3hs6 Citations

Structural basis of fatty acid substrate binding to cyclooxygenase-2.

J Biol Chem 285 22152-63 (2010)
Related entries: 3hs5, 3hs7, 3krk

Cited: 84 times
EuropePMC logo PMID: 20463020

Abstract

The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H(2) from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co(3+)-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 A, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates.

Reviews - 3hs6 mentioned but not cited (1)

Articles - 3hs6 mentioned but not cited (3)

  1. Structural basis of fatty acid substrate binding to cyclooxygenase-2. Vecchio AJ, Simmons DM, Malkowski MG. J Biol Chem 285 22152-22163 (2010)
  2. Structural protein-ligand interaction fingerprints (SPLIF) for structure-based virtual screening: method and benchmark study. Da C, Kireev D. J Chem Inf Model 54 2555-2561 (2014)
  3. Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors. Uddin MJ, Xu S, Crews BC, Aleem AM, Ghebreselasie K, Banerjee S, Marnett LJ. ACS Med Chem Lett 11 1881-1885 (2020)


Reviews citing this publication (16)

  1. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Smith WL, Urade Y, Jakobsson PJ. Chem Rev 111 5821-5865 (2011)
  2. Endocannabinoid oxygenation by cyclooxygenases, lipoxygenases, and cytochromes P450: cross-talk between the eicosanoid and endocannabinoid signaling pathways. Rouzer CA, Marnett LJ. Chem Rev 111 5899-5921 (2011)
  3. Reciprocal regulation of the nitric oxide and cyclooxygenase pathway in pathophysiology: relevance and clinical implications. Salvemini D, Kim SF, Mollace V. Am J Physiol Regul Integr Comp Physiol 304 R473-87 (2013)
  4. Polyunsaturated fatty acids and fatty acid-derived lipid mediators: Recent advances in the understanding of their biosynthesis, structures, and functions. Dyall SC, Balas L, Bazan NG, Brenna JT, Chiang N, da Costa Souza F, Dalli J, Durand T, Galano JM, Lein PJ, Serhan CN, Taha AY. Prog Lipid Res 86 101165 (2022)
  5. Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Seo MJ, Oh DK. Prog Lipid Res 66 50-68 (2017)
  6. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair. Dyall SC. Lipids 52 885-900 (2017)
  7. Nutrition and the psychoneuroimmunology of postpartum depression. Ellsworth-Bowers ER, Corwin EJ. Nutr Res Rev 25 180-192 (2012)
  8. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T. Pharmacol Ther 150 109-128 (2015)
  9. Oxicams, a class of nonsteroidal anti-inflammatory drugs and beyond. Xu S, Rouzer CA, Marnett LJ. IUBMB Life 66 803-811 (2014)
  10. Interactions of fatty acids, nonsteroidal anti-inflammatory drugs, and coxibs with the catalytic and allosteric subunits of cyclooxygenases-1 and -2. Smith WL, Malkowski MG. J Biol Chem 294 1697-1705 (2019)
  11. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. McCarty MF, DiNicolantonio JJ. Nutr Cancer 70 840-850 (2018)
  12. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes. Nguyen RC, Stagliano C, Liu A. Curr Opin Chem Biol 75 102332 (2023)
  13. Carvacrol-A Natural Phenolic Compound with Antimicrobial Properties. Mączka W, Twardawska M, Grabarczyk M, Wińska K. Antibiotics (Basel) 12 824 (2023)
  14. Current Insights into the Use of Probiotics and Fatty Acids in Alleviating Depression. Gao H, He C, Xin S, Hua R, Du Y, Wang B, Gong F, Yu X, Pan L, Gao L, Xu J. Microorganisms 11 2018 (2023)
  15. Pharmacology activity, toxicity, and clinical trials of Erythrina genus plants (Fabaceae): an evidence-based review. Susilawati E, Levita J, Susilawati Y, Sumiwi SA. Front Pharmacol 14 1281150 (2023)
  16. Structural basis for endoperoxide-forming oxygenases. Mori T, Abe I. Beilstein J Org Chem 18 707-721 (2022)

Articles citing this publication (64)

  1. The role of COX-2 and Nrf2/ARE in anti-inflammation and antioxidative stress: Aging and anti-aging. Luo C, Urgard E, Vooder T, Metspalu A. Med Hypotheses 77 174-178 (2011)
  2. Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. Dong L, Vecchio AJ, Sharma NP, Jurban BJ, Malkowski MG, Smith WL. J Biol Chem 286 19035-19046 (2011)
  3. Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Lucido MJ, Orlando BJ, Vecchio AJ, Malkowski MG. Biochemistry 55 1226-1238 (2016)
  4. Comparison of cyclooxygenase-1 crystal structures: cross-talk between monomers comprising cyclooxygenase-1 homodimers. Sidhu RS, Lee JY, Yuan C, Smith WL. Biochemistry 49 7069-7079 (2010)
  5. An omega-3 epoxide of docosahexaenoic acid lowers blood pressure in angiotensin-II-dependent hypertension. Ulu A, Stephen Lee KS, Miyabe C, Yang J, Hammock BG, Dong H, Hammock BD. J Cardiovasc Pharmacol 64 87-99 (2014)
  6. The structure of ibuprofen bound to cyclooxygenase-2. Orlando BJ, Lucido MJ, Malkowski MG. J Struct Biol 189 62-66 (2015)
  7. Oxicams bind in a novel mode to the cyclooxygenase active site via a two-water-mediated H-bonding Network. Xu S, Hermanson DJ, Banerjee S, Ghebreselasie K, Clayton GM, Garavito RM, Marnett LJ. J Biol Chem 289 6799-6808 (2014)
  8. Substrate-selective Inhibition of Cyclooxygeanse-2 by Fenamic Acid Derivatives Is Dependent on Peroxide Tone. Orlando BJ, Malkowski MG. J Biol Chem 291 15069-15081 (2016)
  9. Different Fatty Acids Compete with Arachidonic Acid for Binding to the Allosteric or Catalytic Subunits of Cyclooxygenases to Regulate Prostanoid Synthesis. Dong L, Zou H, Yuan C, Hong YH, Kuklev DV, Smith WL. J Biol Chem 291 4069-4078 (2016)
  10. The structural basis of endocannabinoid oxygenation by cyclooxygenase-2. Vecchio AJ, Malkowski MG. J Biol Chem 286 20736-20745 (2011)
  11. Crystal structure of rofecoxib bound to human cyclooxygenase-2. Orlando BJ, Malkowski MG. Acta Crystallogr F Struct Biol Commun 72 772-776 (2016)
  12. A cyclooxygenase-2-dependent prostaglandin E2 biosynthetic system in the Golgi apparatus. Yuan C, Smith WL. J Biol Chem 290 5606-5620 (2015)
  13. Investigating substrate promiscuity in cyclooxygenase-2: the role of Arg-120 and residues lining the hydrophobic groove. Vecchio AJ, Orlando BJ, Nandagiri R, Malkowski MG. J Biol Chem 287 24619-24630 (2012)
  14. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. Hoshi T, Xu R, Hou S, Heinemann SH, Tian Y. J Gen Physiol 142 507-522 (2013)
  15. Pre-existent asymmetry in the human cyclooxygenase-2 sequence homodimer. Dong L, Sharma NP, Jurban BJ, Smith WL. J Biol Chem 288 28641-28655 (2013)
  16. Therapeutic Potentials of Syzygium fruticosum Fruit (Seed) Reflected into an Array of Pharmacological Assays and Prospective Receptors-Mediated Pathways. Moni JNR, Adnan M, Tareq AM, Kabir MI, Reza ASMA, Nasrin MS, Chowdhury KH, Sayem SAJ, Rahman MA, Alam AK, Alam SB, Sakib MA, Oh KK, Cho DH, Capasso R. Life (Basel) 11 155 (2021)
  17. Asymmetric Binding and Metabolism of Polyunsaturated Fatty Acids (PUFAs) by CYP2J2 Epoxygenase. Arnold WR, Baylon JL, Tajkhorshid E, Das A. Biochemistry 55 6969-6980 (2016)
  18. 13-Methylarachidonic acid is a positive allosteric modulator of endocannabinoid oxygenation by cyclooxygenase. Kudalkar SN, Nikas SP, Kingsley PJ, Xu S, Galligan JJ, Rouzer CA, Banerjee S, Ji L, Eno MR, Makriyannis A, Marnett LJ. J Biol Chem 290 7897-7909 (2015)
  19. Omega-3 Polyunsaturated Fatty Acids Inhibited Tumor Growth via Preventing the Decrease of Genomic DNA Methylation in Colorectal Cancer Rats. Huang Q, Wen J, Chen G, Ge M, Gao Y, Ye X, Liu C, Cai C. Nutr Cancer 68 113-119 (2016)
  20. The structure of NS-398 bound to cyclooxygenase-2. Vecchio AJ, Malkowski MG. J Struct Biol 176 254-258 (2011)
  21. Fatty Acid Binding to the Allosteric Subunit of Cyclooxygenase-2 Relieves a Tonic Inhibition of the Catalytic Subunit. Dong L, Yuan C, Orlando BJ, Malkowski MG, Smith WL. J Biol Chem 291 25641-25655 (2016)
  22. Keys to Lipid Selection in Fatty Acid Amide Hydrolase Catalysis: Structural Flexibility, Gating Residues and Multiple Binding Pockets. Palermo G, Bauer I, Campomanes P, Cavalli A, Armirotti A, Girotto S, Rothlisberger U, De Vivo M. PLoS Comput Biol 11 e1004231 (2015)
  23. Competition and allostery govern substrate selectivity of cyclooxygenase-2. Mitchener MM, Hermanson DJ, Shockley EM, Brown HA, Lindsley CW, Reese J, Rouzer CA, Lopez CF, Marnett LJ. Proc Natl Acad Sci U S A 112 12366-12371 (2015)
  24. Intervention in Neuropsychiatric Disorders by Suppressing Inflammatory and Oxidative Stress Signal and Exploration of In Silico Studies for Potential Lead Compounds from Holigarna caustica (Dennst.) Oken leaves. Adnan M, Chy MNU, Kamal ATMM, Chowdhury KAA, Rahman MA, Reza ASMA, Moniruzzaman M, Rony SR, Nasrin MS, Azad MOK, Park CH, Lim YS, Cho DH. Biomolecules 10 E561 (2020)
  25. Omega-3 fatty acids inhibit tumor growth in a rat model of bladder cancer. Parada B, Reis F, Cerejo R, Garrido P, Sereno J, Xavier-Cunha M, Neto P, Mota A, Figueiredo A, Teixeira F. Biomed Res Int 2013 368178 (2013)
  26. Wound Healing Metabolites from Peters' Elephant-Nose Fish Oil: An In Vivo Investigation Supported by In Vitro and In Silico Studies. Alsenani F, Ashour AM, Alzubaidi MA, Azmy AF, Hetta MH, Abu-Baih DH, Elrehany MA, Zayed A, Sayed AM, Abdelmohsen UR, Elmaidomy AH. Mar Drugs 19 605 (2021)
  27. A combined computational strategy of sequence and structural analysis predicts the existence of a functional eicosanoid pathway in Drosophila melanogaster. Scarpati M, Qi Y, Govind S, Govind S, Singh S. PLoS One 14 e0211897 (2019)
  28. A Revised Mechanism for Human Cyclooxygenase-2. Liu Y, Roth JP. J Biol Chem 291 948-958 (2016)
  29. An Activity-Based Sensing Approach for the Detection of Cyclooxygenase-2 in Live Cells. Yadav AK, Reinhardt CJ, Arango AS, Huff HC, Dong L, Malkowski MG, Das A, Tajkhorshid E, Chan J. Angew Chem Int Ed Engl 59 3307-3314 (2020)
  30. Cyclooxygenase-2 catalysis and inhibition in lipid bilayer nanodiscs. Orlando BJ, McDougle DR, Lucido MJ, Eng ET, Graham LA, Schneider C, Stokes DL, Das A, Malkowski MG. Arch Biochem Biophys 546 33-40 (2014)
  31. The crystal structure of α-Dioxygenase provides insight into diversity in the cyclooxygenase-peroxidase superfamily. Goulah CC, Zhu G, Koszelak-Rosenblum M, Malkowski MG. Biochemistry 52 1364-1372 (2013)
  32. Exploration of binding site pattern in arachidonic acid metabolizing enzymes, Cyclooxygenases and Lipoxygenases. Reddy KK, Vidya Rajan VK, Gupta A, Aparoy P, Reddanna P. BMC Res Notes 8 152 (2015)
  33. Unveiling Pharmacological Responses and Potential Targets Insights of Identified Bioactive Constituents of Cuscuta reflexa Roxb. Leaves through In Vivo and In Silico Approaches. Adnan M, Chy MNU, Kamal ATMM, Chowdhury MR, Islam MS, Hossain MA, Tareq AM, Bhuiyan MIH, Uddin MN, Tahamina A, Azad MOK, Lim YS, Cho DH. Pharmaceuticals (Basel) 13 E50 (2020)
  34. Diarylheterocycle core ring features effect in selective COX-1 inhibition. Perrone MG, Vitale P, Malerba P, Altomare A, Rizzi R, Lavecchia A, Di Giovanni C, Novellino E, Scilimati A. ChemMedChem 7 629-641 (2012)
  35. A higher dietary ratio of long-chain omega-3 to total omega-6 fatty acids for prevention of COX-2-dependent adenocarcinomas. DiNicolantonio JJ, McCarty MF, Chatterjee S, Lavie CJ, O'Keefe JH. Nutr Cancer 66 1279-1284 (2014)
  36. Exploring the molecular determinants of substrate-selective inhibition of cyclooxygenase-2 by lumiracoxib. Windsor MA, Valk PL, Xu S, Banerjee S, Marnett LJ. Bioorg Med Chem Lett 23 5860-5864 (2013)
  37. Structural and catalytic insights into the algal prostaglandin H synthase reveal atypical features of the first non-animal cyclooxygenase. Varvas K, Kasvandik S, Hansen K, Järving I, Morell I, Samel N. Biochim Biophys Acta 1831 863-871 (2013)
  38. Hydrogen tunneling steps in cyclooxygenase-2 catalysis. Danish HH, Doncheva IS, Roth JP. J Am Chem Soc 133 15846-15849 (2011)
  39. Residual cyclooxygenase activity of aspirin-acetylated COX-2 forms 15 R-prostaglandins that inhibit platelet aggregation. Giménez-Bastida JA, Boeglin WE, Boutaud O, Malkowski MG, Schneider C. FASEB J 33 1033-1041 (2019)
  40. Dual cyclooxygenase-fatty acid amide hydrolase inhibitor exploits novel binding interactions in the cyclooxygenase active site. Goodman MC, Xu S, Rouzer CA, Banerjee S, Ghebreselasie K, Migliore M, Piomelli D, Marnett LJ. J Biol Chem 293 3028-3038 (2018)
  41. Novel COX-2 products of n-3 polyunsaturated fatty acid-ethanolamine-conjugates identified in RAW264.7 macrophages. de Bus I, Zuilhof H, Witkamp R, Balvers M, Albada B. J Lipid Res 60 1829-1840 (2019)
  42. Pulsed Dipolar Spectroscopy Reveals That Tyrosyl Radicals Are Generated in Both Monomers of the Cyclooxygenase-2 Dimer. Orlando BJ, Borbat PP, Georgieva ER, Freed JH, Malkowski MG. Biochemistry 54 7309-7312 (2015)
  43. Arg-513 and Leu-531 Are Key Residues Governing Time-Dependent Inhibition of Cyclooxygenase-2 by Aspirin and Celebrex. Dong L, Anderson AJ, Malkowski MG. Biochemistry 58 3990-4002 (2019)
  44. Crystal structures of α-dioxygenase from Oryza sativa: insights into substrate binding and activation by hydrogen peroxide. Zhu G, Koszelak-Rosenblum M, Malkowski MG. Protein Sci 22 1432-1438 (2013)
  45. Lipidomics Reveals Dramatic Physiological Kinetic Isotope Effects during the Enzymatic Oxygenation of Polyunsaturated Fatty Acids Ex Vivo. Navratil AR, Shchepinov MS, Dennis EA. J Am Chem Soc 140 235-243 (2018)
  46. GC-MS Analysis and Various In Vitro and In Vivo Pharmacological Potential of Habenaria plantaginea Lindl. Mahnashi MH, Alqahtani YS, Alyami BA, Alqarni AO, Ahmed Alshrahili M, Abou-Salim MA, Alqahtani MN, Mushtaq S, Sadiq A, Jan MS. Evid Based Complement Alternat Med 2022 7921408 (2022)
  47. Identification of a homozygous recessive variant in PTGS1 resulting in a congenital aspirin-like defect in platelet function. Chan MV, Hayman MA, Sivapalaratnam S, Crescente M, Allan HE, Edin ML, Zeldin DC, Milne GL, Stephens J, Greene D, Hanif M, O'Donnell VB, Dong L, Malkowski MG, Lentaigne C, Wedderburn K, Stubbs M, Downes K, Ouwehand WH, Turro E, BioResource N, Hart DP, Freson K, Laffan MA, Warner TD. Haematologica 106 1423-1432 (2021)
  48. In Vitro and In Silico Evaluation of New 1,3,4-Oxadiazole Derivatives of Pyrrolo[3,4-d]pyridazinone as Promising Cyclooxygenase Inhibitors. Peregrym K, Szczukowski Ł, Wiatrak B, Potyrak K, Czyżnikowska Ż, Świątek P. Int J Mol Sci 22 9130 (2021)
  49. Isoxazole-Based-Scaffold Inhibitors Targeting Cyclooxygenases (COXs). Perrone MG, Vitale P, Panella A, Ferorelli S, Contino M, Lavecchia A, Scilimati A. ChemMedChem 11 1172-1187 (2016)
  50. Transport of eicosapentaenoic acid-derived PGE₃, PGF(3α), and TXB₃ by ABCC4. Tanaka N, Yamaguchi H, Mano N. PLoS One 9 e109270 (2014)
  51. Kinetic basis for the activation of human cyclooxygenase-2 rather than cyclooxygenase-1 by nitric oxide. Qiao J, Ma L, Roth J, Li Y, Liu Y. Org Biomol Chem 16 765-770 (2018)
  52. Enhanced expression of human prostaglandin H synthase-2 in the yeast Pichia pastoris and removal of the C-terminal tag with bovine carboxypeptidase A. Kukk K, Samel N. J Biotechnol 231 224-231 (2016)
  53. Prokaryotic expression, purification and characterization of human cyclooxygenase-2. Liao X, Wang W, Fan C, Yang N, Zhao J, Zhang Y, Gao R, Shen G, Xia S, Li G. Int J Mol Med 40 75-82 (2017)
  54. Spherical harmonics coefficients for ligand-based virtual screening of cyclooxygenase inhibitors. Wang Q, Birod K, Angioni C, Grösch S, Geppert T, Schneider P, Rupp M, Schneider G. PLoS One 6 e21554 (2011)
  55. 5-Hydroxyeicosatetraenoic Acid Controls Androgen Reduction in Diverse Types of Human Epithelial Cells. Hardaway AL, Goudarzi M, Berk M, Chung YM, Zhang R, Li J, Klein E, Sharifi N. Endocrinology 164 bqac191 (2022)
  56. 2-Hydroxybenzohydrazide as a novel potential candidate against nociception, inflammation, and pyrexia: in vitro, in vivo, and computational approaches. Ali G, Islam NU, Qaim M, Ullah R, Jan MS, Shabbiri K, Shafique M, Ayaz M. Inflammopharmacology (2023)
  57. Antiinflammation Derived Suzuki-Coupled Fenbufens as COX-2 Inhibitors: Minilibrary Construction and Bioassay. Farn SS, Lai YB, Hua KF, Chen HP, Yu TY, Lo SN, Shen LH, Sheu RJ, Yu CS. Molecules 27 2850 (2022)
  58. High Glucose Shifts the Oxylipin Profiles in the Astrocytes towards Pro-Inflammatory States. Chistyakov DV, Goriainov SV, Astakhova AA, Sergeeva MG. Metabolites 11 311 (2021)
  59. Molecular Targets and Mechanisms of 6,7-Dihydroxy-2,4-dimethoxyphenanthrene from Chinese Yam Modulating NF-κB/COX-2 Signaling Pathway: The Application of Molecular Docking and Gene Silencing. Nie C, Zou Y, Liao S, Gao Q, Li Q. Nutrients 15 883 (2023)
  60. Mollusc-Derived Brominated Indoles for the Selective Inhibition of Cyclooxygenase: A Computational Expedition. Rahman MM, Junaid M, Hosen SMZ, Mostafa M, Liu L, Benkendorff K. Molecules 26 6538 (2021)
  61. Role of water in cyclooxygenase catalysis and design of anti-inflammatory agents targeting two sites of the enzyme. Kaur M, Kaur B, Kaur J, Kaur A, Bhatti R, Singh P. Sci Rep 10 10764 (2020)
  62. Stressors Due to Handling Impair Gut Immunity in Meagre (Argyrosomus regius): The Compensatory Role of Dietary L-Tryptophan. Asencio-Alcudia G, Andree KB, Giraldez I, Tovar-Ramirez D, Alvarez-González A, Herrera M, Gisbert E. Front Physiol 10 547 (2019)
  63. Synthesis and In Vitro Biological Evaluation of p-Carborane-Based Di-tert-butylphenol Analogs. Braun S, Jelača S, Laube M, George S, Hofmann B, Lönnecke P, Steinhilber D, Pietzsch J, Mijatović S, Maksimović-Ivanić D, Hey-Hawkins E. Molecules 28 4547 (2023)
  64. Unraveling how the Gly526Ser mutation arrests prostaglandin formation from arachidonic acid catalyzed by cyclooxygenase-2: a combined molecular dynamics and QM/MM study. Suñer-Rubio A, Cebrián-Prats A, González-Lafont À, Lluch JM. RSC Adv 10 986-997 (2020)