3ime Citations

Application of fragment growing and fragment linking to the discovery of inhibitors of Mycobacterium tuberculosis pantothenate synthetase.

Angew Chem Int Ed Engl 48 8452-6 (2009)
Related entries: 3imc, 3img, 3isj, 3iub, 3iue, 3ivc, 3ivg, 3ivx

Cited: 58 times
EuropePMC logo PMID: 19780086

Reviews - 3ime mentioned but not cited (1)

  1. Indole: A promising scaffold for the discovery and development of potential anti-tubercular agents. Bajad NG, Singh SK, Singh SK, Singh TD, Singh M. Curr Res Pharmacol Drug Discov 3 100119 (2022)

Articles - 3ime mentioned but not cited (1)

  1. Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Silvestre HL, Blundell TL, Abell C, Ciulli A. Proc Natl Acad Sci U S A 110 12984-12989 (2013)


Reviews citing this publication (24)

  1. Drugs in development for toxoplasmosis: advances, challenges, and current status. Alday PH, Doggett JS. Drug Des Devel Ther 11 273-293 (2017)
  2. Tuberculosis drug discovery in the post-post-genomic era. Lechartier B, Rybniker J, Zumla A, Cole ST. EMBO Mol Med 6 158-168 (2014)
  3. Fragment-based drug discovery using NMR spectroscopy. Harner MJ, Frank AO, Fesik SW. J Biomol NMR 56 65-75 (2013)
  4. The tuberculosis drug discovery and development pipeline and emerging drug targets. Mdluli K, Kaneko T, Upton A. Cold Spring Harb Perspect Med 5 a021154 (2015)
  5. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Gao K, Oerlemans R, Groves MR. Biophys Rev 12 85-104 (2020)
  6. Biophysical and computational fragment-based approaches to targeting protein-protein interactions: applications in structure-guided drug discovery. Winter A, Higueruelo AP, Marsh M, Sigurdardottir A, Pitt WR, Blundell TL. Q Rev Biophys 45 383-426 (2012)
  7. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. Front Chem 8 93 (2020)
  8. Ligand efficiency metrics in drug discovery: the pros and cons from a practical perspective. Cavalluzzi MM, Mangiatordi GF, Nicolotti O, Lentini G. Expert Opin Drug Discov 12 1087-1104 (2017)
  9. Hit Generation in TB Drug Discovery: From Genome to Granuloma. Yuan T, Sampson NS. Chem Rev 118 1887-1916 (2018)
  10. Recent advancements in the development of anti-tuberculosis drugs. Chetty S, Ramesh M, Singh-Pillay A, Soliman ME. Bioorg Med Chem Lett 27 370-386 (2017)
  11. The application of tetracyclineregulated gene expression systems in the validation of novel drug targets in Mycobacterium tuberculosis. Evans JC, Mizrahi V. Front Microbiol 6 812 (2015)
  12. Tuberculosis drug discovery and emerging targets. Mdluli K, Kaneko T, Upton A. Ann N Y Acad Sci 1323 56-75 (2014)
  13. Tuberculosis drugs: new candidates and how to find more. Sala C, Hartkoorn RC. Future Microbiol 6 617-633 (2011)
  14. Targeting tuberculosis using structure-guided fragment-based drug design. Mendes V, Blundell TL. Drug Discov Today 22 546-554 (2017)
  15. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Butman HS, Kotzé TJ, Dowd CS, Strauss E. Front Cell Infect Microbiol 10 605662 (2020)
  16. Fragment-based approaches to TB drugs. Marchetti C, Chan DSH, Coyne AG, Abell C. Parasitology 145 184-195 (2018)
  17. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis - a medicinal chemist perspective. Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Gowri Chandra Sekhar KV. RSC Adv 10 37098-37115 (2020)
  18. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Int J Mol Sci 23 10669 (2022)
  19. Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D. PLoS Pathog 17 e1010124 (2021)
  20. Schistosomiasis Drug Discovery in the Era of Automation and Artificial Intelligence. Moreira-Filho JT, Silva AC, Dantas RF, Gomes BF, Souza Neto LR, Brandao-Neto J, Owens RJ, Furnham N, Neves BJ, Silva-Junior FP, Andrade CH. Front Immunol 12 642383 (2021)
  21. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Mukherjee R, Chandra Pal A, Banerjee M. Tuberculosis (Edinb) 106 44-52 (2017)
  22. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. Mol Biomed 3 48 (2022)
  23. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. Yang J, Zhang L, Qiao W, Luo Y. MedComm (2020) 4 e353 (2023)
  24. Recent advances in DNA-encoded dynamic libraries. Shi B, Zhou Y, Li X. RSC Chem Biol 3 407-419 (2022)

Articles citing this publication (32)

  1. Targeting the Central Pocket in Human Transcription Factor TEAD as a Potential Cancer Therapeutic Strategy. Pobbati AV, Han X, Hung AW, Weiguang S, Huda N, Chen GY, Kang C, Chia CS, Luo X, Hong W, Poulsen A. Structure 23 2076-2086 (2015)
  2. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE, Sherman DR, Boshoff HI, Mizrahi V. Chem Biol 19 844-854 (2012)
  3. A three-stage biophysical screening cascade for fragment-based drug discovery. Mashalidis EH, Śledź P, Lang S, Abell C. Nat Protoc 8 2309-2324 (2013)
  4. Assessing the essentiality of the decaprenyl-phospho-d-arabinofuranose pathway in Mycobacterium tuberculosis using conditional mutants. Kolly GS, Boldrin F, Sala C, Dhar N, Hartkoorn RC, Ventura M, Serafini A, McKinney JD, Manganelli R, Cole ST. Mol Microbiol 92 194-211 (2014)
  5. Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Kozakov D, Hall DR, Jehle S, Luo L, Ochiana SO, Jones EV, Pollastri M, Allen KN, Whitty A, Vajda S. Proc Natl Acad Sci U S A 112 E2585-94 (2015)
  6. Compound Design by Fragment-Linking. Ichihara O, Barker J, Law RJ, Whittaker M. Mol Inform 30 298-306 (2011)
  7. Biophysical screening for the discovery of small-molecule ligands. Ciulli A. Methods Mol Biol 1008 357-388 (2013)
  8. Optimization of the interligand Overhauser effect for fragment linking: application to inhibitor discovery against Mycobacterium tuberculosis pantothenate synthetase. Sledz P, Silvestre HL, Hung AW, Ciulli A, Blundell TL, Abell C. J Am Chem Soc 132 4544-4545 (2010)
  9. A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis. Kumar A, Casey A, Odingo J, Kesicki EA, Abrahams G, Vieth M, Masquelin T, Mizrahi V, Hipskind PA, Sherman DR, Parish T. PLoS One 8 e72786 (2013)
  10. Development of 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel Mycobacterium tuberculosis pantothenate synthetase inhibitors. Samala G, Devi PB, Nallangi R, Yogeeswari P, Sriram D. Eur J Med Chem 69 356-364 (2013)
  11. Validating and enabling phosphoglycerate dehydrogenase (PHGDH) as a target for fragment-based drug discovery in PHGDH-amplified breast cancer. Unterlass JE, Baslé A, Blackburn TJ, Tucker J, Cano C, Noble MEM, Curtin NJ. Oncotarget 9 13139-13153 (2018)
  12. Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D. Bioorg Med Chem 22 1938-1947 (2014)
  13. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. ChemMedChem 9 2538-2547 (2014)
  14. Impact of a Central Scaffold on the Binding Affinity of Fragment Pairs Isolated from DNA-Encoded Self-Assembling Chemical Libraries. Bigatti M, Dal Corso A, Vanetti S, Cazzamalli S, Rieder U, Scheuermann J, Neri D, Sladojevich F. ChemMedChem 12 1748-1752 (2017)
  15. Modular approach to triazole-linked 1,6-α-D-oligomannosides to the discovery of inhibitors of Mycobacterium tuberculosis cell wall synthetase. Lo Conte M, Marra A, Chambery A, Gurcha SS, Besra GS, Dondoni A. J Org Chem 75 6326-6336 (2010)
  16. Fragment-based lead discovery: challenges and opportunities. Sun C, Petros AM, Hajduk PJ. J Comput Aided Mol Des 25 607-610 (2011)
  17. Pantothenic acid biosynthesis in the parasite Toxoplasma gondii: a target for chemotherapy. Mageed SN, Cunningham F, Hung AW, Silvestre HL, Wen S, Blundell TL, Abell C, McConkey GA. Antimicrob Agents Chemother 58 6345-6353 (2014)
  18. Synthesis and biological evaluation of pyrrolo[2,3-b]pyridine analogues as antiproliferative agents and their interaction with calf thymus DNA. Narva S, Chitti S, Bala BR, Alvala M, Jain N, Kondapalli VG. Eur J Med Chem 114 220-231 (2016)
  19. Confirmation of a Protein-Protein Interaction in the Pantothenate Biosynthetic Pathway by Using Sortase-Mediated Labelling. Morrison PM, Balmforth MR, Ness SW, Williamson DJ, Rugen MD, Turnbull WB, Webb ME. Chembiochem 17 753-758 (2016)
  20. 3-Fluoroaspartate and pyruvoyl-dependant aspartate decarboxylase: exploiting the unique characteristics of fluorine to probe reactivity and binding. de Villiers J, Koekemoer L, Strauss E. Chemistry 16 10030-10041 (2010)
  21. Synthesis, in vitro antimycobacterial evaluation and docking studies of some new 5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-one schiff bases. Narender M, Jaswanth S B, Umasankar K, Malathi J, Raghuram Reddy A, Umadevi KR, Dusthackeer AVN, Venkat Rao K, Raghuram R A. Bioorg Med Chem Lett 26 836-840 (2016)
  22. Discovery and Structural Characterization of Small Molecule Binders of the Human CTLH E3 Ligase Subunit GID4. Chana CK, Maisonneuve P, Posternak G, Grinberg NGA, Poirson J, Ona SM, Ceccarelli DF, Mader P, St-Cyr DJ, Pau V, Kurinov I, Tang X, Deng D, Cui W, Su W, Kuai L, Soll R, Tyers M, Röst HL, Batey RA, Taipale M, Gingras AC, Sicheri F. J Med Chem 65 12725-12746 (2022)
  23. A Formylglycine-Peptide for the Site-Directed Identification of Phosphotyrosine-Mimetic Fragments. Tiemann M, Nawrotzky E, Schmieder P, Wehrhan L, Bergemann S, Martos V, Song W, Arkona C, Keller BG, Rademann J. Chemistry 28 e202201282 (2022)
  24. Alteration of fluorescent protein spectroscopic properties upon cryoprotection. von Stetten D, Batot GO, Noirclerc-Savoye M, Royant A. Acta Crystallogr D Biol Crystallogr 68 1578-1583 (2012)
  25. Design of Novel Mycobacterium tuberculosis Pantothenate Synthetase Inhibitors: Virtual Screening, Synthesis and In Vitro Biological Activities. Devi PB, Jogula S, Reddy AP, Saxena S, Sridevi JP, Sriram D, Yogeeswari P. Mol Inform 34 147-159 (2015)
  26. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies. Tan YS, Fuentes G, Verma C. Proteins 79 1715-1727 (2011)
  27. In-silico Metabolome Target Analysis Towards PanC-based Antimycobacterial Agent Discovery. Khoshkholgh-Sima B, Sardari S, Izadi Mobarakeh J, Khavari-Nejad RA. Iran J Pharm Res 14 203-214 (2015)
  28. Design, synthesis and biological evaluation of benzo-[d]-imidazo-[2,1-b]-thiazole and imidazo-[2,1-b]-thiazole carboxamide triazole derivatives as antimycobacterial agents. Chitti S, Van Calster K, Cappoen D, Nandikolla A, Khetmalis YM, Cos P, Kumar BK, Murugesan S, Gowri Chandra Sekhar KV. RSC Adv 12 22385-22401 (2022)
  29. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions. Shulga DA, Ivanov NN, Palyulin VA. Molecules 27 1985 (2022)
  30. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Int J Parasitol Drugs Drug Resist 22 1-8 (2023)
  31. Seeking potent anti-tubercular agents: design and synthesis of substituted-N-(6-(4-(pyrazine-2-carbonyl)piperazine/homopiperazine-1-yl)pyridin-3-yl)benzamide derivatives as anti-tubercular agents. Srinivasarao S, Nandikolla A, Suresh A, Calster KV, De Voogt L, Cappoen D, Ghosh B, Aggarwal H, Murugesan S, Chandra Sekhar KVG. RSC Adv 10 12272-12288 (2020)
  32. Synthesis, Antimycobacterial Evaluation and Docking Studies of Some 7-Methyl-5,6,7,8-tetrahydropyrido[4',3':4,5]thieno[2,3-d]pyrimidin-4(3H)-ones. Malothu N, Kulandaivelu U, Jojula M, Gunda SK, Akkinepally RR. Chem Pharm Bull (Tokyo) 66 923-931 (2018)