein SUMOylation in phytohormone signalling: highlights and new frontiers. Srivastava M, Verma V, Srivastava AK. Plant Cell Rep 40 2047-2061 (2021)

Articles citing this publication (84)

  1. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Mol Cell 44 462-475 (2011)
  2. Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Armstrong AA, Mohideen F, Lima CD. Nature 483 59-63 (2012)
  3. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA. Mol Cell 44 451-461 (2011)
  4. Biological applications of protein splicing. Vila-Perelló M, Muir TW. Cell 143 191-200 (2010)
  5. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains. Sundlov JA, Shi C, Wilson DJ, Aldrich CC, Gulick AM. Chem Biol 19 188-198 (2012)
  6. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains. Mitchell CA, Shi C, Aldrich CC, Gulick AM. Biochemistry 51 3252-3263 (2012)
  7. A framework for exhaustively mapping functional missense variants. Weile J, Sun S, Cote AG, Knapp J, Verby M, Mellor JC, Wu Y, Pons C, Wong C, van Lieshout N, Yang F, Tasan M, Tan G, Yang S, Fowler DM, Nussbaum R, Bloom JD, Vidal M, Hill DE, Aloy P, Roth FP. Mol Syst Biol 13 957 (2017)
  8. Elevated global SUMOylation in Ubc9 transgenic mice protects their brains against focal cerebral ischemic damage. Lee YJ, Mou Y, Maric D, Klimanis D, Auh S, Hallenbeck JM. PLoS One 6 e25852 (2011)
  9. Small-molecule activation of SERCA2a SUMOylation for the treatment of heart failure. Kho C, Lee A, Jeong D, Oh JG, Gorski PA, Fish K, Sanchez R, DeVita RJ, Christensen G, Dahl R, Hajjar RJ. Nat Commun 6 7229 (2015)
  10. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, Kim J, Song HK. Nat Struct Mol Biol 18 1323-1330 (2011)
  11. SUMO-2 and PIAS1 modulate insoluble mutant huntingtin protein accumulation. O'Rourke JG, Gareau JR, Ochaba J, Song W, Raskó T, Reverter D, Lee J, Monteys AM, Pallos J, Mee L, Vashishtha M, Apostol BL, Nicholson TP, Illes K, Zhu YZ, Dasso M, Bates GP, Difiglia M, Davidson B, Wanker EE, Marsh JL, Lima CD, Steffan JS, Thompson LM. Cell Rep 4 362-375 (2013)
  12. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, Duda DM, Kurinov I, Deng A, Fenn TD, Klionsky DJ, Schulman BA. Nat Struct Mol Biol 19 1242-1249 (2012)
  13. A cascading activity-based probe sequentially targets E1-E2-E3 ubiquitin enzymes. Mulder MP, Witting K, Berlin I, Pruneda JN, Wu KP, Chang JG, Merkx R, Bialas J, Groettrup M, Vertegaal AC, Schulman BA, Komander D, Neefjes J, El Oualid F, Ovaa H. Nat Chem Biol 12 523-530 (2016)
  14. The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. Békés M, Prudden J, Srikumar T, Raught B, Boddy MN, Salvesen GS. J Biol Chem 286 10238-10247 (2011)
  15. Development of FRET assay into quantitative and high-throughput screening technology platforms for protein-protein interactions. Song Y, Madahar V, Liao J. Ann Biomed Eng 39 1224-1234 (2011)
  16. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Pao KC, Stanley M, Han C, Lai YC, Murphy P, Balk K, Wood NT, Corti O, Corvol JC, Muqit MM, Virdee S. Nat Chem Biol 12 324-331 (2016)
  17. Determinants of small ubiquitin-like modifier 1 (SUMO1) protein specificity, E3 ligase, and SUMO-RanGAP1 binding activities of nucleoporin RanBP2. Gareau JR, Reverter D, Lima CD. J Biol Chem 287 4740-4751 (2012)
  18. Designed semisynthetic protein inhibitors of Ub/Ubl E1 activating enzymes. Lu X, Olsen SK, Capili AD, Cisar JS, Lima CD, Tan DS. J Am Chem Soc 132 1748-1749 (2010)
  19. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. Chen JJ, Tsu CA, Gavin JM, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke HK, Xu Q, Li P, Bence NF, Brownell JE, Dick LR. J Biol Chem 286 40867-40877 (2011)
  20. Streamlined expressed protein ligation using split inteins. Vila-Perelló M, Liu Z, Shah NH, Willis JA, Idoyaga J, Muir TW. J Am Chem Soc 135 286-292 (2013)
  21. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Toth JI, Yang L, Dahl R, Petroski MD. Cell Rep 1 309-316 (2012)
  22. Isoform-specific monobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design. Gilbreth RN, Truong K, Madu I, Koide A, Wojcik JB, Li NS, Piccirilli JA, Chen Y, Koide S. Proc Natl Acad Sci U S A 108 7751-7756 (2011)
  23. Structural and functional characterization of the phosphorylation-dependent interaction between PML and SUMO1. Cappadocia L, Mascle XH, Bourdeau V, Tremblay-Belzile S, Chaker-Margot M, Lussier-Price M, Wada J, Sakaguchi K, Aubry M, Ferbeyre G, Omichinski JG. Structure 23 126-138 (2015)
  24. Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1). Ungermannova D, Parker SJ, Nasveschuk CG, Wang W, Quade B, Zhang G, Kuchta RD, Phillips AJ, Liu X. PLoS One 7 e29208 (2012)
  25. Defining the SUMO System in Maize: SUMOylation Is Up-Regulated during Endosperm Development and Rapidly Induced by Stress. Augustine RC, York SL, Rytz TC, Vierstra RD. Plant Physiol 171 2191-2210 (2016)
  26. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Hann ZS, Ji C, Olsen SK, Lu X, Lux MC, Tan DS, Lima CD. Proc Natl Acad Sci U S A 116 15475-15484 (2019)
  27. Sumoylation in plants: mechanistic insights and its role in drought stress. Benlloch R, Lois LM. J Exp Bot 69 4539-4554 (2018)
  28. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Chembiochem 13 129-136 (2012)
  29. Structural basis for RING-Cys-Relay E3 ligase activity and its role in axon integrity. Mabbitt PD, Loreto A, Déry MA, Fletcher AJ, Stanley M, Pao KC, Wood NT, Coleman MP, Virdee S. Nat Chem Biol 16 1227-1236 (2020)
  30. Crystal structure of a human ubiquitin E1-ubiquitin complex reveals conserved functional elements essential for activity. Lv Z, Williams KM, Yuan L, Atkison JH, Olsen SK. J Biol Chem 293 18337-18352 (2018)
  31. SUMO is a pervasive regulator of meiosis. Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P, Ditzel A, Kopparapu S, Mahalawat M, Davies OR, Collins SR, Johnson JR, Krogan NJ, Hunter N. Elife 10 e57720 (2021)
  32. The Colossus of ubiquitylation: decrypting a cellular code. Williamson A, Werner A, Rape M. Mol Cell 49 591-600 (2013)
  33. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6. Gavin JM, Chen JJ, Liao H, Rollins N, Yang X, Xu Q, Ma J, Loke HK, Lingaraj T, Brownell JE, Mallender WD, Gould AE, Amidon BS, Dick LR. J Biol Chem 287 15512-15522 (2012)
  34. Redox regulation of SUMO enzymes is required for ATM activity and survival in oxidative stress. Stankovic-Valentin N, Drzewicka K, König C, Schiebel E, Melchior F. EMBO J 35 1312-1329 (2016)
  35. Distinctive properties of Arabidopsis SUMO paralogues support the in vivo predominant role of AtSUMO1/2 isoforms. Castaño-Miquel L, Seguí J, Lois LM. Biochem J 436 581-590 (2011)
  36. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway. Gavin JM, Hoar K, Xu Q, Ma J, Lin Y, Chen J, Chen W, Bruzzese FJ, Harrison S, Mallender WD, Bump NJ, Sintchak MD, Bence NF, Li P, Dick LR, Gould AE, Chen JJ. J Biol Chem 289 22648-22658 (2014)
  37. Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa. Ji C, Sharma I, Pratihar D, Hudson LL, Maura D, Guney T, Rahme LG, Pesci EC, Coleman JP, Tan DS. ACS Chem Biol 11 3061-3067 (2016)
  38. Allosteric Inhibition of Ubiquitin-like Modifications by a Class of Inhibitor of SUMO-Activating Enzyme. Li YJ, Du L, Wang J, Vega R, Lee TD, Miao Y, Aldana-Masangkay G, Samuels ER, Li B, Ouyang SX, Colayco SA, Bobkova EV, Divlianska DB, Sergienko E, Chung TDY, Fakih M, Chen Y. Cell Chem Biol 26 278-288.e6 (2019)
  39. Dissecting the Specificity of Adenosyl Sulfamate Inhibitors Targeting the Ubiquitin-Activating Enzyme. Misra M, Kuhn M, Löbel M, An H, Statsyuk AV, Sotriffer C, Schindelin H. Structure 25 1120-1129.e3 (2017)
  40. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM. Mol Plant 6 1646-1660 (2013)
  41. Identification of new SUMO activating enzyme 1 inhibitors using virtual screening and scaffold hopping. Kumar A, Ito A, Hirohama M, Yoshida M, Zhang KY. Bioorg Med Chem Lett 26 1218-1223 (2016)
  42. Mechanistic insight into protein modification and sulfur mobilization activities of noncanonical E1 and associated ubiquitin-like proteins of Archaea. Hepowit NL, de Vera IM, Cao S, Fu X, Wu Y, Uthandi S, Chavarria NE, Englert M, Su D, Sӧll D, Kojetin DJ, Maupin-Furlow JA. FEBS J 283 3567-3586 (2016)
  43. Specificity of the E1-E2-E3 enzymatic cascade for ubiquitin C-terminal sequences identified by phage display. Zhao B, Bhuripanyo K, Schneider J, Zhang K, Schindelin H, Boone D, Yin J. ACS Chem Biol 7 2027-2035 (2012)
  44. The ubiquitin-like modifier FAT10 interferes with SUMO activation. Aichem A, Sailer C, Ryu S, Catone N, Stankovic-Valentin N, Schmidtke G, Melchior F, Stengel F, Groettrup M. Nat Commun 10 4452 (2019)
  45. Small ubiquitin-like modifier (SUMO) modification mediates function of the inhibitory domains of developmental regulators FOXC1 and FOXC2. Danciu TE, Chupreta S, Cruz O, Fox JE, Whitman M, Iñiguez-Lluhí JA. J Biol Chem 287 18318-18329 (2012)
  46. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation. Mascle XH, Lussier-Price M, Cappadocia L, Estephan P, Raiola L, Omichinski JG, Aubry M. J Biol Chem 288 36312-36327 (2013)
  47. Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation. Wang J, Cai S, Chen Y. J Biol Chem 285 33457-33462 (2010)
  48. An E1-E2 fusion protein primes antiviral immune signalling in bacteria. Ledvina HE, Ye Q, Gu Y, Sullivan AE, Quan Y, Lau RK, Zhou H, Corbett KD, Whiteley AT. Nature 616 319-325 (2023)
  49. Identification of quinazolinyloxy biaryl urea as a new class of SUMO activating enzyme 1 inhibitors. Kumar A, Ito A, Hirohama M, Yoshida M, Zhang KY. Bioorg Med Chem Lett 23 5145-5149 (2013)
  50. Facile synthesis of covalent probes to capture enzymatic intermediates during E1 enzyme catalysis. An H, Statsyuk AV. Chem Commun (Camb) 52 2477-2480 (2016)
  51. A Chemical and Enzymatic Approach to Study Site-Specific Sumoylation. Albuquerque CP, Yeung E, Ma S, Fu T, Corbett KD, Zhou H. PLoS One 10 e0143810 (2015)
  52. Role of the Zn(2+) motif of E1 in SUMO adenylation. Wang J, Chen Y. J Biol Chem 285 23732-23738 (2010)
  53. A MUB E2 structure reveals E1 selectivity between cognate ubiquitin E2s in eukaryotes. Lu X, Malley KR, Brenner CC, Koroleva O, Korolev S, Downes BP. Nat Commun 7 12580 (2016)
  54. An in vitro Förster resonance energy transfer-based high-throughput screening assay for inhibitors of protein-protein interactions in SUMOylation pathway. Song Y, Liao J. Assay Drug Dev Technol 10 336-343 (2012)
  55. Hydrophobic Patch of Ubiquitin is Important for its Optimal Activation by Ubiquitin Activating Enzyme E1. Singh RK, Kazansky Y, Wathieu D, Fushman D. Anal Chem 89 7852-7860 (2017)
  56. Molecular basis for the bifunctional Uba4-Urm1 sulfur-relay system in tRNA thiolation and ubiquitin-like conjugation. Pabis M, Termathe M, Ravichandran KE, Kienast SD, Krutyhołowa R, Sokołowski M, Jankowska U, Grudnik P, Leidel SA, Glatt S. EMBO J 39 e105087 (2020)
  57. SUMO-mimicking peptides inhibiting protein SUMOylation. Zhao B, Villhauer EB, Bhuripanyo K, Kiyokawa H, Schindelin H, Yin J. Chembiochem 15 2662-2666 (2014)
  58. Systematic determinations of SUMOylation activation intermediates and dynamics by a sensitive and quantitative FRET assay. Song Y, Liao J. Mol Biosyst 8 1723-1729 (2012)
  59. Genome sequencing in families with congenital limb malformations. Elsner J, Mensah MA, Holtgrewe M, Hertzberg J, Bigoni S, Busche A, Coutelier M, de Silva DC, Elçioglu N, Filges I, Gerkes E, Girisha KM, Graul-Neumann L, Jamsheer A, Krawitz P, Kurth I, Markus S, Megarbane A, Reis A, Reuter MS, Svoboda D, Teller C, Tuysuz B, Türkmen S, Wilson M, Woitschach R, Vater I, Caliebe A, Hülsemann W, Horn D, Mundlos S, Spielmann M. Hum Genet 140 1229-1239 (2021)
  60. Structures of UBA6 explain its dual specificity for ubiquitin and FAT10. Truongvan N, Li S, Misra M, Kuhn M, Schindelin H. Nat Commun 13 4789 (2022)
  61. Crystal structures of an E1-E2-ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Yuan L, Lv Z, Adams MJ, Olsen SK. Nat Commun 12 2370 (2021)
  62. Structural analysis and evolution of specificity of the SUMO UFD E1-E2 interactions. Liu B, Lois LM, Reverter D. Sci Rep 7 41998 (2017)
  63. Crystal structures reveal catalytic and regulatory mechanisms of the dual-specificity ubiquitin/FAT10 E1 enzyme Uba6. Yuan L, Gao F, Lv Z, Nayak D, Nayak A, Santos Bury PD, Cano KE, Jia L, Oleinik N, Atilgan FC, Ogretmen B, Williams KM, Davies C, El Oualid F, Wasmuth EV, Olsen SK. Nat Commun 13 4880 (2022)
  64. Epac1 activation by cAMP regulates cellular SUMOylation and promotes the formation of biomolecular condensates. Yang W, Robichaux WG, Mei FC, Lin W, Li L, Pan S, White MA, Chen Y, Cheng X. Sci Adv 8 eabm2960 (2022)
  65. Biochemical characterization of the small ubiquitin-like modifiers of Chlamydomonas reinhardtii. Shin YC, Liu BY, Tsai JY, Wu JT, Chang LK, Chang SC. Planta 232 649-662 (2010)
  66. UBA2 variants underlie a recognizable syndrome with variable aplasia cutis congenita and ectrodactyly. Schnur RE, Yousaf S, Liu J, Chung WK, Rhodes L, Marble M, Zambrano RM, Sobreira N, Jayakar P, Pierpont ME, Schultz MJ, Pichurin PN, Olson RJ, Graham GE, Osmond M, Contreras-García GA, Campo-Neira KA, Peñaloza-Mantilla CA, Flage M, Kuppa S, Navarro K, Sacoto MJG, Wentzensen IM, Scarano MI, Juusola J, Prada CE, Hufnagel RB. Genet Med 23 1624-1635 (2021)
  67. Determination of SUMO1 and ATP affinity for the SUMO E1by quantitative FRET technology. Wiryawan H, Dan K, Etuale M, Shen Y, Liao J. Biotechnol Bioeng 112 652-658 (2015)
  68. Inhibition of NEDD8 and FAT10 ligase activities through the degrading enzyme NEDD8 ultimate buster 1: A potential anticancer approach. Tan KL, Pezzella F. Oncol Lett 12 4287-4296 (2016)
  69. A FRET Sensor to Monitor Bivalent SUMO-SIM Interactions in SUMO Chain Binding. Kost LJ, Mootz HD. Chembiochem 19 177-184 (2018)
  70. Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1-E2 thioester transfer. Afsar M, Liu G, Jia L, Ruben EA, Nayak D, Sayyad Z, Bury PDS, Cano KE, Nayak A, Zhao XR, Shukla A, Sung P, Wasmuth EV, Gack MU, Olsen SK. Nat Commun 14 4786 (2023)
  71. Specific substrate recognition and thioester intermediate determinations in ubiquitin and SUMO conjugation cascades revealed by a high-sensitive FRET assay. Jiang L, Saavedra AN, Way G, Alanis J, Kung R, Li J, Xiang W, Liao J. Mol Biosyst 10 778-786 (2014)
  72. Structure-Based Design, Synthesis, and Biological Evaluation of Non-Acyl Sulfamate Inhibitors of the Adenylate-Forming Enzyme MenE. Evans CE, Si Y, Matarlo JS, Yin Y, French JB, Tonge PJ, Tan DS. Biochemistry 58 1918-1930 (2019)
  73. And yet it moves: active site remodeling in the SUMO E1. Völler D, Schindelin H. Structure 18 419-421 (2010)
  74. Expression, purification, and crystal structure of N-terminal domains of human ubiquitin-activating enzyme (E1). Xie ST. Biosci Biotechnol Biochem 78 1542-1549 (2014)
  75. Mode of inhibitory binding of epigallocatechin gallate to the ubiquitin-activating enzyme Uba1 via accelerated molecular dynamics. Gaur P, Fenteany G, Tyagi C. RSC Adv 11 8264-8276 (2021)
  76. NMR assignments of ubiquitin fold domain (UFD) in SUMO-activating enzyme subunit 2 from rice. Suzuki R, Tsuchiya W, Shindo H, Yamazaki T. Biomol NMR Assign 5 245-248 (2011)
  77. Comment Structural biology: Transformative encounters. Schulman BA, Haas AL. Nature 463 889-890 (2010)
  78. UFM1-Activating Enzyme 5 (Uba5) Requires an Extension to Get the Job Done Right. Lv Z, Olsen SK. J Mol Biol 431 479-482 (2019)
  79. 1,10-phenanthroline inhibits sumoylation and reveals that yeast SUMO modifications are highly transient. McNeil JB, Lee SK, Oliinyk A, Raina S, Garg J, Moallem M, Urquhart-Cox V, Fillingham J, Cheung P, Rosonina E. EMBO Rep 25 68-81 (2024)
  80. Closing the gap of ubiquitin activation. Kumar M, Wiener R. Proc Natl Acad Sci U S A 116 15319-15321 (2019)
  81. Critical Non-Covalent Binding Intermediate for an Allosteric Covalent Inhibitor of SUMO E1. Pawnikar S, Bhattarai A, Ouyang SX, Vega R, Chen Y, Miao Y. J Phys Chem Lett 14 2792-2799 (2023)
  82. Comment Enzymes engineered to trap reaction intermediates. Gulick AM. Nature 565 28-29 (2019)
  83. Pyrophosphate modulates plant stress responses via SUMOylation. Patir-Nebioglu MG, Andrés Z, Krebs M, Fink F, Drzewicka K, Stankovic-Valentin N, Segami S, Schuck S, Büttner M, Hell R, Maeshima M, Melchior F, Schumacher K. Elife 8 e44213 (2019)
  84. Uba1: A Potential Ubiquitin-like Activator Protein of Urm1 in Toxoplasma gondii. Xiao Q, Li J, Chen J, Tan Q, Chen X, Li H, Zhao X, Zhang X. Int J Mol Sci 23 10298 (2022)