3h3w Citations

The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate.

Structure 17 800-8 (2009)
Related entries: 3h2t, 3h3y

Cited: 21 times
EuropePMC logo PMID: 19523898

Abstract

The baseplate of bacteriophage T4 is a multicomponent protein complex, which controls phage attachment to the host. It assembles from six wedges and a central hub. During infection the baseplate undergoes a large conformational change from a dome-shaped to a flat, star-shaped structure. We report the crystal structure of the C-terminal half of gene product (gp) 6 and investigate its motion with respect to the other proteins during the baseplate rearrangement. Six gp6 dimers interdigitate, forming a ring that maintains the integrity of the baseplate in both conformations. One baseplate wedge contains an N-terminal dimer of gp6, whereas neighboring wedges are tied together through the C-terminal dimer of gp6. The dimeric interactions are preserved throughout the rearrangement of the baseplate. However, the hinge angle between the N- and C-terminal parts of gp6 changes by approximately 15 degrees , accounting for a 10 A radial increase in the diameter of the gp6 ring.

Articles - 3h3w mentioned but not cited (2)

  1. TssA forms a gp6-like ring attached to the type VI secretion sheath. Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A. EMBO J. 35 1613-1627 (2016)
  2. Machine Learning Methods for X-Ray Scattering Data Analysis from Biomacromolecular Solutions. Franke D, Jeffries CM, Svergun DI. Biophys. J. 114 2485-2492 (2018)


Reviews citing this publication (4)

  1. Morphogenesis of the T4 tail and tail fibers. Leiman PG, Arisaka F, van Raaij MJ, Kostyuchenko VA, Aksyuk AA, Kanamaru S, Rossmann MG. Virol. J. 7 355 (2010)
  2. Bacteriophage assembly. Aksyuk AA, Rossmann MG. Viruses 3 172-203 (2011)
  3. Structure of viruses: a short history. Rossmann MG. Q. Rev. Biophys. 46 133-180 (2013)
  4. Structure and function of bacteriophage T4. Yap ML, Rossmann MG. Future Microbiol 9 1319-1327 (2014)

Articles citing this publication (15)

  1. EMDataBank.org: unified data resource for CryoEM. Lawson CL, Baker ML, Best C, Bi C, Dougherty M, Feng P, van Ginkel G, Devkota B, Lagerstedt I, Ludtke SJ, Newman RH, Oldfield TJ, Rees I, Sahni G, Sala R, Velankar S, Warren J, Westbrook JD, Henrick K, Kleywegt GJ, Berman HM, Chiu W. Nucleic Acids Res. 39 D456-64 (2011)
  2. Structure of the type VI secretion system contractile sheath. Kudryashev M, Wang RY, Brackmann M, Scherer S, Maier T, Baker D, DiMaio F, Stahlberg H, Egelman EH, Basler M. Cell 160 952-962 (2015)
  3. Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ. Proc. Natl. Acad. Sci. U.S.A. 107 20287-20292 (2010)
  4. Structure of the T4 baseplate and its function in triggering sheath contraction. Taylor NM, Prokhorov NS, Guerrero-Ferreira RC, Shneider MM, Browning C, Goldie KN, Stahlberg H, Leiman PG. Nature 533 346-352 (2016)
  5. The Type VI Secretion TssEFGK-VgrG Phage-Like Baseplate Is Recruited to the TssJLM Membrane Complex via Multiple Contacts and Serves As Assembly Platform for Tail Tube/Sheath Polymerization. Brunet YR, Zoued A, Boyer F, Douzi B, Cascales E. PLoS Genet. 11 e1005545 (2015)
  6. Visualizing the structural changes of bacteriophage Epsilon15 and its Salmonella host during infection. Chang JT, Schmid MF, Haase-Pettingell C, Weigele PR, King JA, Chiu W. J. Mol. Biol. 402 731-740 (2010)
  7. Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J. Mol. Microbiol. 92 84-99 (2014)
  8. The baseplate wedges of bacteriophage T4 spontaneously assemble into hubless baseplate-like structure in vitro. Yap ML, Mio K, Leiman PG, Kanamaru S, Arisaka F. J. Mol. Biol. 395 349-360 (2010)
  9. Role of bacteriophage T4 baseplate in regulating assembly and infection. Yap ML, Klose T, Arisaka F, Speir JA, Veesler D, Fokine A, Rossmann MG. Proc. Natl. Acad. Sci. U.S.A. 113 2654-2659 (2016)
  10. Cryo-EM reconstruction of Type VI secretion system baseplate and sheath distal end. Nazarov S, Schneider JP, Brackmann M, Goldie KN, Stahlberg H, Basler M. EMBO J. 37 (2018)
  11. Sequential assembly of the wedge of the baseplate of phage T4 in the presence and absence of gp11 as monitored by analytical ultracentrifugation. Yap ML, Mio K, Ali S, Minton A, Kanamaru S, Arisaka F. Macromol Biosci 10 808-813 (2010)
  12. Structure of the 3.3MDa, in vitro assembled, hubless bacteriophage T4 baseplate. Yap ML, Klose T, Plevka P, Aksyuk A, Zhang X, Arisaka F, Rossmann MG. J. Struct. Biol. 187 95-102 (2014)
  13. Unified data resource for cryo-EM. Lawson CL. Meth. Enzymol. 483 73-90 (2010)
  14. Structure of Vibrio Phage XM1, a Simple Contractile DNA Injection Machine. Wang Z, Fokine A, Guo X, Jiang W, Rossmann MG, Kuhn RJ, Luo ZH, Klose T. Viruses 15 1673 (2023)
  15. Selection of mutant Listeria phages under food-relevant conditions can enhance application potential. Schamp CN, Dhowlaghar N, Hudson LK, Bryan DW, Zhong Q, Fozo EM, Gaballa A, Wiedmann M, Denes TG. Appl Environ Microbiol 89 e0100723 (2023)