3krr Citations

Potent and selective inhibition of polycythemia by the quinoxaline JAK2 inhibitor NVP-BSK805.

Abstract

The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2(V617F) mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase. Here, we report potent inhibition of JAK2(V617F) and JAK2 wild-type enzymes by a novel substituted quinoxaline, NVP-BSK805, which acts in an ATP-competitive manner. Within the JAK family, NVP-BSK805 displays more than 20-fold selectivity towards JAK2 in vitro, as well as excellent selectivity in broader kinase profiling. The compound blunts constitutive STAT5 phosphorylation in JAK2(V617F)-bearing cells, with concomitant suppression of cell proliferation and induction of apoptosis. In vivo, NVP-BSK805 exhibited good oral bioavailability and a long half-life. The inhibitor was efficacious in suppressing leukemic cell spreading and splenomegaly in a Ba/F3 JAK2(V617F) cell-driven mouse mechanistic model. Furthermore, NVP-BSK805 potently suppressed recombinant human erythropoietin-induced polycythemia and extramedullary erythropoiesis in mice and rats.

Reviews - 3krr mentioned but not cited (2)

  1. The use of structural biology in Janus kinase targeted drug discovery. Alicea-Velázquez NL, Boggon TJ. Curr Drug Targets 12 546-555 (2011)
  2. JAK inhibitors for the treatment of myeloproliferative neoplasms and other disorders. Vainchenker W, Leroy E, Gilles L, Marty C, Plo I, Constantinescu SN. F1000Res 7 82 (2018)

Articles - 3krr mentioned but not cited (18)

  1. Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Shan Y, Gnanasambandan K, Ungureanu D, Kim ET, Hammarén H, Yamashita K, Silvennoinen O, Shaw DE, Hubbard SR. Nat. Struct. Mol. Biol. 21 579-584 (2014)
  2. KLIFS: an overhaul after the first 5 years of supporting kinase research. Kanev GK, de Graaf C, Westerman BA, de Esch IJP, Kooistra AJ. Nucleic Acids Res 49 D562-D569 (2021)
  3. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Hu F, Song D, Yan Y, Huang C, Shen C, Lan J, Chen Y, Liu A, Wu Q, Sun L, Xu F, Hu F, Chen L, Luo X, Feng Y, Huang S, Hu J, Wang G. Nat Commun 12 3651 (2021)
  4. Oridonin inhibits tumor angiogenesis and induces vessel normalization in experimental colon cancer. Zhou J, Li Y, Shi X, Hao S, Zhang F, Guo Z, Gao Y, Guo H, Liu L. J Cancer 12 3257-3264 (2021)
  5. Momordica charantia silver nanoparticles modulate SOCS/JAK/STAT and P13K/Akt/PTEN signalling pathways in the kidney of streptozotocin-induced diabetic rats. Elekofehinti OO, Oyedokun VO, Iwaloye O, Lawal AO, Ejelonu OC. J Diabetes Metab Disord 20 245-260 (2021)
  6. Effects of Vitexin, a Natural Flavonoid Glycoside, on the Proliferation, Invasion, and Apoptosis of Human U251 Glioblastoma Cells. Huang J, Zhou Y, Zhong X, Su F, Xu L. Oxid Med Cell Longev 2022 3129155 (2022)
  7. Design, Synthesis and Docking Studies of Flavokawain B Type Chalcones and Their Cytotoxic Effects on MCF-7 and MDA-MB-231 Cell Lines. Abu Bakar A, Akhtar MN, Mohd Ali N, Yeap SK, Quah CK, Loh WS, Alitheen NB, Zareen S, Ul-Haq Z, Shah SAA. Molecules 23 (2018)
  8. Potential Stereoselective Binding of Trans-(±)-Kusunokinin and Cis-(±)-Kusunokinin Isomers to CSF1R. Chompunud Na Ayudhya C, Graidist P, Tipmanee V. Molecules 27 4194 (2022)
  9. Rhein Protects Against Severe Acute Pancreatitis In vitro and In vivo by Regulating the JAK2/STAT3 Pathway. Yang X, Geng H, You L, Yuan L, Meng J, Ma Y, Gu X, Lei M. Front Pharmacol 13 778221 (2022)
  10. A Potential Anticancer Mechanism of Finger Root (Boesenbergia rotunda) Extracts against a Breast Cancer Cell Line. Widyananda MH, Wicaksono ST, Rahmawati K, Puspitarini S, Ulfa SM, Jatmiko YD, Masruri M, Widodo N. Scientifica (Cairo) 2022 9130252 (2022)
  11. Cytotoxic Activity and Docking Studies of 2-arenoxybenzaldehyde N-acyl Hydrazone and 1,3,4-Oxadiazole Derivatives against Various Cancer Cell Lines. Aydın E, Şentürk AM, Küçük HB, Güzel M. Molecules 27 7309 (2022)
  12. Field-based 3D-QSAR for tyrosine protein kinase JAK-2 inhibitors. Andole S, Thumma G, Alavala RR, Gangarapu K. J Biomol Struct Dyn 1-13 (2023)
  13. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Front Pharmacol 13 837369 (2022)
  14. Inhibitors Targeting Multiple Janus Kinases From Zanthoxylum simulans Mediate Inhibition and Apoptosis Against Gastric Cancer Cells via the Estrogen Pathway. Tian YQ, Hu D, Zhang YL, Zou J, Chen GL, Guo MQ. Front Chem 10 922110 (2022)
  15. Oxazinethione Derivatives as a Precursor to Pyrazolone and Pyrimidine Derivatives: Synthesis, Biological Activities, Molecular Modeling, ADME, and Molecular Dynamics Studies. Abdellattif MH, Shahbaaz M, Arief MMH, Hussien MA. Molecules 26 5482 (2021)
  16. Prediction of kinase-inhibitor binding affinity using energetic parameters. Usha S, Selvaraj S. Bioinformation 12 172-181 (2016)
  17. Rapid Identification of Inhibitors and Prediction of Ligand Selectivity for Multiple Proteins: Application to Protein Kinases. Ma Z, Huang SY, Cheng F, Zou X. J Phys Chem B 125 2288-2298 (2021)
  18. Synthesis of an aggregation-induced emission-based fluorescent probe based on rupestonic acid. Cui Z, Zhang Y, Zhang Z, Abudurexiti A, Yusuf A. RSC Adv 13 25369-25378 (2023)


Reviews citing this publication (12)

  1. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Nat Rev Drug Discov 10 127-140 (2011)
  2. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Pencik J, Pham HT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L. Cytokine 87 26-36 (2016)
  3. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. Gäbler K, Behrmann I, Haan C. JAKSTAT 2 e25025 (2013)
  4. Janus kinase inhibition and its effect upon the therapeutic landscape for myelofibrosis: from palliation to cure? Harrison C, Verstovsek S, McMullin MF, Mesa R. Br. J. Haematol. 157 426-437 (2012)
  5. New JAK2 inhibitors for myeloproliferative neoplasms. Quintás-Cardama A, Verstovsek S. Expert Opin Investig Drugs 20 961-972 (2011)
  6. Rethinking JAK2 inhibition: towards novel strategies of more specific and versatile Janus kinase inhibition. Leroy E, Constantinescu SN. Leukemia 31 1023-1038 (2017)
  7. Selective JAK inhibitors. Dymock BW, Yang EG, Chu-Farseeva Y, Yao L. Future Med Chem 6 1439-1471 (2014)
  8. "Do We Know Jack" About JAK? A Closer Look at JAK/STAT Signaling Pathway. Bousoik E, Montazeri Aliabadi H. Front Oncol 8 287 (2018)
  9. Pharmacological Inhibition of Oncogenic STAT3 and STAT5 Signaling in Hematopoietic Cancers. Brachet-Botineau M, Polomski M, Neubauer HA, Juen L, Hédou D, Viaud-Massuard MC, Prié G, Gouilleux F. Cancers (Basel) 12 (2020)
  10. Quinoxaline-Based Scaffolds Targeting Tyrosine Kinases and Their Potential Anticancer Activity. El Newahie AM, Ismail NS, Abou El Ella DA, Abouzid KA. Arch. Pharm. (Weinheim) 349 309-326 (2016)
  11. Second-Generation Jak2 Inhibitors for Advanced Prostate Cancer: Are We Ready for Clinical Development? Beinhoff P, Sabharwal L, Udhane V, Maranto C, LaViolette PS, Jacobsohn KM, Tsai S, Iczkowski KA, Wang L, Hall WA, Dehm SM, Kilari D, Nevalainen MT. Cancers (Basel) 13 5204 (2021)
  12. Preclinical models for drug selection in myeloproliferative neoplasms. Bartalucci N, Bogani C, Vannucchi AM. Curr Hematol Malig Rep 8 317-324 (2013)

Articles citing this publication (46)

  1. The JAK2/STAT3 signaling pathway is required for growth of CD44⁺CD24⁻ stem cell-like breast cancer cells in human tumors. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gönen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K. J. Clin. Invest. 121 2723-2735 (2011)
  2. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Ott CJ, Kopp N, Bird L, Paranal RM, Qi J, Bowman T, Rodig SJ, Kung AL, Bradner JE, Weinstock DM. Blood 120 2843-2852 (2012)
  3. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Britschgi A, Andraos R, Brinkhaus H, Klebba I, Romanet V, Müller U, Murakami M, Radimerski T, Bentires-Alj M. Cancer Cell 22 796-811 (2012)
  4. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, Toms AV, Marubayashi S, Christie AL, McKeown M, Paranal RM, Bradner JE, Yoda A, Gaul C, Vangrevelinghe E, Romanet V, Murakami M, Tiedt R, Ebel N, Evrot E, De Pover A, Régnier CH, Erdmann D, Hofmann F, Eck MJ, Sallan SE, Levine RL, Kung AL, Baffert F, Radimerski T, Weinstock DM. J. Exp. Med. 209 259-273 (2012)
  5. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Toso A, Revandkar A, Di Mitri D, Guccini I, Proietti M, Sarti M, Pinton S, Zhang J, Kalathur M, Civenni G, Jarrossay D, Montani E, Marini C, Garcia-Escudero R, Scanziani E, Grassi F, Pandolfi PP, Catapano CV, Alimonti A. Cell Rep 9 75-89 (2014)
  6. Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent. Andraos R, Qian Z, Bonenfant D, Rubert J, Vangrevelinghe E, Scheufler C, Marque F, Régnier CH, De Pover A, Ryckelynck H, Bhagwat N, Koppikar P, Goel A, Wyder L, Tavares G, Baffert F, Pissot-Soldermann C, Manley PW, Gaul C, Voshol H, Levine RL, Sellers WR, Hofmann F, Radimerski T. Cancer Discov 2 512-523 (2012)
  7. Autocrine prolactin induced by the Pten-Akt pathway is required for lactation initiation and provides a direct link between the Akt and Stat5 pathways. Chen CC, Stairs DB, Boxer RB, Belka GK, Horseman ND, Alvarez JV, Chodosh LA. Genes Dev. 26 2154-2168 (2012)
  8. Comprehensive review of JAK inhibitors in myeloproliferative neoplasms. Sonbol MB, Firwana B, Zarzour A, Morad M, Rana V, Tiu RV. Ther Adv Hematol 4 15-35 (2013)
  9. Co-targeting the PI3K/mTOR and JAK2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. Bartalucci N, Tozzi L, Bogani C, Martinelli S, Rotunno G, Villeval JL, Vannucchi AM. J. Cell. Mol. Med. 17 1385-1396 (2013)
  10. Activity of the Type II JAK2 Inhibitor CHZ868 in B Cell Acute Lymphoblastic Leukemia. Wu SC, Li LS, Kopp N, Montero J, Chapuy B, Yoda A, Christie AL, Liu H, Christodoulou A, van Bodegom D, van der Zwet J, Layer JV, Tivey T, Lane AA, Ryan JA, Ng SY, DeAngelo DJ, Stone RM, Steensma D, Wadleigh M, Harris M, Mandon E, Ebel N, Andraos R, Romanet V, Dölemeyer A, Sterker D, Zender M, Rodig SJ, Murakami M, Hofmann F, Kuo F, Eck MJ, Silverman LB, Sallan SE, Letai A, Baffert F, Vangrevelinghe E, Radimerski T, Gaul C, Weinstock DM. Cancer Cell 28 29-41 (2015)
  11. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML. Novotny-Diermayr V, Hart S, Goh KC, Cheong A, Ong LC, Hentze H, Pasha MK, Jayaraman R, Ethirajulu K, Wood JM. Blood Cancer J 2 e69 (2012)
  12. Differential effects of hydroxyurea and INC424 on mutant allele burden and myeloproliferative phenotype in a JAK2-V617F polycythemia vera mouse model. Kubovcakova L, Lundberg P, Grisouard J, Hao-Shen H, Romanet V, Andraos R, Murakami M, Dirnhofer S, Wagner KU, Radimerski T, Skoda RC. Blood 121 1188-1199 (2013)
  13. Perturbing pro-survival proteins using quinoxaline derivatives: a structure-activity relationship study. Rajule R, Bryant VC, Lopez H, Luo X, Natarajan A. Bioorg Med Chem 20 2227-2234 (2012)
  14. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, Wang K, Sánchez V, Dean PT, Combs SE, Hicks D, Pinto JA, Landis MD, Doimi FD, Yelensky R, Miller VA, Stephens PJ, Rimm DL, Gómez H, Chang JC, Sanders ME, Cook RS, Arteaga CL. Sci Transl Med 8 334ra53 (2016)
  15. Decreased NK-cell tumour immunosurveillance consequent to JAK inhibition enhances metastasis in breast cancer models. Bottos A, Gotthardt D, Gill JW, Gattelli A, Frei A, Tzankov A, Sexl V, Wodnar-Filipowicz A, Hynes NE. Nat Commun 7 12258 (2016)
  16. MicroRNA-424 impairs ubiquitination to activate STAT3 and promote prostate tumor progression. Dallavalle C, Albino D, Civenni G, Merulla J, Ostano P, Mello-Grand M, Rossi S, Losa M, D'Ambrosio G, Sessa F, Thalmann GN, Garcia-Escudero R, Zitella A, Chiorino G, Catapano CV, Carbone GM. J. Clin. Invest. 126 4585-4602 (2016)
  17. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Kalathur M, Toso A, Chen J, Revandkar A, Danzer-Baltzer C, Guccini I, Alajati A, Sarti M, Pinton S, Brambilla L, Di Mitri D, Carbone G, Garcia-Escudero R, Padova A, Magnoni L, Tarditi A, Maccari L, Malusa F, Kalathur RK, A Pinna L, Cozza G, Ruzzene M, Delaleu N, Catapano CV, Frew IJ, Alimonti A. Nat Commun 6 7227 (2015)
  18. Regulation of IDO activity by oxygen supply: inhibitory effects on antimicrobial and immunoregulatory functions. Schmidt SK, Ebel S, Keil E, Woite C, Ernst JF, Benzin AE, Rupp J, Däubener W. PLoS ONE 8 e63301 (2013)
  19. Bim and Mcl-1 exert key roles in regulating JAK2V617F cell survival. Rubert J, Qian Z, Andraos R, Guthy DA, Radimerski T. BMC Cancer 11 24 (2011)
  20. Efficacious intermittent dosing of a novel JAK2 inhibitor in mouse models of polycythemia vera. Kraus M, Wang Y, Aleksandrowicz D, Bachman E, Szewczak AA, Walker D, Xu L, Bouthillette M, Childers KM, Dolinski B, Haidle AM, Kopinja J, Lee L, Lim J, Little KD, Ma Y, Mathur A, Mo JR, O'Hare E, Otte RD, Taoka BM, Wang W, Yin H, Zabierek AA, Zhang W, Zhao S, Zhu J, Young JR, Marshall CG. PLoS ONE 7 e37207 (2012)
  21. Mitochondrial dysfunction induced by a SH2 domain-targeting STAT3 inhibitor leads to metabolic synthetic lethality in cancer cells. Genini D, Brambilla L, Laurini E, Merulla J, Civenni G, Pandit S, D'Antuono R, Perez L, Levy DE, Pricl S, Carbone GM, Catapano CV. Proc. Natl. Acad. Sci. U.S.A. 114 E4924-E4933 (2017)
  22. Dual inhibitors of Janus kinase 2 and 3 (JAK2/3): designing by pharmacophore- and docking-based virtual screening approach. Jasuja H, Chadha N, Kaur M, Silakari O. Mol. Divers. 18 253-267 (2014)
  23. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Roberts KG, Yang YL, Payne-Turner D, Lin W, Files JK, Dickerson K, Gu Z, Taunton J, Janke LJ, Chen T, Loh ML, Hunger SP, Mullighan CG. Blood Adv 1 1657-1671 (2017)
  24. Identification of signalling cascades involved in red blood cell shrinkage and vesiculation. Kostova EB, Beuger BM, Klei TR, Halonen P, Lieftink C, Beijersbergen R, van den Berg TK, van Bruggen R. Biosci. Rep. 35 (2015)
  25. Alternatively spliced, truncated GCSF receptor promotes leukemogenic properties and sensitivity to JAK inhibition. Mehta HM, Futami M, Glaubach T, Lee DW, Andolina JR, Yang Q, Whichard Z, Quinn M, Lu HF, Kao WM, Przychodzen B, Sarkar CA, Minella A, Maciejewski JP, Corey SJ. Leukemia 28 1041-1051 (2014)
  26. The ETS factor ESE3/EHF represses IL-6 preventing STAT3 activation and expansion of the prostate cancer stem-like compartment. Albino D, Civenni G, Rossi S, Mitra A, Catapano CV, Carbone GM. Oncotarget 7 76756-76768 (2016)
  27. Effects of Jak2 type 1 inhibitors NVP-BSK805 and NVP-BVB808 on Jak2 mutation-positive and Bcr-Abl-positive cell lines. Ringel F, Kaeda J, Schwarz M, Oberender C, Grille P, Dörken B, Marque F, Manley PW, Radimerski T, le Coutre P. Acta Haematol. 132 75-86 (2014)
  28. Ruxolitinib: a potent and selective Janus kinase 1 and 2 inhibitor in patients with myelofibrosis. An update for clinicians. Harrison C, Vannucchi AM. Ther Adv Hematol 3 341-354 (2012)
  29. JAK2 JH2 Fluorescence Polarization Assay and Crystal Structures for Complexes with Three Small Molecules. Newton AS, Deiana L, Puleo DE, Cisneros JA, Cutrona KJ, Schlessinger J, Jorgensen WL. ACS Med Chem Lett 8 614-617 (2017)
  30. Antimicrobial activity of imidazo[1,5-a]quinoxaline derivatives with pyridinium moiety. Kalinin AA, Voloshina AD, Kulik NV, Zobov VV, Mamedov VA. Eur J Med Chem 66 345-354 (2013)
  31. Dynamic, structural and thermodynamic basis of insulin-like growth factor 1 kinase allostery mediated by activation loop phosphorylation. Li Y, Nam K. Chem Sci 8 3453-3464 (2017)
  32. STAT3/5 Inhibitors Suppress Proliferation in Bladder Cancer and Enhance Oncolytic Adenovirus Therapy. Hindupur SV, Schmid SC, Koch JA, Youssef A, Baur EM, Wang D, Horn T, Slotta-Huspenina J, Gschwend JE, Holm PS, Nawroth R. Int J Mol Sci 21 (2020)
  33. How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study. Kong X, Sun H, Pan P, Li D, Zhu F, Chang S, Xu L, Li Y, Hou T. Sci Rep 7 9088 (2017)
  34. Modification of CellSensor irf1-bla TF-1 and irf1-bla HEL assays for direct comparison of wild-type JAK2 and JAK2 V617F inhibition. Mason JL, Holskin BP, Murray KA, Meyer SL, Wells-Knecht KJ, Ator MA, Angeles TS. Assay Drug Dev Technol 9 311-318 (2011)
  35. Pharmacophore and docking-based virtual screening approach for the design of new dual inhibitors of Janus kinase 1 and Janus kinase 2. Jasuja H, Chadha N, Kaur M, Silakari O. SAR QSAR Environ Res 25 617-636 (2014)
  36. A conditional inducible JAK2V617F transgenic mouse model reveals myeloproliferative disease that is reversible upon switching off transgene expression. Chapeau EA, Mandon E, Gill J, Romanet V, Ebel N, Powajbo V, Andraos-Rey R, Qian Z, Kininis M, Zumstein-Mecker S, Ito M, Hynes NE, Tiedt R, Hofmann F, Eshkind L, Bockamp E, Kinzel B, Mueller M, Murakami M, Baffert F, Radimerski T. PLoS ONE 14 e0221635 (2019)
  37. Design and synthesis of the BODIPY-BSA complex for biological applications. Vedamalai M, Gupta I. Luminescence 33 10-14 (2018)
  38. Discovery of JAK2/3 Inhibitors from Quinoxalinone-Containing Compounds. Sanachai K, Mahalapbutr P, Tabtimmai L, Seetaha S, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. ACS Omega 7 33587-33598 (2022)
  39. Efficacy of artesunate in asthma: based on network pharmacology and molecular docking. Zhang J, Lin J. J Thorac Dis 15 1658-1674 (2023)
  40. Molecular analysis of V617F mutation in Janus kinase 2 gene of breast cancer patients. Karim S, Malik IR, Nazeer Q, Zaheer A, Farooq M, Mahmood N, Malik A, Asif M, Mehmood A, Khan AR, Jabbar A, Arshad M, Yousafi Q, Hussain A, Mirza Z, Iqbal MA, Rasool M. Saudi J Biol Sci 26 1123-1128 (2019)
  41. NPV-BSK805, an Antineoplastic Jak2 Inhibitor Effective in Myeloproliferative Disorders, Causes Adiposity in Mice by Interfering With the Action of Leptin. Haissaguerre M, Ferriere A, Clark S, Guzman-Quevedo O, Tabarin A, Cota D. Front Pharmacol 9 527 (2018)
  42. NVP-BSK805, an Inhibitor of JAK2 Kinase, Significantly Enhances the Radiosensitivity of Esophageal Squamous Cell Carcinoma in vitro and in vivo. Hua Y, Wang W, Zheng X, Yang L, Wu H, Hu Z, Li Y, Yue J, Jiang Z, Zhang X, Hou Q, Wu S. Drug Des Devel Ther 14 745-755 (2020)
  43. New scaffolds for type II JAK2 inhibitors overcome the acquired G993A resistance mutation. Arwood ML, Liu Y, Harkins SK, Weinstock DM, Yang L, Stevenson KE, Plana OD, Dong J, Cirka H, Jones KL, Virtanen AT, Gupta DG, Ceas A, Lawney B, Yoda A, Leahy C, Hao M, He Z, Choi HG, Wang Y, Silvennoinen O, Hubbard SR, Zhang T, Gray NS, Li LS. Cell Chem Biol 30 618-631.e12 (2023)
  44. Tamoxifen for the treatment of myeloproliferative neoplasms: A Phase II clinical trial and exploratory analysis. Fang Z, Corbizi Fattori G, McKerrell T, Boucher RH, Jackson A, Fletcher RS, Forte D, Martin JE, Fox S, Roberts J, Glover R, Harris E, Bridges HR, Grassi L, Rodriguez-Meira A, Mead AJ, Knapper S, Ewing J, Butt NM, Jain M, Francis S, Clark FJ, Coppell J, McMullin MF, Wadelin F, Narayanan S, Milojkovic D, Drummond MW, Sekhar M, ElDaly H, Hirst J, Paramor M, Baxter EJ, Godfrey AL, Harrison CN, Méndez-Ferrer S. Nat Commun 14 7725 (2023)
  45. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Bapat AS, O'Connor CH, Schwertfeger KL. Sci Rep 13 5349 (2023)
  46. The pan-PIM inhibitor INCB053914 displays potent synergy in combination with ruxolitinib in models of MPN. Mazzacurati L, Collins RJ, Pandey G, Lambert-Showers QT, Amin NE, Zhang L, Stubbs MC, Epling-Burnette PK, Koblish HK, Reuther GW. Blood Adv 3 3503-3514 (2019)