3fqu Citations

Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes.

Proc Natl Acad Sci U S A 106 2776-81 (2009)
Related entries: 3fqn, 3fqr, 3fqt, 3fqw, 3fqx

Cited: 53 times
EuropePMC logo PMID: 19196958

Abstract

Human leukocyte antigen (HLA) class I molecules present a variety of posttranslationally modified epitopes at the cell surface, although the consequences of such presentation remain largely unclear. Phosphorylation plays a critical cellular role, and deregulation in phosphate metabolism is associated with disease, including autoimmunity and tumor immunity. We have solved the high-resolution structures of 3 HLA A2-restricted phosphopeptides associated with tumor immunity and compared them with the structures of their nonphosphorylated counterparts. Phosphorylation of the epitope was observed to affect the structure and mobility of the bound epitope. In addition, the phosphoamino acid stabilized the HLA peptide complex in an epitope-specific manner and was observed to exhibit discrete flexibility within the antigen-binding cleft. Collectively, our data suggest that phosphorylation generates neoepitopes that represent demanding targets for T-cell receptor ligation. These findings provide insights into the mode of phosphopeptide presentation by HLA as well as providing a platform for the rational design of a generation of posttranslationally modified tumor vaccines.

Articles - 3fqu mentioned but not cited (3)

  1. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ. Nat Struct Mol Biol 24 395-406 (2017)
  2. Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes. Petersen J, Wurzbacher SJ, Williamson NA, Ramarathinam SH, Reid HH, Nair AK, Zhao AY, Nastovska R, Rudge G, Rossjohn J, Purcell AW. Proc Natl Acad Sci U S A 106 2776-2781 (2009)
  3. Phosphosite-dependent presentation of dual phosphorylated peptides by MHC class I molecules. Zhao Y, Sun M, Zhang N, Liu X, Yue C, Feng L, Ji S, Liu X, Qi J, Wong CCL, Gao GF, Liu WJ. iScience 25 104013 (2022)


Reviews citing this publication (20)

  1. Why must T cells be cross-reactive? Sewell AK. Nat Rev Immunol 12 669-677 (2012)
  2. Predicting Antigen Presentation-What Could We Learn From a Million Peptides? Gfeller D, Bassani-Sternberg M. Front Immunol 9 1716 (2018)
  3. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. Petersen J, Purcell AW, Rossjohn J. J Mol Med (Berl) 87 1045-1051 (2009)
  4. Understanding the complexity and malleability of T-cell recognition. Miles JJ, McCluskey J, Rossjohn J, Gras S. Immunol Cell Biol 93 433-441 (2015)
  5. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Front Immunol 11 565096 (2020)
  6. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Liu J, Zhang S, Tan S, Zheng B, Gao GF. Exp Biol Med (Maywood) 236 253-267 (2011)
  7. Building proteomic tool boxes to monitor MHC class I and class II peptides. Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Proteomics 17 (2017)
  8. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Minati R, Perreault C, Thibault P. Front Immunol 11 583287 (2020)
  9. Chimeric antigen receptors in cancer immuno-gene therapy: current status and future directions. Chicaybam L, Sodré AL, Bonamino M. Int Rev Immunol 30 294-311 (2011)
  10. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Bentzen AK, Hadrup SR. Immunooncol Technol 2 1-10 (2019)
  11. Employing proteomics in the study of antigen presentation: an update. Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Expert Rev Proteomics 15 637-645 (2018)
  12. Vaccine Strategy in Melanoma. Kwak M, Leick KM, Melssen MM, Slingluff CL. Surg Oncol Clin N Am 28 337-351 (2019)
  13. Immunology and immunotherapy in breast cancer. Semiglazov V, Tseluiko A, Kudaybergenova A, Artemyeva A, Krivorotko P, Donskih R. Cancer Biol Med j.issn.2095-3941.2021.0597 (2022)
  14. Fundamental and Essential Knowledge for Pathologists Engaged in the Research and Practice of Immune Checkpoint Inhibitor-Based Cancer Immunotherapy. Kubo T, Shinkawa T, Kikuchi Y, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Front Oncol 11 679095 (2021)
  15. What's next in cancer immunotherapy? - The promise and challenges of neoantigen vaccination. Redwood AJ, Dick IM, Creaney J, Robinson BWS. Oncoimmunology 11 2038403 (2022)
  16. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Sandalova T, Sala BM, Achour A. Front Chem 10 861609 (2022)
  17. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Nagel R, Pataskar A, Champagne J, Agami R. Cancer Res 82 3637-3649 (2022)
  18. Circular RNA vaccine in disease prevention and treatment. Niu D, Wu Y, Lian J. Signal Transduct Target Ther 8 341 (2023)
  19. Mitochondrial Proteins as Source of Cancer Neoantigens. Prota G, Lechuga-Vieco AV, De Libero G. Int J Mol Sci 23 2627 (2022)
  20. Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies. Srivastava AK, Guadagnin G, Cappello P, Novelli F. Cancers (Basel) 15 138 (2022)

Articles citing this publication (30)

  1. An airborne transmissible avian influenza H5 hemagglutinin seen at the atomic level. Zhang W, Shi Y, Lu X, Shu Y, Qi J, Gao GF. Science 340 1463-1467 (2013)
  2. Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Depontieu FR, Qian J, Zarling AL, McMiller TL, Salay TM, Norris A, English AM, Shabanowitz J, Engelhard VH, Hunt DF, Topalian SL. Proc Natl Acad Sci U S A 106 12073-12078 (2009)
  3. The cellular redox environment alters antigen presentation. Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. J Biol Chem 289 27979-27991 (2014)
  4. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens. Alpízar A, Marino F, Ramos-Fernández A, Lombardía M, Jeko A, Pazos F, Paradela A, Santiago C, Heck AJ, Marcilla M. Mol Cell Proteomics 16 181-193 (2017)
  5. Structure and receptor-binding properties of an airborne transmissible avian influenza A virus hemagglutinin H5 (VN1203mut). Lu X, Shi Y, Zhang W, Zhang Y, Qi J, Gao GF. Protein Cell 4 502-511 (2013)
  6. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Mohammed F, Stones DH, Zarling AL, Willcox CR, Shabanowitz J, Cummings KL, Hunt DF, Cobbold M, Engelhard VH, Willcox BE. Oncotarget 8 54160-54172 (2017)
  7. Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Solleder M, Guillaume P, Racle J, Michaux J, Pak HS, Müller M, Coukos G, Bassani-Sternberg M, Gfeller D. Mol Cell Proteomics 19 390-404 (2020)
  8. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. Li Y, Depontieu FR, Sidney J, Salay TM, Engelhard VH, Hunt DF, Sette A, Topalian SL, Mariuzza RA. J Mol Biol 399 596-603 (2010)
  9. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Purcell AW, Sechi S, DiLorenzo TP. Diabetes 68 879-886 (2019)
  10. A Comprehensive Survey of the Roles of Highly Disordered Proteins in Type 2 Diabetes. Du Z, Uversky VN. Int J Mol Sci 18 E2010 (2017)
  11. Pre-fractionation Extends but also Creates a Bias in the Detectable HLA Class Ι Ligandome. Demmers LC, Heck AJR, Wu W. J Proteome Res 18 1634-1643 (2019)
  12. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Proteomics 18 e1700253 (2018)
  13. Immunopeptidomic Analysis Reveals That Deamidated HLA-bound Peptides Arise Predominantly from Deglycosylated Precursors. Mei S, Ayala R, Ramarathinam SH, Illing PT, Faridi P, Song J, Purcell AW, Croft NP. Mol Cell Proteomics 19 1236-1247 (2020)
  14. Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B∗15:02. Simper GS, Hò GT, Celik AA, Huyton T, Kuhn J, Kunze-Schumacher H, Blasczyk R, Bade-Döding C. J Immunol Res 2018 5086503 (2018)
  15. Identification of cytotoxic T lymphocyte epitopes in dengue virus serotype 1. Duan Z, Guo J, Huang X, Liu H, Chen X, Jiang M, Wen J. J Med Virol 87 1077-1089 (2015)
  16. caAtlas: An immunopeptidome atlas of human cancer. Yi X, Liao Y, Wen B, Li K, Dou Y, Savage SR, Zhang B. iScience 24 103107 (2021)
  17. Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated Antigen, TRAP1, on cancer therapy. Lin MH, Shen KY, Liu BS, Chen IH, Sher YP, Tseng GC, Liu SJ, Sung WC. Vaccine X 1 100017 (2019)
  18. Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. Wu Y, Wang J, Fan S, Chen R, Liu Y, Zhang J, Yuan H, Liang R, Zhang N, Xia C. J Virol 91 e02511-16 (2017)
  19. Identification of conserved and HLA-A*2402-restricted epitopes in Dengue virus serotype 2. Duan ZL, Liu HF, Huang X, Wang SN, Yang JL, Chen XY, Li DZ, Zhong XZ, Chen BK, Wen JS. Virus Res 196 5-12 (2015)
  20. Tumor Infiltrating Lymphocytes Target HLA-I Phosphopeptides Derived From Cancer Signaling in Colorectal Cancer. Penny SA, Abelin JG, Malaker SA, Myers PT, Saeed AZ, Steadman LG, Bai DL, Ward ST, Shabanowitz J, Hunt DF, Cobbold M. Front Immunol 12 723566 (2021)
  21. Allotype-Specific Glycosylation and Cellular Localization of Human Leukocyte Antigen Class I Proteins. Hoek M, Demmers LC, Wu W, Heck AJR. J Proteome Res 20 4518-4528 (2021)
  22. Nα-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nα-acetylpeptide presentation. Sun M, Liu J, Qi J, Tefsen B, Shi Y, Yan J, Gao GF. J Immunol 192 5509-5519 (2014)
  23. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. JCI Insight 7 e151624 (2022)
  24. Characteristics of Immune Memory and Effector Activity to Cancer-Expressed MHC Class I Phosphopeptides Differ in Healthy Donors and Ovarian Cancer Patients. Lulu AM, Cummings KL, Jeffery ED, Myers PT, Underwood D, Lacy RM, Chianese-Bullock KA, Slingluff CL, Modesitt SC, Engelhard VH. Cancer Immunol Res 9 1327-1341 (2021)
  25. HLA Class II Presentation Is Specifically Altered at Elevated Temperatures in the B-Lymphoblastic Cell Line JY. Demmers LC, Wu W, Heck AJR. Mol Cell Proteomics 20 100089 (2021)
  26. Induction of multiple cytotoxic T lymphocyte responses in mice by a multiepitope DNA vaccine against dengue virus serotype 1. Chen XY, Li Z, Zhong XZ, Chen B, Duan ZL, Wen JS. Microbiol Immunol 60 835-845 (2016)
  27. Polymorphism of duck MHC class molecules. Zhang L, Lin D, Yu S, Bai J, Jiang W, Su W, Huang Y, Yang S, Wu J. Immunogenetics 71 49-59 (2019)
  28. Deciphering the landscape of phosphorylated HLA-II ligands. Solleder M, Racle J, Guillaume P, Coukos G, Bassani-Sternberg M, Gfeller D. iScience 25 104215 (2022)
  29. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Patskovsky Y, Natarajan A, Patskovska L, Nyovanie S, Joshi B, Morin B, Brittsan C, Huber O, Gordon S, Michelet X, Schmitzberger F, Stein RB, Findeis MA, Hurwitz A, Van Dijk M, Chantzoura E, Yague AS, Pollack Smith D, Buell JS, Underwood D, Krogsgaard M. Nat Commun 14 3763 (2023)
  30. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O'Reilly RJ. J Immunother Cancer 11 e006889 (2023)