3j2e Citations

Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process.

Nucleic Acids Res 41 2609-20 (2013)
Related entries: 3j28, 3j29, 3j2a, 3j2b, 3j2c, 3j2d, 3j2f, 3j2g, 3j2h

Cited: 46 times
EuropePMC logo PMID: 23293003

Abstract

Ribosome biogenesis is a tightly regulated, multi-stepped process. The assembly of ribosomal subunits is a central step of the complex biogenesis process, involving nearly 30 protein factors in vivo in bacteria. Although the assembly process has been extensively studied in vitro for over 40 years, very limited information is known for the in vivo process and specific roles of assembly factors. Such an example is ribosome maturation factor M (RimM), a factor involved in the late-stage assembly of the 30S subunit. Here, we combined quantitative mass spectrometry and cryo-electron microscopy to characterize the in vivo 30S assembly intermediates isolated from mutant Escherichia coli strains with genes for assembly factors deleted. Our compositional and structural data show that the assembly of the 3'-domain of the 30S subunit is severely delayed in these intermediates, featured with highly underrepresented 3'-domain proteins and large conformational difference compared with the mature 30S subunit. Further analysis indicates that RimM functions not only to promote the assembly of a few 3'-domain proteins but also to stabilize the rRNA tertiary structure. More importantly, this study reveals intriguing similarities and dissimilarities between the in vitro and the in vivo assembly pathways, suggesting that they are in general similar but with subtle differences.

Articles - 3j2e mentioned but not cited (1)

  1. Dissecting the in vivo assembly of the 30S ribosomal subunit reveals the role of RimM and general features of the assembly process. Guo Q, Goto S, Chen Y, Feng B, Xu Y, Muto A, Himeno H, Deng H, Lei J, Gao N. Nucleic Acids Res 41 2609-2620 (2013)


Reviews citing this publication (7)

  1. Structure and dynamics of bacterial ribosome biogenesis. Davis JH, Williamson JR. Philos Trans R Soc Lond B Biol Sci 372 20160181 (2017)
  2. GTPases involved in bacterial ribosome maturation. Goto S, Muto A, Himeno H. J Biochem 153 403-414 (2013)
  3. The impact of recent improvements in cryo-electron microscopy technology on the understanding of bacterial ribosome assembly. Razi A, Britton RA, Ortega J. Nucleic Acids Res 45 1027-1040 (2017)
  4. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Microorganisms 10 747 (2022)
  5. Emerging Quantitative Biochemical, Structural, and Biophysical Methods for Studying Ribosome and Protein-RNA Complex Assembly. Gor K, Duss O. Biomolecules 13 866 (2023)
  6. Biological cryo-electron microscopy in China. Wang HW, Lei J, Shi Y. Protein Sci 26 16-31 (2017)
  7. GTPase Era at the heart of ribosome assembly. Gruffaz C, Smirnov A. Front Mol Biosci 10 1263433 (2023)

Articles citing this publication (38)

  1. In vivo X-ray footprinting of pre-30S ribosomes reveals chaperone-dependent remodeling of late assembly intermediates. Clatterbuck Soper SF, Dator RP, Limbach PA, Woodson SA. Mol Cell 52 506-516 (2013)
  2. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. Stokes JM, Davis JH, Mangat CS, Williamson JR, Brown ED. Elife 3 e03574 (2014)
  3. Functional domains of the 50S subunit mature late in the assembly process. Jomaa A, Jomaa A, Jain N, Davis JH, Williamson JR, Britton RA, Ortega J. Nucleic Acids Res 42 3419-3435 (2014)
  4. Cryo-EM structures of the late-stage assembly intermediates of the bacterial 50S ribosomal subunit. Li N, Chen Y, Guo Q, Zhang Y, Yuan Y, Ma C, Deng H, Lei J, Gao N. Nucleic Acids Res 41 7073-7083 (2013)
  5. A combined quantitative mass spectrometry and electron microscopy analysis of ribosomal 30S subunit assembly in E. coli. Sashital DG, Greeman CA, Lyumkis D, Potter CS, Carragher B, Williamson JR. Elife 3 (2014)
  6. Ribosome RNA assembly intermediates visualized in living cells. McGinnis JL, Weeks KM. Biochemistry 53 3237-3247 (2014)
  7. Initial bridges between two ribosomal subunits are formed within 9.4 milliseconds, as studied by time-resolved cryo-EM. Shaikh TR, Yassin AS, Lu Z, Barnard D, Meng X, Lu TM, Wagenknecht T, Agrawal RK. Proc Natl Acad Sci U S A 111 9822-9827 (2014)
  8. YphC and YsxC GTPases assist the maturation of the central protuberance, GTPase associated region and functional core of the 50S ribosomal subunit. Ni X, Davis JH, Jain N, Razi A, Benlekbir S, McArthur AG, Rubinstein JL, Britton RA, Williamson JR, Ortega J. Nucleic Acids Res 44 8442-8455 (2016)
  9. Binding properties of YjeQ (RsgA), RbfA, RimM and Era to assembly intermediates of the 30S subunit. Thurlow B, Davis JH, Leong V, Moraes TF, Williamson JR, Ortega J. Nucleic Acids Res 44 9918-9932 (2016)
  10. Role of Era in assembly and homeostasis of the ribosomal small subunit. Razi A, Davis JH, Hao Y, Jahagirdar D, Thurlow B, Basu K, Jain N, Gomez-Blanco J, Britton RA, Vargas J, Guarné A, Woodson SA, Williamson JR, Ortega J. Nucleic Acids Res 47 8301-8317 (2019)
  11. Structural insights into the function of a unique tandem GTPase EngA in bacterial ribosome assembly. Zhang X, Yan K, Zhang Y, Li N, Ma C, Li Z, Zhang Y, Feng B, Liu J, Sun Y, Xu Y, Lei J, Gao N. Nucleic Acids Res 42 13430-13439 (2014)
  12. Functional interaction between ribosomal protein L6 and RbgA during ribosome assembly. Gulati M, Jain N, Davis JH, Williamson JR, Britton RA. PLoS Genet 10 e1004694 (2014)
  13. Multiple in vivo pathways for Escherichia coli small ribosomal subunit assembly occur on one pre-rRNA. Gupta N, Culver GM. Nat Struct Mol Biol 21 937-943 (2014)
  14. Structural insights into the assembly of the 30S ribosomal subunit in vivo: functional role of S5 and location of the 17S rRNA precursor sequence. Yang Z, Guo Q, Goto S, Chen Y, Li N, Yan K, Zhang Y, Muto A, Deng H, Himeno H, Lei J, Gao N. Protein Cell 5 394-407 (2014)
  15. The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly. Razi A, Guarné A, Ortega J. Proc Natl Acad Sci U S A 114 E3396-E3403 (2017)
  16. Alternative conformations and motions adopted by 30S ribosomal subunits visualized by cryo-electron microscopy. Jahagirdar D, Jha V, Basu K, Gomez-Blanco J, Vargas J, Ortega J. RNA 26 2017-2030 (2020)
  17. A conserved rRNA switch is central to decoding site maturation on the small ribosomal subunit. Schedlbauer A, Iturrioz I, Ochoa-Lizarralde B, Diercks T, López-Alonso JP, Lavin JL, Kaminishi T, Çapuni R, Dhimole N, de Astigarraga E, Gil-Carton D, Fucini P, Connell SR. Sci Adv 7 eabf7547 (2021)
  18. RNAe: an effective method for targeted protein translation enhancement by artificial non-coding RNA with SINEB2 repeat. Yao Y, Jin S, Long H, Yu Y, Zhang Z, Cheng G, Xu C, Ding Y, Guan Q, Li N, Fu S, Chen XJ, Yan YB, Zhang H, Tong P, Tan Y, Yu Y, Fu S, Li J, He GJ, Wu Q. Nucleic Acids Res 43 e58 (2015)
  19. RbfA Is Involved in Two Important Stages of 30S Subunit Assembly: Formation of the Central Pseudoknot and Docking of Helix 44 to the Decoding Center. Maksimova EM, Korepanov AP, Kravchenko OV, Baymukhametov TN, Myasnikov AG, Vassilenko KS, Afonina ZA, Stolboushkina EA. Int J Mol Sci 22 6140 (2021)
  20. Ribosome Dimerization Protects the Small Subunit. Feaga HA, Kopylov M, Kim JK, Jovanovic M, Dworkin J. J Bacteriol 202 e00009-20 (2020)
  21. The nucleoid as a site of rRNA processing and ribosome assembly. Bohne AV. Front Plant Sci 5 257 (2014)
  22. Functional Analysis of BipA in E. coli Reveals the Natural Plasticity of 50S Subunit Assembly. Gibbs MR, Moon KM, Warner BR, Chen M, Bundschuh R, Foster LJ, Fredrick K. J Mol Biol 432 5259-5272 (2020)
  23. Impairment of ribosome maturation or function confers salt resistance on Escherichia coli cells. Hase Y, Tarusawa T, Muto A, Himeno H. PLoS One 8 e65747 (2013)
  24. Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome. Hassan A, Byju S, Freitas FC, Roc C, Pender N, Nguyen K, Kimbrough EM, Mattingly JM, Gonzalez RL, de Oliveira RJ, Dunham CM, Whitford PC. Nucleic Acids Res 51 919-934 (2023)
  25. The C-terminal helix in the YjeQ zinc-finger domain catalyzes the release of RbfA during 30S ribosome subunit assembly. Jeganathan A, Razi A, Thurlow B, Ortega J. RNA 21 1203-1216 (2015)
  26. E. coli metabolic protein aldehyde-alcohol dehydrogenase-E binds to the ribosome: a unique moonlighting action revealed. Shasmal M, Dey S, Shaikh TR, Bhakta S, Sengupta J. Sci Rep 6 19936 (2016)
  27. Global identification of genes affecting iron-sulfur cluster biogenesis and iron homeostasis. Hidese R, Mihara H, Kurihara T, Esaki N. J Bacteriol 196 1238-1249 (2014)
  28. Characterization and Transcriptome Studies of Autoinducer Synthase Gene from Multidrug Resistant Acinetobacter baumannii Strain 863. Ng CK, How KY, Tee KK, Chan KG. Genes (Basel) 10 E282 (2019)
  29. Enhancement of protein translation by CRISPR/dCasRx coupled with SINEB2 repeat of noncoding RNAs. Cao C, Li A, Xu C, Wu B, Liu J, Liu Y. Nucleic Acids Res 51 e33 (2023)
  30. Fluorescence-based monitoring of ribosome assembly landscapes. Nikolay R, Schloemer R, Mueller S, Deuerling E. BMC Mol Biol 16 3 (2015)
  31. Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus. Belinite M, Khusainov I, Soufari H, Marzi S, Romby P, Yusupov M, Hashem Y. Front Mol Biosci 8 738752 (2021)
  32. Structural Basis for the C-Terminal Domain of Mycobacterium tuberculosis Ribosome Maturation Factor RimM to Bind Ribosomal Protein S19. Zhang H, Zhou Q, Guo C, Feng L, Wang H, Liao X, Lin D. Biomolecules 11 597 (2021)
  33. Coevolution of ribosomal RNA expansion segment 7L and assembly factor Noc2p specializes the ribosome biogenesis pathway between Saccharomyces cerevisiae and Candida albicans. Wang X, Yue Z, Xu F, Wang S, Hu X, Dai J, Zhao G. Nucleic Acids Res 49 4655-4667 (2021)
  34. Isolation and Analysis of Salt Response of Lactobacillusplantarum FS5-5 from Dajiang. Song X, Wang Q, Xu X, Lin J, Wang X, Xue Y, Wu R, An Y. Indian J Microbiol 56 451-460 (2016)
  35. White and green striate leaves 1, predicted to encode a 16S rRNA processing protein, plays a critical role in the processing of chloroplast ribosomes in maize (Zea mays L.). Li Q, Du J, Qiao Z, Pan C, He W, Zhang L, Li X, Nie Y, Li X, Pan G, Zhang Z, Li G, Ding H. Mol Breed 43 65 (2023)
  36. Coordinating the party: assembly factors and ribogenesis. Pyle AM. Mol Cell 52 469-470 (2013)
  37. Purification and Characterization of Authentic 30S Ribosomal Precursors Induced by Heat Shock. Giudice E, Georgeault S, Lavigne R, Pineau C, Trautwetter A, Ermel G, Blanco C, Gillet R. Int J Mol Sci 24 3491 (2023)
  38. Structural basis of ribosomal 30S subunit degradation by RNase R. Dimitrova-Paternoga L, Kasvandik S, Beckert B, Granneman S, Tenson T, Wilson DN, Paternoga H. Nature 626 1133-1140 (2024)