3g6h Citations

Equally potent inhibition of c-Src and Abl by compounds that recognize inactive kinase conformations.

Cancer Res 69 2384-92 (2009)
Cited: 88 times
EuropePMC logo PMID: 19276351

Abstract

Imatinib is an inhibitor of the Abl tyrosine kinase domain that is effective in the treatment of chronic myelogenic leukemia. Although imatinib binds tightly to the Abl kinase domain, its affinity for the closely related kinase domain of c-Src is at least 2,000-fold lower. Imatinib recognition requires a specific inactive conformation of the kinase domain, in which a conserved Asp-Phe-Gly (DFG) motif is flipped with respect to the active conformation. The inability of c-Src to readily adopt this flipped DFG conformation was thought to underlie the selectivity of imatinib for Abl over c-Src. Here, we present a series of inhibitors (DSA compounds) that are based on the core scaffold of imatinib but which bind with equally high potency to c-Src and Abl. The DSA compounds bind to c-Src in the DFG-flipped conformation, as confirmed by crystal structures and kinetic analysis. The origin of the high affinity of these compounds for c-Src is suggested by the fact that they also inhibit clinically relevant Abl variants bearing mutations in a structural element, the P-loop, that normally interacts with the phosphate groups of ATP but is folded over a substructure of imatinib in Abl. Importantly, several of the DSA compounds block the growth of Ba/F3 cells harboring imatinib-resistant BCR-ABL mutants, including the Thr315Ile "gatekeeper" mutation, but do not suppress the growth of parental Ba/F3 cells.

Reviews - 3g6h mentioned but not cited (1)

  1. Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Jha V, Macchia M, Tuccinardi T, Poli G. Cancers (Basel) 12 E2327 (2020)

Articles - 3g6h mentioned but not cited (3)

  1. Affinity reagents that target a specific inactive form of protein kinases. Ranjitkar P, Brock AM, Maly DJ. Chem Biol 17 195-206 (2010)
  2. Novel 7-Chloro-4-aminoquinoline-benzimidazole Hybrids as Inhibitors of Cancer Cells Growth: Synthesis, Antiproliferative Activity, in Silico ADME Predictions, and Docking. Krstulović L, Leventić M, Rastija V, Starčević K, Jirouš M, Janić I, Karnaš M, Lasić K, Bajić M, Glavaš-Obrovac L. Molecules 28 540 (2023)
  3. Rhodanine Derivatives as Anticancer Agents: QSAR and Molecular Docking Studies. Molnar M, Lončarić M, Opačak-Bernardi T, Glavaš-Obrovac L, Rastija V. Anticancer Agents Med Chem 23 839-846 (2023)


Reviews citing this publication (17)

  1. ERK1/2 MAP kinases: structure, function, and regulation. Roskoski R. Pharmacol Res 66 105-143 (2012)
  2. Biomolecular simulation: a computational microscope for molecular biology. Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Annu Rev Biophys 41 429-452 (2012)
  3. Src protein-tyrosine kinase structure, mechanism, and small molecule inhibitors. Roskoski R. Pharmacol Res 94 9-25 (2015)
  4. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Jura N, Zhang X, Endres NF, Seeliger MA, Schindler T, Kuriyan J. Mol Cell 42 9-22 (2011)
  5. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Dar AC, Shokat KM. Annu Rev Biochem 80 769-795 (2011)
  6. MEK1/2 dual-specificity protein kinases: structure and regulation. Roskoski R. Biochem Biophys Res Commun 417 5-10 (2012)
  7. Large conformational changes in proteins: signaling and other functions. Grant BJ, Gorfe AA, McCammon JA. Curr Opin Struct Biol 20 142-147 (2010)
  8. ErbB/HER protein-tyrosine kinases: Structures and small molecule inhibitors. Roskoski R. Pharmacol Res 87 42-59 (2014)
  9. Mechanisms of drug resistance in kinases. Barouch-Bentov R, Sauer K. Expert Opin Investig Drugs 20 153-208 (2011)
  10. The bone marrow microenvironment as a sanctuary for minimal residual disease in CML. Nair RR, Tolentino J, Hazlehurst LA. Biochem Pharmacol 80 602-612 (2010)
  11. Structure and dynamic regulation of Abl kinases. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE. J Biol Chem 288 5443-5450 (2013)
  12. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit Rev Biochem Mol Biol 53 535-563 (2018)
  13. Biochemical mechanisms of resistance to small-molecule protein kinase inhibitors. Krishnamurty R, Maly DJ. ACS Chem Biol 5 121-138 (2010)
  14. Development of an effective therapy for chronic myelogenous leukemia. Woessner DW, Lim CS, Deininger MW. Cancer J 17 477-486 (2011)
  15. Understanding molecular mechanisms in cell signaling through natural and artificial sequence variation. Shah NH, Kuriyan J. Nat Struct Mol Biol 26 25-34 (2019)
  16. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Cheng HC, Johnson TM, Mills RD, Chong YP, Chan KC, Culvenor JG. Clin Exp Pharmacol Physiol 37 93-101 (2010)
  17. Transporter-Mediated Cellular Distribution of Tyrosine Kinase Inhibitors as a Potential Resistance Mechanism in Chronic Myeloid Leukemia. Verhagen NE, Koenderink JB, Blijlevens NMA, Janssen JJWM, Russel FGM. Pharmaceutics 15 2535 (2023)

Articles citing this publication (67)

  1. Explaining why Gleevec is a specific and potent inhibitor of Abl kinase. Lin YL, Meng Y, Jiang W, Roux B. Proc Natl Acad Sci U S A 110 1664-1669 (2013)
  2. Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Wilson C, Agafonov RV, Hoemberger M, Kutter S, Zorba A, Halpin J, Buosi V, Otten R, Waterman D, Theobald DL, Kern D. Science 347 882-886 (2015)
  3. A conserved water-mediated hydrogen bond network defines bosutinib's kinase selectivity. Levinson NM, Boxer SG. Nat Chem Biol 10 127-132 (2014)
  4. Conformational analysis of the DFG-out kinase motif and biochemical profiling of structurally validated type II inhibitors. Vijayan RS, He P, Modi V, Duong-Ly KC, Ma H, Peterson JR, Dunbrack RL, Levy RM. J Med Chem 58 466-479 (2015)
  5. Conformational states dynamically populated by a kinase determine its function. Xie T, Saleh T, Rossi P, Kalodimos CG. Science 370 eabc2754 (2020)
  6. A dynamically coupled allosteric network underlies binding cooperativity in Src kinase. Foda ZH, Shan Y, Kim ET, Shaw DE, Seeliger MA. Nat Commun 6 5939 (2015)
  7. Structural and spectroscopic analysis of the kinase inhibitor bosutinib and an isomer of bosutinib binding to the Abl tyrosine kinase domain. Levinson NM, Boxer SG. PLoS One 7 e29828 (2012)
  8. Binding mode of the breakthrough inhibitor AZD9291 to epidermal growth factor receptor revealed. Yosaatmadja Y, Silva S, Dickson JM, Patterson AV, Smaill JB, Flanagan JU, McKeage MJ, Squire CJ. J Struct Biol 192 539-544 (2015)
  9. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations. Dixit A, Verkhivker GM. PLoS Comput Biol 5 e1000487 (2009)
  10. The ins and outs of bcr-abl inhibition. Reddy EP, Aggarwal AK. Genes Cancer 3 447-454 (2012)
  11. Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands. Feldman HC, Tong M, Wang L, Meza-Acevedo R, Gobillot TA, Lebedev I, Gliedt MJ, Hari SB, Mitra AK, Backes BJ, Papa FR, Seeliger MA, Maly DJ. ACS Chem Biol 11 2195-2205 (2016)
  12. Sequence determinants of a specific inactive protein kinase conformation. Hari SB, Merritt EA, Maly DJ. Chem Biol 20 806-815 (2013)
  13. Active site profiling reveals coupling between domains in SRC-family kinases. Krishnamurty R, Brigham JL, Leonard SE, Ranjitkar P, Larson ET, Dale EJ, Merritt EA, Maly DJ. Nat Chem Biol 9 43-50 (2013)
  14. Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. Aleksandrov A, Simonson T. J Biol Chem 285 13807-13815 (2010)
  15. Allosteric interactions between the myristate- and ATP-site of the Abl kinase. Iacob RE, Zhang J, Gray NS, Engen JR. PLoS One 6 e15929 (2011)
  16. Discovery of a small-molecule type II inhibitor of wild-type and gatekeeper mutants of BCR-ABL, PDGFRalpha, Kit, and Src kinases: novel type II inhibitor of gatekeeper mutants. Weisberg E, Choi HG, Ray A, Barrett R, Zhang J, Sim T, Zhou W, Seeliger M, Cameron M, Azam M, Fletcher JA, Debiec-Rychter M, Mayeda M, Moreno D, Kung AL, Janne PA, Khosravi-Far R, Melo JV, Manley PW, Adamia S, Wu C, Gray N, Griffin JD. Blood 115 4206-4216 (2010)
  17. Structural propensities of kinase family proteins from a Potts model of residue co-variation. Haldane A, Flynn WF, He P, Vijayan RS, Levy RM. Protein Sci 25 1378-1384 (2016)
  18. Tyrosine Kinase Activation and Conformational Flexibility: Lessons from Src-Family Tyrosine Kinases. Meng Y, Pond MP, Roux B. Acc Chem Res 50 1193-1201 (2017)
  19. Computational study of the "DFG-flip" conformational transition in c-Abl and c-Src tyrosine kinases. Meng Y, Lin YL, Roux B. J Phys Chem B 119 1443-1456 (2015)
  20. Towards a Molecular Understanding of the Link between Imatinib Resistance and Kinase Conformational Dynamics. Lovera S, Morando M, Pucheta-Martinez E, Martinez-Torrecuadrada JL, Saladino G, Gervasio FL. PLoS Comput Biol 11 e1004578 (2015)
  21. A novel mechanism by which small molecule inhibitors induce the DFG flip in Aurora A. Martin MP, Zhu JY, Lawrence HR, Pireddu R, Luo Y, Alam R, Ozcan S, Sebti SM, Lawrence NJ, Schönbrunn E. ACS Chem Biol 7 698-706 (2012)
  22. Computational analysis of the binding specificity of Gleevec to Abl, c-Kit, Lck, and c-Src tyrosine kinases. Lin YL, Roux B. J Am Chem Soc 135 14741-14753 (2013)
  23. Computational study of Gleevec and G6G reveals molecular determinants of kinase inhibitor selectivity. Lin YL, Meng Y, Huang L, Roux B. J Am Chem Soc 136 14753-14762 (2014)
  24. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. Kwarcinski FE, Brandvold KR, Phadke S, Beleh OM, Johnson TK, Meagher JL, Seeliger MA, Stuckey JA, Soellner MB. ACS Chem Biol 11 1296-1304 (2016)
  25. A type-II kinase inhibitor capable of inhibiting the T315I "gatekeeper" mutant of Bcr-Abl. Choi HG, Ren P, Adrian F, Sun F, Lee HS, Wang X, Ding Q, Zhang G, Xie Y, Zhang J, Liu Y, Tuntland T, Warmuth M, Manley PW, Mestan J, Gray NS, Sim T. J Med Chem 53 5439-5448 (2010)
  26. Affinity-based probes based on type II kinase inhibitors. Ranjitkar P, Perera BG, Swaney DL, Hari SB, Larson ET, Krishnamurty R, Merritt EA, Villén J, Maly DJ. J Am Chem Soc 134 19017-19025 (2012)
  27. Irreversible inhibitors of c-Src kinase that target a nonconserved cysteine. Kwarcinski FE, Fox CC, Steffey ME, Soellner MB. ACS Chem Biol 7 1910-1917 (2012)
  28. Conformational Selection and Induced Fit Mechanisms in the Binding of an Anticancer Drug to the c-Src Kinase. Morando MA, Saladino G, D'Amelio N, Pucheta-Martinez E, Lovera S, Lelli M, López-Méndez B, Marenchino M, Campos-Olivas R, Gervasio FL. Sci Rep 6 24439 (2016)
  29. Dynamic Equilibrium of the Aurora A Kinase Activation Loop Revealed by Single-Molecule Spectroscopy. Gilburt JAH, Sarkar H, Sheldrake P, Blagg J, Ying L, Dodson CA. Angew Chem Int Ed Engl 56 11409-11414 (2017)
  30. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. Hari SB, Perera BG, Ranjitkar P, Seeliger MA, Maly DJ. ACS Chem Biol 8 2734-2743 (2013)
  31. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. Meng Y, Gao C, Clawson DK, Atwell S, Russell M, Vieth M, Roux B. J Chem Theory Comput 14 2721-2732 (2018)
  32. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. Tse A, Verkhivker GM. PLoS One 10 e0130203 (2015)
  33. Dynamics of human protein kinase Aurora A linked to drug selectivity. Pitsawong W, Buosi V, Otten R, Agafonov RV, Zorba A, Kern N, Kutter S, Kern G, Pádua RA, Meniche X, Kern D. Elife 7 e36656 (2018)
  34. Dasatinib inhibits TGFβ-induced myofibroblast differentiation through Src-SRF Pathway. Abdalla M, Thompson L, Gurley E, Burke S, Ujjin J, Newsome R, Somanath PR. Eur J Pharmacol 769 134-142 (2015)
  35. Alpha7 helix plays an important role in the conformational stability of PTP1B. Olmez EO, Alakent B. J Biomol Struct Dyn 28 675-693 (2011)
  36. Specificity rendering 'hot-spots' for aurora kinase inhibitor design: the role of non-covalent interactions and conformational transitions. Badrinarayan P, Sastry GN. PLoS One 9 e113773 (2014)
  37. Structural analysis of DFG-in and DFG-out dual Src-Abl inhibitors sharing a common vinyl purine template. Zhou T, Commodore L, Huang WS, Wang Y, Sawyer TK, Shakespeare WC, Clackson T, Zhu X, Dalgarno DC. Chem Biol Drug Des 75 18-28 (2010)
  38. A hexylchloride-based catch-and-release system for chemical proteomic applications. Brigham JL, Perera BG, Maly DJ. ACS Chem Biol 8 691-699 (2013)
  39. Identification of Hck inhibitors as hits for the development of antileukemia and anti-HIV agents. Tintori C, Laurenzana I, La Rocca F, Falchi F, Carraro F, Ruiz A, Esté JA, Kissova M, Crespan E, Maga G, Biava M, Brullo C, Schenone S, Botta M. ChemMedChem 8 1353-1360 (2013)
  40. In silico design: extended molecular dynamic simulations of a new series of dually acting inhibitors against EGFR and HER2. Ahmed M, Sadek MM, Abouzid KA, Wang F. J Mol Graph Model 44 220-231 (2013)
  41. Broad spectrum alkynyl inhibitors of T315I Bcr-Abl. Deng X, Lim SM, Zhang J, Gray NS. Bioorg Med Chem Lett 20 4196-4200 (2010)
  42. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Paul F, Meng Y, Roux B. J Chem Theory Comput 16 1896-1912 (2020)
  43. The 1.65 Å resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. Yosaatmadja Y, Patterson AV, Smaill JB, Squire CJ. Acta Crystallogr D Biol Crystallogr 71 525-533 (2015)
  44. Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase. Aleem SU, Craddock BP, Miller WT. PLoS One 10 e0131062 (2015)
  45. How ATP-Competitive Inhibitors Allosterically Modulate Tyrosine Kinases That Contain a Src-like Regulatory Architecture. Fang L, Vilas-Boas J, Chakraborty S, Potter ZE, Register AC, Seeliger MA, Maly DJ. ACS Chem Biol 15 2005-2016 (2020)
  46. Bivalent inhibitors of the tyrosine kinases ABL and SRC: determinants of potency and selectivity. Hill ZB, Perera BG, Maly DJ. Mol Biosyst 7 447-456 (2011)
  47. Diversity of Long-Lived Intermediates along the Binding Pathway of Imatinib to Abl Kinase Revealed by MD Simulations. Paul F, Thomas T, Roux B. J Chem Theory Comput 16 7852-7865 (2020)
  48. Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib. Mathea S, Abdul Azeez KR, Salah E, Tallant C, Wolfreys F, Konietzny R, Fischer R, Lou HJ, Brennan PE, Schnapp G, Pautsch A, Kessler BM, Turk BE, Knapp S. ACS Chem Biol 11 1595-1602 (2016)
  49. Discovery of novel dual VEGFR2 and Src inhibitors using a multistep virtual screening approach. Chen S, Qin C, Sin JE, Yang X, Tao L, Zeng X, Zhang P, Gao CM, Jiang YY, Zhang C, Chen YZ, Chui WK. Future Med Chem 9 7-24 (2017)
  50. Application of shape-based and pharmacophore-based in silico screens for identification of Type II protein kinase inhibitors. Mucs D, Bryce RA, Bonnet P. J Comput Aided Mol Des 25 569-581 (2011)
  51. Repurposing FDA Drug Compounds against Breast Cancer by Targeting EGFR/HER2. Balbuena-Rebolledo I, Padilla-Martínez II, Rosales-Hernández MC, Bello M. Pharmaceuticals (Basel) 14 791 (2021)
  52. Src signaling in a low-complexity unicellular kinome. Suga H, Miller WT. Sci Rep 8 5362 (2018)
  53. Type II Binders Targeting the "GLR-Out" Conformation of the Pseudokinase STRADα. Smith RHB, Khan ZM, Ung PM, Scopton AP, Silber L, Mack SM, Real AM, Schlessinger A, Dar AC. Biochemistry 60 289-302 (2021)
  54. An amino-indazole scaffold with spectrum selective kinase inhibition of FLT3, PDGFRα and kit. Deng X, Zhou W, Weisberg E, Wang J, Zhang J, Sasaki T, Nelson E, Griffin JD, Jänne PA, Gray NS. Bioorg Med Chem Lett 22 4579-4584 (2012)
  55. Development of 'DFG-out' inhibitors of gatekeeper mutant kinases. Choi HG, Zhang J, Weisberg E, Griffin JD, Sim T, Gray NS. Bioorg Med Chem Lett 22 5297-5302 (2012)
  56. Evaluating the predictivity of virtual screening for ABL kinase inhibitors to hinder drug resistance. Gani OA, Narayanan D, Engh RA. Chem Biol Drug Des 82 506-519 (2013)
  57. Insight on Mutation-Induced Resistance from Molecular Dynamics Simulations of the Native and Mutated CSF-1R and KIT. Da Silva Figueiredo Celestino Gomes P, Chauvot De Beauchêne I, Panel N, Lopez S, De Sepulveda P, Geraldo Pascutti P, Solary E, Tchertanov L. PLoS One 11 e0160165 (2016)
  58. Protein Flexibility and Dissociation Pathway Differentiation Can Explain Onset of Resistance Mutations in Kinases. Shekhar M, Smith Z, Seeliger MA, Tiwary P. Angew Chem Int Ed Engl 61 e202200983 (2022)
  59. Determination of the kinetics and thermodynamics of ligand binding to a specific inactive conformation in protein kinases. Hari SB, Ranjitkar P, Maly DJ. Methods Mol Biol 928 153-159 (2012)
  60. Dissecting the molecular recognition of dual lapatinib derivatives for EGFR/HER2. Bello M, Guadarrama-García C, Rodriguez-Fonseca RA. J Comput Aided Mol Des 34 293-303 (2020)
  61. Mapping the conformational energy landscape of Abl kinase using ClyA nanopore tweezers. Li F, Fahie MA, Gilliam KM, Pham R, Chen M. Nat Commun 13 3541 (2022)
  62. Nuclear magnetic resonance analysis of the conformational state of cancer mutant of fibroblast growth factor receptor 1 tyrosine kinase domain. Kobashigawa Y, Amano S, Yoza K, Himeno R, Amemiya S, Morioka H, Yokogawa M, Kumeta H, Schlessinger J, Inagaki F. Genes Cells 21 350-357 (2016)
  63. Structure and RAF family kinase isoform selectivity of type II RAF inhibitors tovorafenib and naporafenib. Tkacik E, Li K, Gonzalez-Del Pino G, Ha BH, Vinals J, Park E, Beyett TS, Eck MJ. J Biol Chem 299 104634 (2023)
  64. Molecular Simulations of Conformational Transitions within the Insulin Receptor Kinase Reveal Consensus Features in a Multistep Activation Pathway. Nam K, Tao Y, Ovchinnikov V. J Phys Chem B 127 5789-5798 (2023)
  65. Structural mechanism of a drug-binding process involving a large conformational change of the protein target. Ayaz P, Lyczek A, Paung Y, Mingione VR, Iacob RE, de Waal PW, Engen JR, Seeliger MA, Shan Y, Shaw DE. Nat Commun 14 1885 (2023)
  66. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. Thomas T, Roux B. Eur Phys J B 94 203 (2021)
  67. The functional regulatory details of ERK2 in complex with RSK1: an in silico insight. Jafari S, Farsani FM, Ganji M, Ganjalikhany MR. RSC Adv 11 11048-11056 (2021)