3imv Citations

A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity.

J Am Chem Soc 132 1359-70 (2010)
Related entries: 3imr, 3ims, 3imt, 3imu, 3imw

Cited: 37 times
EuropePMC logo PMID: 20043671

Abstract

Transthyretin aggregation-associated proteotoxicity appears to cause several human amyloid diseases. Rate-limiting tetramer dissociation and monomer misfolding of transthyretin (TTR) occur before its aggregation into cross-beta-sheet amyloid fibrils. Small molecule binding to and preferential stabilization of the tetrameric state of TTR over the dissociative transition state raises the kinetic barrier for dissociation, imposing kinetic stabilization on TTR and preventing aggregation. This is an effective strategy to halt neurodegeneration associated with polyneuropathy, according to recent placebo-controlled clinical trial results. In three recent papers, we systematically ranked possibilities for the three substructures composing a typical TTR kinetic stabilizer, using fibril inhibition potency and plasma TTR binding selectivity data. Herein, we have successfully employed a substructure combination strategy to use these data to develop potent and selective TTR kinetic stabilizers that rescue cells from the cytotoxic effects of TTR amyloidogenesis. Of the 92 stilbene and dihydrostilbene analogues synthesized, nearly all potently inhibit TTR fibril formation. Seventeen of these exhibit a binding stoichiometry of >1.5 of a maximum of 2 to plasma TTR, while displaying minimal binding to the thyroid hormone receptor (<20%). Six analogues were definitively categorized as kinetic stabilizers by evaluating dissociation time-courses. High-resolution TTR.(kinetic stabilizer)(2) crystal structures (1.31-1.70 A) confirmed the anticipated binding orientation of the 3,5-dibromo-4-hydroxyphenyl substructure and revealed a strong preference of the isosteric 3,5-dibromo-4-aminophenyl substructure to bind to the inner thyroxine binding pocket of TTR.

Articles - 3imv mentioned but not cited (1)

  1. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. Choi S, Reixach N, Connelly S, Johnson SM, Wilson IA, Kelly JW. J Am Chem Soc 132 1359-1370 (2010)


Reviews citing this publication (11)

  1. Boron in drug discovery: carboranes as unique pharmacophores in biologically active compounds. Issa F, Kassiou M, Rendina LM. Chem Rev 111 5701-5722 (2011)
  2. The transthyretin amyloidoses: from delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. Johnson SM, Connelly S, Fearns C, Powers ET, Kelly JW. J Mol Biol 421 185-203 (2012)
  3. Structure-based design of kinetic stabilizers that ameliorate the transthyretin amyloidoses. Connelly S, Choi S, Johnson SM, Kelly JW, Wilson IA. Curr Opin Struct Biol 20 54-62 (2010)
  4. Chemical and biological approaches for adapting proteostasis to ameliorate protein misfolding and aggregation diseases: progress and prognosis. Lindquist SL, Kelly JW. Cold Spring Harb Perspect Biol 3 a004507 (2011)
  5. Stabilization of protein-protein interactions in drug discovery. Andrei SA, Sijbesma E, Hann M, Davis J, O'Mahony G, Perry MWD, Karawajczyk A, Eickhoff J, Brunsveld L, Doveston RG, Milroy LG, Ottmann C. Expert Opin Drug Discov 12 925-940 (2017)
  6. Current and future treatment of amyloid diseases. Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. J Intern Med 280 177-202 (2016)
  7. An overview of drugs currently under investigation for the treatment of transthyretin-related hereditary amyloidosis. Obici L, Merlini G. Expert Opin Investig Drugs 23 1239-1251 (2014)
  8. Proteostasis strategies for restoring alpha1-antitrypsin deficiency. Bouchecareilh M, Conkright JJ, Balch WE. Proc Am Thorac Soc 7 415-422 (2010)
  9. Pharmacologic Approaches for Adapting Proteostasis in the Secretory Pathway to Ameliorate Protein Conformational Diseases. Kelly JW. Cold Spring Harb Perspect Biol 12 a034108 (2020)
  10. Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors. Guo X, Liu Z, Zheng Y, Li Y, Li L, Liu H, Chen Z, Wu L. Drug Des Devel Ther 14 1057-1081 (2020)
  11. Pharmacological stabilization of the native state of full-length immunoglobulin light chains to treat light chain amyloidosis. Yan NL, Morgan GJ, Petrassi HM, Wilson IA, Kelly JW. Curr Opin Chem Biol 75 102319 (2023)

Articles citing this publication (25)

  1. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Bulawa CE, Connelly S, Devit M, Wang L, Weigel C, Fleming JA, Packman J, Powers ET, Wiseman RL, Foss TR, Wilson IA, Kelly JW, Labaudinière R. Proc Natl Acad Sci U S A 109 9629-9634 (2012)
  2. Negatively charged gold nanoparticles inhibit Alzheimer's amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Liao YH, Chang YJ, Yoshiike Y, Chang YC, Chen YR. Small 8 3631-3639 (2012)
  3. Aromatic sulfonyl fluorides covalently kinetically stabilize transthyretin to prevent amyloidogenesis while affording a fluorescent conjugate. Grimster NP, Connelly S, Baranczak A, Dong J, Krasnova LB, Sharpless KB, Powers ET, Wilson IA, Kelly JW. J Am Chem Soc 135 5656-5668 (2013)
  4. Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Bourgault S, Choi S, Buxbaum JN, Kelly JW, Price JL, Reixach N. Biochem Biophys Res Commun 410 707-713 (2011)
  5. 2-Pyridyl sulfoxide: a versatile and removable directing group for the Pd(II)-catalyzed direct C-H olefination of arenes. García-Rubia A, Fernández-Ibáñez MÁ, Gómez Arrayás R, Carretero JC. Chemistry 17 3567-3570 (2011)
  6. A stilbene that binds selectively to transthyretin in cells and remains dark until it undergoes a chemoselective reaction to create a bright blue fluorescent conjugate. Choi S, Ong DS, Kelly JW. J Am Chem Soc 132 16043-16051 (2010)
  7. Turn nucleation perturbs amyloid β self-assembly and cytotoxicity. Doran TM, Anderson EA, Latchney SE, Opanashuk LA, Nilsson BL. J Mol Biol 421 315-328 (2012)
  8. Structural analysis of peptide-analogues of human Zona Pellucida ZP1 protein with amyloidogenic properties: insights into mammalian Zona Pellucida formation. Louros NN, Iconomidou VA, Giannelou P, Hamodrakas SJ. PLoS One 8 e73258 (2013)
  9. A competition assay to identify amyloidogenesis inhibitors by monitoring the fluorescence emitted by the covalent attachment of a stilbene derivative to transthyretin. Choi S, Kelly JW. Bioorg Med Chem 19 1505-1514 (2011)
  10. An N-terminal pro-atrial natriuretic peptide (NT-proANP) 'aggregation-prone' segment involved in isolated atrial amyloidosis. Louros NN, Iconomidou VA, Tsiolaki PL, Chrysina ED, Baltatzis GE, Patsouris ES, Hamodrakas SJ. FEBS Lett 588 52-57 (2014)
  11. Amyloidogenic and non-amyloidogenic transthyretin variants interact differently with human cardiomyocytes: insights into early events of non-fibrillar tissue damage. Manral P, Reixach N. Biosci Rep 35 e00172 (2015)
  12. Designed Trpzip-3 β-Hairpin Inhibits Amyloid Formation in Two Different Amyloid Systems. Hopping G, Kellock J, Caughey B, Daggett V. ACS Med Chem Lett 4 824-828 (2013)
  13. Stilbene vinyl sulfonamides as fluorogenic sensors of and traceless covalent kinetic stabilizers of transthyretin that prevent amyloidogenesis. Suh EH, Liu Y, Connelly S, Genereux JC, Wilson IA, Kelly JW. J Am Chem Soc 135 17869-17880 (2013)
  14. A survey of antiprion compounds reveals the prevalence of non-PrP molecular targets. Poncet-Montange G, St Martin SJ, Bogatova OV, Prusiner SB, Shoichet BK, Ghaemmaghami S. J Biol Chem 286 27718-27728 (2011)
  15. Structural evidence for asymmetric ligand binding to transthyretin. Cianci M, Folli C, Zonta F, Florio P, Berni R, Zanotti G. Acta Crystallogr D Biol Crystallogr 71 1582-1592 (2015)
  16. An amyloidogenic determinant in N-terminal pro-brain natriuretic peptide (NT-proBNP): Implications for cardiac amyloidoses. Iconomidou VA, Pheida D, Hamodraka ES, Antony C, Hoenger A, Hamodrakas SJ. Biopolymers 98 67-75 (2012)
  17. Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors. Myung N, Connelly S, Kim B, Park SJ, Wilson IA, Kelly JW, Choi S. Chem Commun (Camb) 49 9188-9190 (2013)
  18. Evaluating the effect of mutations and ligand binding on transthyretin homotetramer dynamics. Saldaño TE, Zanotti G, Parisi G, Fernandez-Alberti S. PLoS One 12 e0181019 (2017)
  19. Lignin-derived oak phenolics: a theoretical examination of additional potential health benefits of red wine. Setzer WN. J Mol Model 17 1841-1845 (2011)
  20. Semi-quantitative models for identifying potent and selective transthyretin amyloidogenesis inhibitors. Connelly S, Mortenson DE, Choi S, Wilson IA, Powers ET, Kelly JW, Johnson SM. Bioorg Med Chem Lett 27 3441-3449 (2017)
  21. Efficient Gene Transfection through Inhibition of β-Sheet (Amyloid Fiber) Formation of a Short Amphiphilic Peptide by Gold Nanoparticles. Jana P, Samanta K, Bäcker S, Zellermann E, Knauer S, Schmuck C. Angew Chem Int Ed Engl 56 8083-8088 (2017)
  22. Rational Design, Synthesis, Characterization and Evaluation of Iodinated 4,4'-Bipyridines as New Transthyretin Fibrillogenesis Inhibitors. Dessì A, Peluso P, Dallocchio R, Weiss R, Andreotti G, Allocca M, Aubert E, Pale P, Mamane V, Cossu S. Molecules 25 E2213 (2020)
  23. Fluorogenic small molecules requiring reaction with a specific protein to create a fluorescent conjugate for biological imaging--what we know and what we need to learn. Baranczak A, Connelly S, Liu Y, Choi S, Grimster NP, Powers ET, Wilson IA, Kelly JW. Biopolymers 101 484-495 (2014)
  24. Identification of Transthyretin Fibril Formation Inhibitors Using Structure-Based Virtual Screening. Ortore G, Martinelli A. ChemMedChem 12 1327-1334 (2017)
  25. Systemic optimization and structural evaluation of quinoline derivatives as transthyretin amyloidogenesis inhibitors. Kim B, Park H, Lee SK, Park SJ, Koo TS, Kang NS, Hong KB, Choi S. Eur J Med Chem 123 777-787 (2016)