3i5h Citations

Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor.

Abstract

Unlike processive cellular motors such as myosin V, whose structure has recently been determined in a "rigor-like" conformation, myosin II from contracting muscle filaments necessarily spends most of its time detached from actin. By using squid and sea scallop sources, however, we have now obtained similar rigor-like atomic structures for muscle myosin heads (S1). The significance of the hallmark closed actin-binding cleft in these crystal structures is supported here by actin/S1-binding studies. These structures reveal how different duty ratios, and hence cellular functions, of the myosin isoforms may be accounted for, in part, on the basis of detailed differences in interdomain contacts. Moreover, the rigor-like position of switch II turns out to be unique for myosin V. The overall arrangements of subdomains in the motor are relatively conserved in each of the known contractile states, and we explore qualitatively the energetics of these states.

Articles - 3i5h mentioned but not cited (3)

  1. Visualizing key hinges and a potential major source of compliance in the lever arm of myosin. Brown JH, Kumar VS, O'Neall-Hennessey E, Reshetnikova L, Robinson H, Nguyen-McCarty M, Szent-Györgyi AG, Cohen C. Proc Natl Acad Sci U S A 108 114-119 (2011)
  2. Structural basis for the allosteric interference of myosin function by reactive thiol region mutations G680A and G680V. Preller M, Bauer S, Adamek N, Fujita-Becker S, Fedorov R, Geeves MA, Manstein DJ. J Biol Chem 286 35051-35060 (2011)
  3. Mutations in MYLPF Cause a Novel Segmental Amyoplasia that Manifests as Distal Arthrogryposis. Chong JX, Talbot JC, Teets EM, Previs S, Martin BL, Shively KM, Marvin CT, Aylsworth AS, Saadeh-Haddad R, Schatz UA, Inzana F, Ben-Omran T, Almusafri F, Al-Mulla M, Buckingham KJ, Harel T, Mor-Shaked H, Radhakrishnan P, Girisha KM, Nayak SS, Shukla A, Dieterich K, Faure J, Rendu J, Capri Y, Latypova X, Nickerson DA, Warshaw DM, Janssen PML, University of Washington Center for Mendelian Genomics, Amacher SL, Bamshad MJ. Am J Hum Genet 107 293-310 (2020)


Reviews citing this publication (9)

  1. Structural and functional insights into the Myosin motor mechanism. Sweeney HL, Houdusse A. Annu Rev Biophys 39 539-557 (2010)
  2. Heavy and light roles: myosin in the morphogenesis of the heart. England J, Loughna S. Cell Mol Life Sci 70 1221-1239 (2013)
  3. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  4. Emerging complex pathways of the actomyosin powerstroke. Málnási-Csizmadia A, Kovács M. Trends Biochem Sci 35 684-690 (2010)
  5. Poorly understood aspects of striated muscle contraction. Månsson A, Rassier D, Tsiavaliaris G. Biomed Res Int 2015 245154 (2015)
  6. Molecular mechanism of actin-myosin motor in muscle. Koubassova NA, Tsaturyan AK. Biochemistry (Mosc) 76 1484-1506 (2011)
  7. Overview of the mechanism of cytoskeletal motors based on structure. Kato Y, Miyakawa T, Tanokura M. Biophys Rev 10 571-581 (2018)
  8. Molecular motors: not quite like clockwork. Amos LA. Cell Mol Life Sci 65 509-515 (2008)
  9. Insights into Actin-Myosin Interactions within Muscle from 3D Electron Microscopy. Taylor KA, Rahmani H, Edwards RJ, Reedy MK. Int J Mol Sci 20 E1703 (2019)

Articles citing this publication (65)

  1. The myosin mesa and the basis of hypercontractility caused by hypertrophic cardiomyopathy mutations. Nag S, Trivedi DV, Sarkar SS, Adhikari AS, Sunitha MS, Sutton S, Ruppel KM, Spudich JA. Nat Struct Mol Biol 24 525-533 (2017)
  2. Three-dimensional reconstruction of tarantula myosin filaments suggests how phosphorylation may regulate myosin activity. Alamo L, Wriggers W, Pinto A, Bártoli F, Salazar L, Zhao FQ, Craig R, Padrón R. J Mol Biol 384 780-797 (2008)
  3. An atomic-level mechanism for activation of the kinesin molecular motors. Sindelar CV, Downing KH. Proc Natl Acad Sci U S A 107 4111-4116 (2010)
  4. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects. Granados-Riveron JT, Ghosh TK, Pope M, Bu'Lock F, Thornborough C, Eason J, Kirk EP, Fatkin D, Feneley MP, Harvey RP, Armour JA, David Brook J. Hum Mol Genet 19 4007-4016 (2010)
  5. The actin-myosin interface. Lorenz M, Holmes KC. Proc Natl Acad Sci U S A 107 12529-12534 (2010)
  6. Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation. Homburger JR, Green EM, Caleshu C, Sunitha MS, Taylor RE, Ruppel KM, Metpally RP, Colan SD, Michels M, Day SM, Olivotto I, Bustamante CD, Dewey FE, Ho CY, Spudich JA, Ashley EA. Proc Natl Acad Sci U S A 113 6701-6706 (2016)
  7. Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G. EMBO J 31 214-227 (2012)
  8. Allosteric communication in myosin V: from small conformational changes to large directed movements. Cecchini M, Houdusse A, Karplus M. PLoS Comput Biol 4 e1000129 (2008)
  9. The structural basis for the large powerstroke of myosin VI. Ménétrey J, Llinas P, Mukherjea M, Sweeney HL, Houdusse A. Cell 131 300-308 (2007)
  10. The molecular basis for sarcomere organization in vertebrate skeletal muscle. Wang Z, Grange M, Wagner T, Kho AL, Gautel M, Raunser S. Cell 184 2135-2150.e13 (2021)
  11. An experimentally based computer search identifies unstructured membrane-binding sites in proteins: application to class I myosins, PAKS, and CARMIL. Brzeska H, Guag J, Remmert K, Chacko S, Korn ED. J Biol Chem 285 5738-5747 (2010)
  12. Early-Onset Hypertrophic Cardiomyopathy Mutations Significantly Increase the Velocity, Force, and Actin-Activated ATPase Activity of Human β-Cardiac Myosin. Adhikari AS, Kooiker KB, Sarkar SS, Liu C, Bernstein D, Spudich JA, Ruppel KM. Cell Rep 17 2857-2864 (2016)
  13. Biophysical properties of human β-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy. Kawana M, Sarkar SS, Sutton S, Ruppel KM, Spudich JA. Sci Adv 3 e1601959 (2017)
  14. AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. Höpker K, Hagmann H, Khurshid S, Chen S, Hasskamp P, Seeger-Nukpezah T, Schilberg K, Heukamp L, Lamkemeyer T, Sos ML, Thomas RK, Lowery D, Roels F, Fischer M, Liebau MC, Resch U, Kisner T, Röther F, Bartram MP, Müller RU, Fabretti F, Kurschat P, Schumacher B, Gaestel M, Medema RH, Yaffe MB, Schermer B, Reinhardt HC, Benzing T. EMBO J 31 3961-3975 (2012)
  15. Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Tekpinar M, Zheng W. Proteins 78 2469-2481 (2010)
  16. Structure of actomyosin rigour complex at 5.2 Å resolution and insights into the ATPase cycle mechanism. Fujii T, Namba K. Nat Commun 8 13969 (2017)
  17. Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR. Klein JC, Burr AR, Svensson B, Kennedy DJ, Allingham J, Titus MA, Rayment I, Thomas DD. Proc Natl Acad Sci U S A 105 12867-12872 (2008)
  18. Pi release from myosin: a simulation analysis of possible pathways. Cecchini M, Alexeev Y, Karplus M. Structure 18 458-470 (2010)
  19. KIF14 binds tightly to microtubules and adopts a rigor-like conformation. Arora K, Talje L, Asenjo AB, Andersen P, Atchia K, Joshi M, Sosa H, Allingham JS, Kwok BH. J Mol Biol 426 2997-3015 (2014)
  20. Mechanical coupling in myosin V: a simulation study. Ovchinnikov V, Trout BL, Karplus M. J Mol Biol 395 815-833 (2010)
  21. Characterization of the pre-force-generation state in the actomyosin cross-bridge cycle. Sun M, Rose MB, Ananthanarayanan SK, Jacobs DJ, Yengo CM. Proc Natl Acad Sci U S A 105 8631-8636 (2008)
  22. Cryo-EM and Molecular Docking Shows Myosin Loop 4 Contacts Actin and Tropomyosin on Thin Filaments. Doran MH, Pavadai E, Rynkiewicz MJ, Walklate J, Bullitt E, Moore JR, Regnier M, Geeves MA, Lehman W. Biophys J 119 821-830 (2020)
  23. The on-off switch in regulated myosins: different triggers but related mechanisms. Himmel DM, Mui S, O'Neall-Hennessey E, Szent-Györgyi AG, Cohen C. J Mol Biol 394 496-505 (2009)
  24. Novel mutation in MYH7 gene associated with distal myopathy and cardiomyopathy. Homayoun H, Khavandgar S, Hoover JM, Mohsen AW, Vockley J, Lacomis D, Clemens PR. Neuromuscul Disord 21 219-222 (2011)
  25. The post-rigor structure of myosin VI and implications for the recovery stroke. Ménétrey J, Llinas P, Cicolari J, Squires G, Liu X, Li A, Sweeney HL, Houdusse A. EMBO J 27 244-252 (2008)
  26. Structural mechanism of the ATP-induced dissociation of rigor myosin from actin. Kühner S, Fischer S. Proc Natl Acad Sci U S A 108 7793-7798 (2011)
  27. Structure of the shutdown state of myosin-2. Scarff CA, Carrington G, Casas-Mao D, Chalovich JM, Knight PJ, Ranson NA, Peckham M. Nature 588 515-520 (2020)
  28. Crystal structure of calcium binding protein-5 from Entamoeba histolytica and its involvement in initiation of phagocytosis of human erythrocytes. Kumar S, Aslam S, Mazumder M, Dahiya P, Murmu A, Manjasetty BA, Zaidi R, Bhattacharya A, Gourinath S. PLoS Pathog 10 e1004532 (2014)
  29. Myosin cleft closure determines the energetics of the actomyosin interaction. Takács B, O'Neall-Hennessey E, Hetényi C, Kardos J, Szent-Györgyi AG, Kovács M. FASEB J 25 111-121 (2011)
  30. Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Zheng W. Proteins 78 638-660 (2010)
  31. Coarse-grained modeling of conformational transitions underlying the processive stepping of myosin V dimer along filamentous actin. Zheng W. Proteins 79 2291-2305 (2011)
  32. Flexibility within the heads of muscle myosin-2 molecules. Billington N, Revill DJ, Burgess SA, Chantler PD, Knight PJ. J Mol Biol 426 894-907 (2014)
  33. Functional adaptation of the switch-2 nucleotide sensor enables rapid processive translocation by myosin-5. Nagy NT, Sakamoto T, Takács B, Gyimesi M, Hazai E, Bikádi Z, Sellers JR, Kovács M. FASEB J 24 4480-4490 (2010)
  34. Allosteric modulation of cardiac myosin dynamics by omecamtiv mecarbil. Hashem S, Tiberti M, Fornili A. PLoS Comput Biol 13 e1005826 (2017)
  35. An unstable head-rod junction may promote folding into the compact off-state conformation of regulated myosins. Brown JH, Yang Y, Reshetnikova L, Gourinath S, Süveges D, Kardos J, Hóbor F, Reutzel R, Nyitray L, Cohen C. J Mol Biol 375 1434-1443 (2008)
  36. Orientation of the essential light chain region of myosin in relaxed, active, and rigor muscle. Knowles AC, Ferguson RE, Brandmeier BD, Sun YB, Trentham DR, Irving M. Biophys J 95 3882-3891 (2008)
  37. Conformationally trapping the actin-binding cleft of myosin with a bifunctional spin label. Moen RJ, Thomas DD, Klein JC. J Biol Chem 288 3016-3024 (2013)
  38. Effects of ATP and actin-filament binding on the dynamics of the myosin II S1 domain. Baker JL, Voth GA. Biophys J 105 1624-1634 (2013)
  39. Structural basis of Fusarium myosin I inhibition by phenamacril. Zhou Y, Zhou XE, Gong Y, Zhu Y, Cao X, Brunzelle JS, Xu HE, Zhou M, Melcher K, Zhang F. PLoS Pathog 16 e1008323 (2020)
  40. Differences between fast and slow muscles in scallops revealed through proteomics and transcriptomics. Sun X, Liu Z, Wu B, Zhou L, Wang Q, Wu W, Yang A. BMC Genomics 19 377 (2018)
  41. X-ray solution scattering of squid heavy meromyosin: strengthening the evidence for an ancient compact off state. Gillilan RE, Kumar VS, O'Neall-Hennessey E, Cohen C, Brown JH. PLoS One 8 e81994 (2013)
  42. Insights into the importance of hydrogen bonding in the gamma-phosphate binding pocket of myosin: structural and functional studies of serine 236. Frye JJ, Klenchin VA, Bagshaw CR, Rayment I. Biochemistry 49 4897-4907 (2010)
  43. Long-range coupling between ATP-binding and lever-arm regions in myosin via dielectric allostery. Sato T, Ohnuki J, Takano M. J Chem Phys 147 215101 (2017)
  44. Molecular mechanisms underlying deoxy-ADP.Pi activation of pre-powerstroke myosin. Nowakowski SG, Regnier M, Daggett V. Protein Sci 26 749-762 (2017)
  45. Orientation of the N-terminal lobe of the myosin regulatory light chain in skeletal muscle fibers. Romano D, Brandmeier BD, Sun YB, Trentham DR, Irving M. Biophys J 102 1418-1426 (2012)
  46. The structure of the actin-smooth muscle myosin motor domain complex in the rigor state. Banerjee C, Hu Z, Huang Z, Warrington JA, Taylor DW, Trybus KM, Lowey S, Taylor KA. J Struct Biol 200 325-333 (2017)
  47. Myosin lever arm orientation in muscle determined with high angular resolution using bifunctional spin labels. Savich Y, Binder BP, Thompson AR, Thomas DD. J Gen Physiol 151 1007-1016 (2019)
  48. Coupling of lever arm swing and biased Brownian motion in actomyosin. Nie QM, Togashi A, Sasaki TN, Takano M, Sasai M, Terada TP. PLoS Comput Biol 10 e1003552 (2014)
  49. FRET characterisation for cross-bridge dynamics in single-skinned rigor muscle fibres. Caorsi V, Ushakov DS, West TG, Setta-Kaffetzi N, Ferenczi MA. Eur Biophys J 40 13-27 (2011)
  50. Mechanosignaling pathways alter muscle structure and function by post-translational modification of existing sarcomeric proteins to optimize energy usage. Russell B, Solís C. J Muscle Res Cell Motil 42 367-380 (2021)
  51. Metal switch-controlled myosin II from Dictyostelium discoideum supports closure of nucleotide pocket during ATP binding coupled to detachment from actin filaments. Cochran JC, Thompson ME, Kull FJ. J Biol Chem 288 28312-28323 (2013)
  52. Modulation of post-powerstroke dynamics in myosin II by 2'-deoxy-ADP. Childers MC, Geeves M, Daggett V, Regnier M. Arch Biochem Biophys 699 108733 (2021)
  53. Myosin S2 origins track evolution of strong binding on actin by azimuthal rolling of motor domain. Arakelian C, Warrington A, Winkler H, Perz-Edwards RJ, Reedy MK, Taylor KA. Biophys J 108 1495-1502 (2015)
  54. A subdomain interaction at the base of the lever allosterically tunes the mechanochemical mechanism of myosin 5a. Nagy NT, Chakraborty S, Harami GM, Sellers JR, Sakamoto T, Kovács M. PLoS One 8 e62640 (2013)
  55. Molecular mechanisms of cardiac actomyosin transforming from rigor state to post-rigor state. Sun S, Karki C, Gao BZ, Li L. J Chem Phys 156 035101 (2022)
  56. Purification, crystallization and preliminary X-ray crystallographic analysis of squid heavy meromyosin. O'Neall-Hennessey E, Reshetnikova L, Senthil Kumar VS, Robinson H, Szent-Györgyi AG, Cohen C. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 248-252 (2013)
  57. X-ray Crystallographic and Molecular Dynamic Analyses of Drosophila melanogaster Embryonic Muscle Myosin Define Domains Responsible for Isoform-Specific Properties. Caldwell JT, Mermelstein DJ, Walker RC, Bernstein SI, Huxford T. J Mol Biol 432 427-447 (2020)
  58. Beyond Chelation: EDTA Tightly Binds Taq DNA Polymerase, MutT and dUTPase and Directly Inhibits dNTPase Activity. Lopata A, Jójárt B, Surányi ÉV, Takács E, Bezúr L, Leveles I, Bendes ÁÁ, Viskolcz B, Vértessy BG, Tóth J. Biomolecules 9 E621 (2019)
  59. Comment Myosin mechanochemistry. Bagshaw CR. Structure 15 511-512 (2007)
  60. Seeing and knowing in structural biology. Cohen C. J Biol Chem 282 32529-32538 (2007)
  61. Structural and Computational Insights into a Blebbistatin-Bound Myosin•ADP Complex with Characteristics of an ADP-Release Conformation along the Two-Step Myosin Power Stoke. Ewert W, Franz P, Tsiavaliaris G, Preller M. Int J Mol Sci 21 E7417 (2020)
  62. Unraveling a Force-Generating Allosteric Pathway of Actomyosin Communication Associated with ADP and Pi Release. Franz P, Ewert W, Preller M, Tsiavaliaris G. Int J Mol Sci 22 E104 (2020)
  63. Actomyosin Complex. Pepper I, Galkin VE. Subcell Biochem 99 421-470 (2022)
  64. Mutations in the SH1 helix alter the thermal properties of myosin II. Shibata K, Koyama T, Inde S, Iwai S, Chaen S. Biophys Physicobiol 14 67-73 (2017)
  65. The ultrastructure and contractile properties of a fast-acting, obliquely striated, myosin-regulated muscle: the funnel retractor of squids. Rosenbluth J, Szent-Györgyi AG, Thompson JT. J Exp Biol 213 2430-2443 (2010)