3iri Citations

Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes.

J Mol Biol 395 504-21 (2010)
Related entries: 3irj, 3irk, 3irl

Cited: 63 times
EuropePMC logo PMID: 19895822

Abstract

The anionic polysaccharides heparin and heparan sulphate play essential roles in the regulation of many physiological processes. Heparin is often used as an analogue for heparan sulphate. Despite knowledge of an NMR solution structure and 19 crystal structures of heparin-protein complexes for short heparin fragments, no structures for larger heparin fragments have been reported up to now. Here, we show that solution structures for six purified heparin fragments dp6-dp36 (where dp stands for degree of polymerisation) can be determined by a combination of analytical ultracentrifugation, synchrotron X-ray scattering, and constrained modelling. Analytical ultracentrifugation velocity data for dp6-dp36 showed sedimentation coefficients that increased linearly from 1.09 S to 1.84 S with size. X-ray scattering of dp6-dp36 gave radii of gyration R(G) that ranged from 1.33 nm to 3.12 nm and maximum lengths that ranged from 3.0 nm to 12.3 nm. The higher resolution of X-ray scattering revealed an increased bending of heparin with increased size. Constrained molecular modelling of 5000 randomised heparin conformers resulted in 9-15 best-fit structures for each of dp18, dp24, dp30, and dp36 that indicated flexibility and the presence of short linear segments in mildly bent structures. Comparisons of these solution structures with crystal structures of heparin-protein complexes revealed similar ranges of phi (phi) and psi (psi) angles between iduronate and glucosamine rings. We conclude that heparin in solution has a semi-rigid and extended conformation that is preformed for its optimal binding to protein targets without major conformational changes.

Articles - 3iri mentioned but not cited (10)

  1. Inclusion of the orientational entropic effect and low-resolution experimental information for protein-protein docking in Critical Assessment of PRedicted Interactions (CAPRI). Huang SY, Yan C, Grinter SZ, Chang S, Jiang L, Zou X. Proteins 81 2183-2191 (2013)
  2. Porcine Circovirus 2 Uses a Multitude of Weak Binding Sites To Interact with Heparan Sulfate, and the Interactions Do Not Follow the Symmetry of the Capsid. Dhindwal S, Avila B, Feng S, Khayat R. J Virol 93 (2019)
  3. GAG-DB, the New Interface of the Three-Dimensional Landscape of Glycosaminoglycans. Pérez S, Bonnardel F, Lisacek F, Imberty A, Ricard Blum S, Makshakova O. Biomolecules 10 (2020)
  4. Heparin-Assisted Amyloidogenesis Uncovered through Molecular Dynamics Simulations. Khurshid B, Rehman AU, Luo R, Khan A, Wadood A, Anwar J. ACS Omega 7 15132-15144 (2022)
  5. Drosophila hedgehog signaling range and robustness depend on direct and sustained heparan sulfate interactions. Manikowski D, Steffes G, Froese J, Exner S, Ehring K, Gude F, Di Iorio D, Wegner SV, Grobe K. Front Mol Biosci 10 1130064 (2023)
  6. Extension of the SUGRES-1P Coarse-Grained Model of Polysaccharides to Heparin. Danielsson A, Samsonov SA, Liwo A, Sieradzan AK. J Chem Theory Comput 19 6023-6036 (2023)
  7. Heparin-mediated dimerization of follistatin. Walker RG, Kattamuri C, Goebel EJ, Zhang F, Hammel M, Tainer JA, Linhardt RJ, Thompson TB. Exp Biol Med (Maywood) 246 467-482 (2021)
  8. Investigating the Role of Sulfate Groups for the Binding of Gd3+ Ions to Glycosaminoglycans with NMR Relaxometry. Werner P, Schuenke P, Krylova O, Nikolenko H, Taupitz M, Schröder L. ChemMedChem 17 e202100764 (2022)
  9. research-article Replicating RNA as a component of scrapie fibrils. Bridges LR. bioRxiv 2023.08.17.553578 (2023)
  10. The Role of Disordered Regions in Orchestrating the Properties of Multidomain Proteins: The SARS-CoV-2 Nucleocapsid Protein and Its Interaction with Enoxaparin. Schiavina M, Pontoriero L, Tagliaferro G, Pierattelli R, Felli IC. Biomolecules 12 1302 (2022)


Reviews citing this publication (8)

  1. Heparan sulfate and heparin interactions with proteins. Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. J R Soc Interface 12 0589 (2015)
  2. Validation of macromolecular flexibility in solution by small-angle X-ray scattering (SAXS). Hammel M. Eur Biophys J 41 789-799 (2012)
  3. Complement factor H-ligand interactions: self-association, multivalency and dissociation constants. Perkins SJ, Nan R, Li K, Khan S, Miller A. Immunobiology 217 281-297 (2012)
  4. Molecular Interactions between Complement Factor H and Its Heparin and Heparan Sulfate Ligands. Perkins SJ, Fung KW, Khan S. Front Immunol 5 126 (2014)
  5. Analytical ultracentrifugation combined with X-ray and neutron scattering: Experiment and modelling. Perkins SJ, Nan R, Li K, Khan S, Abe Y. Methods 54 181-199 (2011)
  6. The conformation and structure of GAGs: recent progress and perspectives. Rudd TR, Skidmore MA, Guerrini M, Hricovini M, Powell AK, Siligardi G, Yates EA. Curr Opin Struct Biol 20 567-574 (2010)
  7. Protein tyrosine phosphatase σ in proteoglycan-mediated neural regeneration regulation. Chien PN, Ryu SE. Mol Neurobiol 47 220-227 (2013)
  8. Heparin and Its Derivatives: Challenges and Advances in Therapeutic Biomolecules. Banik N, Yang SB, Kang TB, Lim JH, Park J. Int J Mol Sci 22 10524 (2021)

Articles citing this publication (45)

  1. Mechanism of amylin fibrillization enhancement by heparin. Jha S, Patil SM, Gibson J, Nelson CE, Alder NN, Alexandrescu AT. J Biol Chem 286 22894-22904 (2011)
  2. Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix. Lortat-Jacob H, Burhan I, Scarpellini A, Thomas A, Imberty A, Vivès RR, Johnson T, Gutierrez A, Verderio EA. J Biol Chem 287 18005-18017 (2012)
  3. Atomistic modelling of scattering data in the Collaborative Computational Project for Small Angle Scattering (CCP-SAS). Perkins SJ, Wright DW, Zhang H, Brookes EH, Chen J, Irving TC, Krueger S, Barlow DJ, Edler KJ, Scott DJ, Terrill NJ, King SM, Butler PD, Curtis JE. J Appl Crystallogr 49 1861-1875 (2016)
  4. Heparin activates PKR by inducing dimerization. Anderson E, Pierre-Louis WS, Wong CJ, Lary JW, Cole JL. J Mol Biol 413 973-984 (2011)
  5. USP compendial methods for analysis of heparin: chromatographic determination of molecular weight distributions for heparin sodium. Mulloy B, Heath A, Shriver Z, Jameison F, Al Hakim A, Morris TS, Szajek AY. Anal Bioanal Chem 406 4815-4823 (2014)
  6. The solution structure of heparan sulfate differs from that of heparin: implications for function. Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ. J Biol Chem 288 27737-27751 (2013)
  7. Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. Ballut L, Sapay N, Chautard E, Imberty A, Ricard-Blum S. J Mol Recognit 26 76-85 (2013)
  8. Structural determinants of heparin-transforming growth factor-β1 interactions and their effects on signaling. Lee J, Wee S, Gunaratne J, Chua RJ, Smith RA, Ling L, Fernig DG, Swaminathan K, Nurcombe V, Cool SM. Glycobiology 25 1491-1504 (2015)
  9. The solution structure of heparan sulfate differs from that of heparin: implications for function. Khan S, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ. J Biol Chem 286 24842-24854 (2011)
  10. Bivalent and co-operative binding of complement factor H to heparan sulfate and heparin. Khan S, Nan R, Gor J, Mulloy B, Perkins SJ. Biochem J 444 417-428 (2012)
  11. Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides. Muñoz-García JC, López-Prados J, Angulo J, Díaz-Contreras I, Reichardt N, de Paz JL, Martín-Lomas M, Nieto PM. Chemistry 18 16319-16331 (2012)
  12. Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in α-synuclein aggregation. Torres-Bugeau CM, Ávila CL, Raisman-Vozari R, Papy-Garcia D, Itri R, Barbosa LR, Cortez LM, Sim VL, Chehín RN. J Biol Chem 287 2398-2409 (2012)
  13. Effects of glycosylation on heparin binding and antithrombin activation by heparin. Pol-Fachin L, Franco Becker C, Almeida Guimarães J, Verli H. Proteins 79 2735-2745 (2011)
  14. SCT: a suite of programs for comparing atomistic models with small-angle scattering data. Wright DW, Perkins SJ. J Appl Crystallogr 48 953-961 (2015)
  15. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides. Sarkar A, Pérez S. BMC Bioinformatics 13 302 (2012)
  16. Structure of Plasmodium falciparum TRAP (thrombospondin-related anonymous protein) A domain highlights distinct features in apicomplexan von Willebrand factor A homologues. Pihlajamaa T, Kajander T, Knuuti J, Horkka K, Sharma A, Permi P. Biochem J 450 469-476 (2013)
  17. The use of analytical sedimentation velocity to extract thermodynamic linkage. Cole JL, Correia JJ, Stafford WF. Biophys Chem 159 120-128 (2011)
  18. Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery. Fulcher YG, Sanganna Gari RR, Frey NC, Zhang F, Linhardt RJ, King GM, Van Doren SR. ACS Chem Biol 9 957-966 (2014)
  19. Molecular Mechanisms of Macular Degeneration Associated with the Complement Factor H Y402H Mutation. Harrison RES, Morikis D. Biophys J 116 215-226 (2019)
  20. Structural basis of single molecular heparin-FX06 interaction revealed by SPM measurements and molecular simulations. Guo C, Wang B, Wang L, Xu B. Chem Commun (Camb) 48 12222-12224 (2012)
  21. Structural glycobiology of heparin dynamics on the exosite 2 of coagulation cascade proteases: Implications for glycosaminoglycans antithrombotic activity. Pol-Fachin L, Verli H. Glycobiology 24 97-105 (2014)
  22. We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Hayne CK, Yumerefendi H, Cao L, Gauer JW, Lafferty MJ, Kuhlman B, Erie DA, Neher SB. Biochemistry 57 241-254 (2018)
  23. Cationic Peptides and Peptidomimetics Bind Glycosaminoglycans as Potential Sema3A Pathway Inhibitors. Corredor M, Bonet R, Moure A, Domingo C, Bujons J, Alfonso I, Pérez Y, Messeguer À. Biophys J 110 1291-1303 (2016)
  24. Crystal structure of a bacterial unsaturated glucuronyl hydrolase with specificity for heparin. Nakamichi Y, Mikami B, Murata K, Hashimoto W. J Biol Chem 289 4787-4797 (2014)
  25. Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Shao C, Feng Z, Westbrook JD, Peisach E, Berrisford J, Ikegawa Y, Kurisu G, Velankar S, Burley SK, Young JY. Glycobiology 31 1204-1218 (2021)
  26. Efficient access to the non-reducing end of low molecular weight heparin for fluorescent labeling. Wang Z, Shi C, Wu X, Wu X, Chen Y. Chem Commun (Camb) 50 7004-7006 (2014)
  27. Non-linearity of the collagen triple helix in solution and implications for collagen function. Walker KT, Nan R, Wright DW, Gor J, Bishop AC, Makhatadze GI, Brodsky B, Perkins SJ. Biochem J 474 2203-2217 (2017)
  28. Heparin assisted assembly of somatostatin amyloid nanofibrils results in disordered precipitates by hindrance of protofilaments interactions. Dharmadana D, Reynolds NP, Dekiwadia C, Conn CE, Valéry C. Nanoscale 10 18195-18204 (2018)
  29. Proteomics-based screening of the endothelial heparan sulfate interactome reveals that C-type lectin 14a (CLEC14A) is a heparin-binding protein. Sandoval DR, Gomez Toledo A, Painter CD, Tota EM, Sheikh MO, West AMV, Frank MM, Wells L, Xu D, Bicknell R, Corbett KD, Esko JD. J Biol Chem 295 2804-2821 (2020)
  30. Small-caliber vascular prosthesis prototype based on controlled release of heparin from mesochannels and its enhanced biocompatibility. Zhou Y, Li K, Yang JY, Guan CX, Wang Y, Liu CJ, Zhu JH. Small 8 1373-1383 (2012)
  31. Glycan Activation of a Sheddase: Electrostatic Recognition between Heparin and proMMP-7. Fulcher YG, Prior SH, Masuko S, Li L, Pu D, Zhang F, Linhardt RJ, Van Doren SR. Structure 25 1100-1110.e5 (2017)
  32. Heparin's solution structure determined by small-angle neutron scattering. Rubinson KA, Chen Y, Cress BF, Zhang F, Linhardt RJ. Biopolymers 105 905-913 (2016)
  33. Identification of Protein Recognition Elements within Heparin Chains Using Enzymatic Foot-Printing in Solution and Online SEC/MS. Niu C, Zhao Y, Bobst CE, Savinov SN, Kaltashov IA. Anal Chem 92 7565-7573 (2020)
  34. Construction and evaluation of an antibody phage display library targeting heparan sulfate. Damen LAA, van de Westerlo EMA, Versteeg EMM, van Wessel T, Daamen WF, van Kuppevelt TH. Glycoconj J 37 445-455 (2020)
  35. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy. Wang C, Jin Y, Desai UR, Yadavalli VK. Biochim Biophys Acta 1850 1099-1106 (2015)
  36. Linear polyalkylamines as fingerprinting agents in capillary electrophoresis of low-molecular-weight heparins and glycosaminoglycans. King JT, Desai UR. Electrophoresis 32 3070-3077 (2011)
  37. The dynamic nature of netrin-1 and the structural basis for glycosaminoglycan fragment-induced filament formation. Meier M, Gupta M, Akgül S, McDougall M, Imhof T, Nikodemus D, Reuten R, Moya-Torres A, To V, Ferens F, Heide F, Padilla-Meier GP, Kukura P, Huang W, Gerisch B, Mörgelin M, Poole K, Antebi A, Koch M, Stetefeld J. Nat Commun 14 1226 (2023)
  38. Dynamic Combinatorial Optimization of In Vitro and In Vivo Heparin Antidotes. Carbajo D, Pérez Y, Guerra-Rebollo M, Prats E, Bujons J, Alfonso I. J Med Chem 65 4865-4877 (2022)
  39. Heparin: A simplistic repurposing to prevent SARS-CoV-2 transmission in light of its in-vitro nanomolar efficacy. Gupta Y, Maciorowski D, Zak SE, Kulkarni CV, Herbert AS, Durvasula R, Fareed J, Dye JM, Kempaiah P. Int J Biol Macromol 183 203-212 (2021)
  40. Interactions of Pleiotrophin with a Structurally Defined Heparin Hexasaccharide. Ryan EO, Jiang Z, Nguyen H, Wang X. Biomolecules 12 50 (2021)
  41. Mapping the configurational landscape and aggregation phase behavior of the tau protein fragment PHF6. Pretti E, Shell MS. Proc Natl Acad Sci U S A 120 e2309995120 (2023)
  42. Semaphorin 3A-Glycosaminoglycans Interaction as Therapeutic Target for Axonal Regeneration. Pérez Y, Bonet R, Corredor M, Domingo C, Moure A, Messeguer À, Bujons J, Alfonso I. Pharmaceuticals (Basel) 14 906 (2021)
  43. Solvent Model Benchmark for Molecular Dynamics of Glycosaminoglycans. Marcisz M, Samsonov SA. J Chem Inf Model 63 2147-2157 (2023)
  44. Structural Insights into the Cofactor Role of Heparin/Heparan Sulfate in Binding between the SARS-CoV-2 Spike Protein and Host Angiotensin-Converting Enzyme II. Wang X, Bie L, Gao J. J Chem Inf Model 62 656-667 (2022)
  45. Using NMR to Dissect the Chemical Space and O-Sulfation Effects within the O- and S-Glycoside Analogues of Heparan Sulfate. Meneghetti MCZ, Naughton L, O'Shea C, Koffi Teki DS, Chagnault V, Nader HB, Rudd TR, Yates EA, Kovensky J, Miller GJ, Lima MA. ACS Omega 7 24461-24467 (2022)