3kvf Citations

Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation.

Proc Natl Acad Sci U S A 107 9117-22 (2010)
Related entries: 3ifw, 3irt, 3kw5

Cited: 62 times
EuropePMC logo PMID: 20439756

Abstract

Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 A from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarily at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal beta-hairpin at the distal site-a surface-exposed hydrophobic crevice 17 A away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 A of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.

Reviews - 3kvf mentioned but not cited (2)

  1. Synthetic and semi-synthetic strategies to study ubiquitin signaling. van Tilburg GB, Elhebieshy AF, Ovaa H. Curr Opin Struct Biol 38 92-101 (2016)
  2. Deubiquitylating enzymes in neuronal health and disease. Amer-Sarsour F, Kordonsky A, Berdichevsky Y, Prag G, Ashkenazi A. Cell Death Dis 12 120 (2021)

Articles - 3kvf mentioned but not cited (3)

  1. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation. Boudreaux DA, Maiti TK, Davies CW, Das C. Proc Natl Acad Sci U S A 107 9117-9122 (2010)
  2. SARS-CoV-2 Papain-Like Protease Potential Inhibitors-In Silico Quantitative Assessment. Stasiulewicz A, Maksymiuk AW, Nguyen ML, Bełza B, Sulkowska JI. Int J Mol Sci 22 3957 (2021)
  3. Stabilization of an unusual salt bridge in ubiquitin by the extra C-terminal domain of the proteasome-associated deubiquitinase UCH37 as a mechanism of its exo specificity. Morrow ME, Kim MI, Ronau JA, Sheedlo MJ, White RR, Chaney J, Paul LN, Lill MA, Artavanis-Tsakonas K, Das C. Biochemistry 52 3564-3578 (2013)


Reviews citing this publication (12)

  1. RBR E3 ubiquitin ligases: new structures, new insights, new questions. Spratt DE, Walden H, Shaw GS. Biochem J 458 421-437 (2014)
  2. Regulation of proteolysis by human deubiquitinating enzymes. Eletr ZM, Wilkinson KD. Biochim Biophys Acta 1843 114-128 (2014)
  3. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Bishop P, Rocca D, Henley JM. Biochem J 473 2453-2462 (2016)
  4. Balancing act: deubiquitinating enzymes in the nervous system. Todi SV, Paulson HL. Trends Neurosci 34 370-382 (2011)
  5. Deubiquitinases and the new therapeutic opportunities offered to cancer. Pfoh R, Lacdao IK, Saridakis V. Endocr Relat Cancer 22 T35-54 (2015)
  6. Substrate specificity of the ubiquitin and Ubl proteases. Ronau JA, Beckmann JF, Hochstrasser M. Cell Res 26 441-456 (2016)
  7. Deubiquitinating enzymes in cellular signaling and disease regulation. Hanpude P, Bhattacharya S, Dey AK, Maiti TK. IUBMB Life 67 544-555 (2015)
  8. Recent Advances in the Discovery of Deubiquitinating Enzyme Inhibitors. Kemp M. Prog Med Chem 55 149-192 (2016)
  9. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Expert Opin Ther Targets 21 627-638 (2017)
  10. Strategies to Target ISG15 and USP18 Toward Therapeutic Applications. Jiménez Fernández D, Hess S, Knobeloch KP. Front Chem 7 923 (2019)
  11. Parkinson's disease: from genetics to treatments. Fan HC, Chen SJ, Harn HJ, Lin SZ. Cell Transplant 22 639-652 (2013)
  12. Using protein motion to read, write, and erase ubiquitin signals. Phillips AH, Corn JE. J Biol Chem 290 26437-26444 (2015)

Articles citing this publication (45)

  1. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, Delil S, Caglayan AO, Baranoski JF, Erturk O, Yalcinkaya C, Karacorlu M, Dincer A, Johnson MH, Mane S, Chandra SS, Louvi A, Boggon TJ, Lifton RP, Horwich AL, Gunel M. Proc Natl Acad Sci U S A 110 3489-3494 (2013)
  2. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK. Mol Cell 57 887-900 (2015)
  3. Structural basis for the activation and inhibition of the UCH37 deubiquitylase. Vander Linden RT, Hemmis CW, Schmitt B, Ndoja A, Whitby FG, Robinson H, Cohen RE, Yao T, Hill CP. Mol Cell 57 901-911 (2015)
  4. Ubiquitin-specific Protease-7 Inhibition Impairs Tip60-dependent Foxp3+ T-regulatory Cell Function and Promotes Antitumor Immunity. Wang L, Kumar S, Dahiya S, Wang F, Wu J, Newick K, Han R, Samanta A, Beier UH, Akimova T, Bhatti TR, Nicholson B, Kodrasov MP, Agarwal S, Sterner DE, Gu W, Weinstock J, Butt TR, Albelda SM, Hancock WW. EBioMedicine 13 99-112 (2016)
  5. Ubiquitin C-terminal hydrolase-L1 potentiates cancer chemosensitivity by stabilizing NOXA. Brinkmann K, Zigrino P, Witt A, Schell M, Ackermann L, Broxtermann P, Schüll S, Andree M, Coutelle O, Yazdanpanah B, Seeger JM, Klubertz D, Drebber U, Hacker UT, Krönke M, Mauch C, Hoppe T, Kashkar H. Cell Rep 3 881-891 (2013)
  6. Reactive-site-centric chemoproteomics identifies a distinct class of deubiquitinase enzymes. Hewings DS, Heideker J, Ma TP, AhYoung AP, El Oualid F, Amore A, Costakes GT, Kirchhofer D, Brasher B, Pillow T, Popovych N, Maurer T, Schwerdtfeger C, Forrest WF, Yu K, Flygare J, Bogyo M, Wertz IE. Nat Commun 9 1162 (2018)
  7. The effect of Parkinson's-disease-associated mutations on the deubiquitinating enzyme UCH-L1. Andersson FI, Werrell EF, McMorran L, Crone WJ, Das C, Hsu ST, Jackson SE. J Mol Biol 407 261-272 (2011)
  8. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, Paul LN, Das C. Biochemistry 53 3199-3217 (2014)
  9. The Succinated Proteome of FH-Mutant Tumours. Yang M, Ternette N, Su H, Dabiri R, Kessler BM, Adam J, Teh BT, Pollard PJ. Metabolites 4 640-654 (2014)
  10. The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Sosna J, Voigt S, Mathieu S, Kabelitz D, Trad A, Janssen O, Meyer-Schwesinger C, Schütze S, Adam D. Cell Commun Signal 11 76 (2013)
  11. Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. Mtango NR, Sutovsky M, Susor A, Zhong Z, Latham KE, Sutovsky P. J Cell Physiol 227 1592-1603 (2012)
  12. Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Zhou ZR, Zhang YH, Liu S, Song AX, Hu HY. Biochem J 441 143-149 (2012)
  13. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Sarovar Bhavesh N, Ranjan Jana N, Kanti Maiti T. Sci Rep 7 44558 (2017)
  14. Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. VanderLinden RT, Hemmis CW, Yao T, Robinson H, Hill CP. J Biol Chem 292 9493-9504 (2017)
  15. Cell-Permeable Activity-Based Ubiquitin Probes Enable Intracellular Profiling of Human Deubiquitinases. Gui W, Ott CA, Yang K, Chung JS, Shen S, Zhuang Z. J Am Chem Soc 140 12424-12433 (2018)
  16. Crystal structure of the catalytic domain of UCHL5, a proteasome-associated human deubiquitinating enzyme, reveals an unproductive form of the enzyme. Maiti TK, Permaul M, Boudreaux DA, Mahanic C, Mauney S, Das C. FEBS J 278 4917-4926 (2011)
  17. Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. Iphöfer A, Kummer A, Nimtz M, Ritter A, Arnold T, Frank R, van den Heuvel J, Kessler BM, Jänsch L, Franke R. Chembiochem 13 1416-1420 (2012)
  18. Deubiquitinases as potential anti-cancer targets for gold(III) complexes. Zhang JJ, Ng KM, Lok CN, Sun RW, Che CM. Chem Commun (Camb) 49 5153-5155 (2013)
  19. The co-crystal structure of ubiquitin carboxy-terminal hydrolase L1 (UCHL1) with a tripeptide fluoromethyl ketone (Z-VAE(OMe)-FMK). Davies CW, Chaney J, Korbel G, Ringe D, Petsko GA, Ploegh H, Das C. Bioorg Med Chem Lett 22 3900-3904 (2012)
  20. Endogenous neurotoxic dopamine derivative covalently binds to Parkinson's disease-associated ubiquitin C-terminal hydrolase L1 and alters its structure and function. Contu VR, Kotake Y, Toyama T, Okuda K, Miyara M, Sakamoto S, Samizo S, Sanoh S, Kumagai Y, Ohta S. J Neurochem 130 826-838 (2014)
  21. An evolutionary approach to systematic discovery of novel deubiquitinases, applied to Legionella. Hermanns T, Woiwode I, Guerreiro RF, Vogt R, Lammers M, Hofmann K. Life Sci Alliance 3 e202000838 (2020)
  22. Drosophila Ubiquitin C-Terminal Hydrolase Knockdown Model of Parkinson's Disease. Tran HH, Dang SNA, Nguyen TT, Huynh AM, Dao LM, Kamei K, Yamaguchi M, Dang TTP. Sci Rep 8 4468 (2018)
  23. Unstructured Biology of Proteins from Ubiquitin-Proteasome System: Roles in Cancer and Neurodegenerative Diseases. Gadhave K, Kumar P, Kapuganti SK, Uversky VN, Giri R. Biomolecules 10 E796 (2020)
  24. Contribution of active site glutamine to rate enhancement in ubiquitin C-terminal hydrolases. Boudreaux DA, Chaney J, Maiti TK, Das C. FEBS J 279 1106-1118 (2012)
  25. A new target for an old DUB: UCH-L1 regulates mitofusin-2 levels, altering mitochondrial morphology, function and calcium uptake. Cerqueira FM, von Stockum S, Giacomello M, Goliand I, Kakimoto P, Marchesan E, De Stefani D, Kowaltowski AJ, Ziviani E, Shirihai OS. Redox Biol 37 101676 (2020)
  26. Glutathione-mediated reversibility of covalent modification of ubiquitin carboxyl-terminal hydrolase L1 by 1,2-naphthoquinone through Cys152, but not Lys4. Toyama T, Shinkai Y, Yazawa A, Kakehashi H, Kaji T, Kumagai Y. Chem Biol Interact 214 41-48 (2014)
  27. Ubiquitin Chains Modified by the Bacterial Ligase SdeA Are Protected from Deubiquitinase Hydrolysis. Puvar K, Zhou Y, Qiu J, Luo ZQ, Wirth MJ, Das C. Biochemistry 56 4762-4766 (2017)
  28. Characterization of the Folding of a 52-Knotted Protein Using Engineered Single-Tryptophan Variants. Zhang H, Jackson SE. Biophys J 111 2587-2599 (2016)
  29. Entropic stabilization of a deubiquitinase provides conformational plasticity and slow unfolding kinetics beneficial for functioning on the proteasome. Lee YC, Chang CY, Chen SY, Pan YR, Ho MR, Hsu SD. Sci Rep 7 45174 (2017)
  30. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2. Abdul Rehman SA, Armstrong LA, Lange SM, Kristariyanto YA, Gräwert TW, Knebel A, Svergun DI, Kulathu Y. Mol Cell 81 4176-4190.e6 (2021)
  31. Met1-specific motifs conserved in OTUB subfamily of green plants enable rice OTUB1 to hydrolyse Met1 ubiquitin chains. Lu L, Zhai X, Li X, Wang S, Zhang L, Wang L, Jin X, Liang L, Deng Z, Li Z, Wang Y, Fu X, Hu H, Wang J, Mei Z, He Z, Wang F. Nat Commun 13 4672 (2022)
  32. Synthesis of Branched Triubiquitin Active-Site Directed Probes. Liu J, Li Y, Deol KK, Strieter ER. Org Lett 21 6790-6794 (2019)
  33. Early and rapid detection of UCHL1 in the serum of brain-trauma patients: a novel gold nanoparticle-based method for diagnosing the severity of brain injury. Singh GP, Nigam R, Tomar GS, Monisha M, Bhoi SK, S A, Sengar K, Akula D, Panta P, Anindya R. Analyst 143 3366-3373 (2018)
  34. Antibody toolkit reveals N-terminally ubiquitinated substrates of UBE2W. Davies CW, Vidal SE, Phu L, Sudhamsu J, Hinkle TB, Chan Rosenberg S, Schumacher FR, Zeng YJ, Schwerdtfeger C, Peterson AS, Lill JR, Rose CM, Shaw AS, Wertz IE, Kirkpatrick DS, Koerber JT. Nat Commun 12 4608 (2021)
  35. Behr syndrome and hypertrophic cardiomyopathy in a family with a novel UCHL1 deletion. McMacken G, Lochmüller H, Bansagi B, Pyle A, Lochmüller A, Chinnery PF, Laurie S, Beltran S, Matalonga L, Horvath R. J Neurol 267 3643-3649 (2020)
  36. Rational Development and Characterization of a Ubiquitin Variant with Selectivity for Ubiquitin C-Terminal Hydrolase L3. Hewitt CS, Das C, Flaherty DP. Biomolecules 12 62 (2022)
  37. Ubiquitin recognition of BAP1: understanding its enzymatic function. Hanpude P, Bhattacharya S, Kumar Singh A, Kanti Maiti T. Biosci Rep 37 BSR20171099 (2017)
  38. Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Sheedlo MJ, Kenny S, Podkorytov IS, Brown K, Ma J, Iyer S, Hewitt CS, Arbough T, Mikhailovskii O, Flaherty DP, Wilson MA, Skrynnikov NR, Das C. Biochemistry 60 584-596 (2021)
  39. Molecular Characterization and Expression Profiles of Sp-uchl3 and Sp-uchl5 during Gonad Development of Scylla paramamosain. Han K, Dai Y, Zhang Z, Zou Z, Wang Y. Molecules 23 E213 (2018)
  40. Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis. Reichelt J, Sachs W, Frömbling S, Fehlert J, Studencka-Turski M, Betz A, Loreth D, Blume L, Witt S, Pohl S, Brand J, Czesla M, Knop J, Florea BI, Zielinski S, Sachs M, Hoxha E, Hermans-Borgmeyer I, Zahner G, Wiech T, Krüger E, Meyer-Schwesinger C. Nat Commun 14 2114 (2023)
  41. Optimization and Anti-Cancer Properties of Fluoromethylketones as Covalent Inhibitors for Ubiquitin C-Terminal Hydrolase L1. Krabill AD, Chen H, Hussain S, Hewitt CS, Imhoff RD, Muli CS, Das C, Galardy PJ, Wendt MK, Flaherty DP. Molecules 26 1227 (2021)
  42. Production of polyclonal anti-dUCH (Drosophila ubiquitin carboxyl-terminal hydrolase) antibodies. Tram NT, Trang NT, Thao DT, Thuoc TL. Monoclon Antib Immunodiagn Immunother 32 105-112 (2013)
  43. Structural basis for specific inhibition of the deubiquitinase UCHL1. Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Nat Commun 13 5950 (2022)
  44. Characterization of Deubiquitinase Catalytic State Using a Structure-Based Approach. Zhang Z, Das C. Methods Mol Biol 2591 1-15 (2023)
  45. Cocrystallization of ubiquitin-deubiquitinase complexes through disulfide linkage. Negron Teron KI, Das C. Acta Crystallogr D Struct Biol 79 1044-1055 (2023)