3j5y Citations

Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP.

Nucleic Acids Res 42 3409-18 (2014)
Cited: 47 times
EuropePMC logo PMID: 24335085

Abstract

Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.

Articles - 3j5y mentioned but not cited (5)

  1. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. des Georges A, Hashem Y, Unbehaun A, Grassucci RA, Taylor D, Hellen CU, Pestova TV, Frank J. Nucleic Acids Res. 42 3409-3418 (2014)
  2. Decoding Mammalian Ribosome-mRNA States by Translational GTPase Complexes. Shao S, Murray J, Brown A, Taunton J, Ramakrishnan V, Hegde RS. Cell 167 1229-1240.e15 (2016)
  3. Hierarchical Assembly of RNA Three-Dimensional Structures Based on Loop Templates. Xu X, Chen SJ. J Phys Chem B 122 5327-5335 (2018)
  4. Human nonsense-mediated mRNA decay factor UPF2 interacts directly with eRF3 and the SURF complex. López-Perrote A, Castaño R, Melero R, Zamarro T, Kurosawa H, Ohnishi T, Uchiyama A, Aoyagi K, Buchwald G, Kataoka N, Yamashita A, Llorca O. Nucleic Acids Res. 44 1909-1923 (2016)
  5. The search for molecular mimicry in proteins carried by extracellular vesicles secreted by cells infected with Plasmodium falciparum. Armijos-Jaramillo V, Mosquera A, Rojas B, Tejera E. Commun Integr Biol 14 212-220 (2021)


Reviews citing this publication (10)

  1. Translational readthrough potential of natural termination codons in eucaryotes--The impact of RNA sequence. Dabrowski M, Bukowy-Bieryllo Z, Zietkiewicz E. RNA Biol 12 950-958 (2015)
  2. Translation Termination and Ribosome Recycling in Eukaryotes. Hellen CUT. Cold Spring Harb Perspect Biol 10 (2018)
  3. Roadblocks and resolutions in eukaryotic translation. Schuller AP, Green R. Nat. Rev. Mol. Cell Biol. 19 526-541 (2018)
  4. Roles of ribosomal proteins in the functioning of translational machinery of eukaryotes. Graifer D, Karpova G. Biochimie 109 1-17 (2015)
  5. The Structural Dynamics of Translation. Korostelev AA. Annu Rev Biochem 91 245-267 (2022)
  6. Molecular Insights into Determinants of Translational Readthrough and Implications for Nonsense Suppression Approaches. Lombardi S, Testa MF, Pinotti M, Branchini A. Int J Mol Sci 21 E9449 (2020)
  7. ABCE Proteins: From Molecules to Development. Navarro-Quiles C, Mateo-Bonmatí E, Micol JL. Front Plant Sci 9 1125 (2018)
  8. Diversity and Similarity of Termination and Ribosome Rescue in Bacterial, Mitochondrial, and Cytoplasmic Translation. Korostelev AA. Biochemistry (Mosc) 86 1107-1121 (2021)
  9. Features and factors that dictate if terminating ribosomes cause or counteract nonsense-mediated mRNA decay. Embree CM, Abu-Alhasan R, Singh G. J Biol Chem 298 102592 (2022)
  10. Translation Phases in Eukaryotes. Blanchet S, Ranjan N. Methods Mol Biol 2533 217-228 (2022)

Articles citing this publication (32)

  1. Efficient multisite unnatural amino acid incorporation in mammalian cells via optimized pyrrolysyl tRNA synthetase/tRNA expression and engineered eRF1. Schmied WH, Elsässer SJ, Uttamapinant C, Chin JW. J. Am. Chem. Soc. 136 15577-15583 (2014)
  2. Structural snapshots of actively translating human ribosomes. Behrmann E, Loerke J, Budkevich TV, Yamamoto K, Schmidt A, Penczek PA, Vos MR, Bürger J, Mielke T, Scheerer P, Spahn CM. Cell 161 845-857 (2015)
  3. Mechanism of cytoplasmic mRNA translation. Browning KS, Bailey-Serres J. Arabidopsis Book 13 e0176 (2015)
  4. Cryoelectron microscopic structures of eukaryotic translation termination complexes containing eRF1-eRF3 or eRF1-ABCE1. Preis A, Heuer A, Barrio-Garcia C, Hauser A, Eyler DE, Berninghausen O, Green R, Becker T, Beckmann R. Cell Rep 8 59-65 (2014)
  5. Cryo-EM of ribosomal 80S complexes with termination factors reveals the translocated cricket paralysis virus IRES. Muhs M, Hilal T, Mielke T, Skabkin MA, Sanbonmatsu KY, Pestova TV, Spahn CM. Mol. Cell 57 422-432 (2015)
  6. Structure of a human translation termination complex. Matheisl S, Berninghausen O, Becker T, Beckmann R. Nucleic Acids Res. 43 8615-8626 (2015)
  7. Multiple mechanisms of reinitiation on bicistronic calicivirus mRNAs. Zinoviev A, Hellen CUT, Pestova TV. Mol. Cell 57 1059-1073 (2015)
  8. Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. Beznosková P, Gunišová S, Valášek LS. RNA 22 456-466 (2016)
  9. Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC. Sci Adv 4 eaao0665 (2018)
  10. New insights into stop codon recognition by eRF1. Blanchet S, Rowe M, Von der Haar T, Fabret C, Demais S, Howard MJ, Namy O. Nucleic Acids Res. 43 3298-3308 (2015)
  11. Embraced by eIF3: structural and functional insights into the roles of eIF3 across the translation cycle. Valášek LS, Zeman J, Wagner S, Beznosková P, Pavlíková Z, Mohammad MP, Hronová V, Herrmannová A, Hashem Y, Gunišová S. Nucleic Acids Res. 45 10948-10968 (2017)
  12. Selective inhibition of human translation termination by a drug-like compound. Li W, Chang ST, Ward FR, Cate JHD. Nat Commun 11 4941 (2020)
  13. Structural basis of suppression of host translation termination by Moloney Murine Leukemia Virus. Tang X, Zhu Y, Baker SL, Bowler MW, Chen BJ, Chen C, Hogg JR, Goff SP, Song H. Nat Commun 7 12070 (2016)
  14. Structural insights into ribosomal rescue by Dom34 and Hbs1 at near-atomic resolution. Hilal T, Yamamoto H, Loerke J, Bürger J, Mielke T, Spahn CM. Nat Commun 7 13521 (2016)
  15. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination. Shirokikh NE, Archer SK, Beilharz TH, Powell D, Preiss T. Nat Protoc 12 697-731 (2017)
  16. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed. Shasmal M, Dey S, Shaikh TR, Bhakta S, Sengupta J. Sci Rep 6 19936 (2016)
  17. RiboAbacus: a model trained on polyribosome images predicts ribosome density and translational efficiency from mammalian transcriptomes. Lauria F, Tebaldi T, Lunelli L, Struffi P, Gatto P, Pugliese A, Brigotti M, Montanaro L, Ciribilli Y, Inga A, Quattrone A, Sanguinetti G, Viero G. Nucleic Acids Res. 43 e153 (2015)
  18. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein. García-Márquez A, Gijsbers A, de la Mora E, Sánchez-Puig N. J. Biol. Chem. 290 17669-17678 (2015)
  19. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Powers KT, Stevenson-Jones F, Yadav SKN, Amthor B, Bufton JC, Borucu U, Shen D, Becker JP, Lavysh D, Hentze MW, Kulozik AE, Neu-Yilik G, Schaffitzel C. Nucleic Acids Res 49 7665-7679 (2021)
  20. Conformational Control of Translation Termination on the 70S Ribosome. Svidritskiy E, Korostelev AA. Structure 26 821-828.e3 (2018)
  21. Polyadenylate-binding protein-interacting proteins PAIP1 and PAIP2 affect translation termination. Ivanov A, Shuvalova E, Egorova T, Shuvalov A, Sokolova E, Bizyaev N, Shatsky I, Terenin I, Alkalaeva E. J Biol Chem 294 8630-8639 (2019)
  22. A systematic computational analysis of the rRNA-3' UTR sequence complementarity suggests a regulatory mechanism influencing post-termination events in metazoan translation. Pánek J, Kolář M, Herrmannová A, Valášek LS. RNA 22 957-967 (2016)
  23. CTELS: A Cell-Free System for the Analysis of Translation Termination Rate. Lashkevich KA, Shlyk VI, Kushchenko AS, Gladyshev VN, Alkalaeva EZ, Dmitriev SE. Biomolecules 10 (2020)
  24. Chemical footprinting reveals conformational changes of 18S and 28S rRNAs at different steps of translation termination on the human ribosome. Bulygin KN, Bartuli YS, Malygin AA, Graifer DM, Frolova LY, Karpova GG. RNA 22 278-289 (2016)
  25. Cryo-EM reconstruction of the human 40S ribosomal subunit at 2.15 Å resolution. Pellegrino S, Dent KC, Spikes T, Warren AJ. Nucleic Acids Res 51 4043-4054 (2023)
  26. Misdecoding of rare CGA codon by translation termination factors, eRF1/eRF3, suggests novel class of ribosome rescue pathway in S. cerevisiae. Wada M, Ito K. FEBS J 286 788-802 (2019)
  27. Tissue-specific regulation of translational readthrough tunes functions of the traffic jam transcription factor. Karki P, Carney TD, Maracci C, Yatsenko AS, Shcherbata HR, Rodnina MV. Nucleic Acids Res 50 6001-6019 (2022)
  28. A SelB/EF-Tu/aIF2γ-like protein from Methanosarcina mazei in the GTP-bound form binds cysteinyl-tRNA(Cys.). Yanagisawa T, Ishii R, Hikida Y, Fukunaga R, Sengoku T, Sekine S, Yokoyama S. J. Struct. Funct. Genomics 16 25-41 (2015)
  29. Stop codon recognition in the early-diverged protozoans Giardia lamblia and Trichomonas vaginalis. Chai B, Li C, Yu J, Hao Y, Guo P, Shen Q. Mol. Biochem. Parasitol. 202 15-21 (2015)
  30. Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Beißel C, Neumann B, Uhse S, Hampe I, Karki P, Krebber H. Nucleic Acids Res. 47 4798-4813 (2019)
  31. Two classes of EF1-family translational GTPases encoded by giant viruses. Zinoviev A, Kuroha K, Pestova TV, Hellen CUT. Nucleic Acids Res. 47 5761-5776 (2019)
  32. eIF3j facilitates loading of release factors into the ribosome. Egorova T, Biziaev N, Shuvalov A, Sokolova E, Mukba S, Evmenov K, Zotova M, Kushchenko A, Shuvalova E, Alkalaeva E. Nucleic Acids Res 49 11181-11196 (2021)