3eyg Citations

Dissecting specificity in the Janus kinases: the structures of JAK-specific inhibitors complexed to the JAK1 and JAK2 protein tyrosine kinase domains.

J Mol Biol 387 219-32 (2009)
Related entries: 3eyh, 3fup

Cited: 128 times
EuropePMC logo PMID: 19361440

Abstract

The Janus kinases (JAKs) are a pivotal family of protein tyrosine kinases (PTKs) that play prominent roles in numerous cytokine signaling pathways, with aberrant JAK activity associated with a variety of hematopoietic malignancies, cardiovascular diseases and immune-related disorders. Whereas the structures of the JAK2 and JAK3 PTK domains have been determined, the structure of the JAK1 PTK domain is unknown. Here, we report the high-resolution crystal structures of the "active form" of the JAK1 PTK domain in complex with two JAK inhibitors, a tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one (CMP6) and (3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile (CP-690,550), and compare them with the corresponding JAK2 PTK inhibitor complexes. Both inhibitors bound in a similar manner to JAK1, namely buried deep within a constricted ATP-binding site, thereby providing a basis for the potent inhibition of JAK1. As expected, the mode of inhibitor binding in JAK1 was very similar to that observed in JAK2, highlighting the challenges in developing JAK-specific inhibitors that target the ATP-binding site. Nevertheless, differences surrounding the JAK1 and JAK2 ATP-binding sites were apparent, thereby providing a platform for the rational design of JAK2- and JAK1-specific inhibitors.

Reviews - 3eyg mentioned but not cited (7)

  1. Perspectives for the use of structural information and chemical genetics to develop inhibitors of Janus kinases. Haan C, Behrmann I, Haan S. J Cell Mol Med 14 504-527 (2010)
  2. A Comprehensive Overview of Globally Approved JAK Inhibitors. Shawky AM, Almalki FA, Abdalla AN, Abdelazeem AH, Gouda AM. Pharmaceutics 14 1001 (2022)
  3. The use of structural biology in Janus kinase targeted drug discovery. Alicea-Velázquez NL, Boggon TJ. Curr Drug Targets 12 546-555 (2011)
  4. Inside Perspective of the Synthetic and Computational Toolbox of JAK Inhibitors: Recent Updates. Coricello A, Mesiti F, Lupia A, Maruca A, Alcaro S. Molecules 25 E3321 (2020)
  5. Chiral kinase inhibitors. Jiang JK, Shen M, Thomas CJ, Boxer MB. Curr Top Med Chem 11 800-809 (2011)
  6. Modern drug discovery for inflammatory bowel disease: The role of computational methods. Johnson TO, Akinsanmi AO, Ejembi SA, Adeyemi OE, Oche JR, Johnson GI, Adegboyega AE. World J Gastroenterol 29 310-331 (2023)
  7. Molecular dissection of Janus kinases as drug targets for inflammatory diseases. Kwon S. Front Immunol 13 1075192 (2022)

Articles - 3eyg mentioned but not cited (31)

  1. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Kan Z, Zheng H, Liu X, Li S, Barber TD, Gong Z, Gao H, Hao K, Willard MD, Xu J, Hauptschein R, Rejto PA, Fernandez J, Wang G, Zhang Q, Wang B, Chen R, Wang J, Lee NP, Zhou W, Lin Z, Peng Z, Yi K, Chen S, Li L, Fan X, Yang J, Ye R, Ju J, Wang K, Estrella H, Deng S, Wei P, Qiu M, Wulur IH, Liu J, Ehsani ME, Zhang C, Loboda A, Sung WK, Aggarwal A, Poon RT, Fan ST, Wang J, Hardwick J, Reinhard C, Dai H, Li Y, Luk JM, Mao M. Genome Res 23 1422-1433 (2013)
  2. The molecular basis of JAK/STAT inhibition by SOCS1. Liau NPD, Laktyushin A, Lucet IS, Murphy JM, Yao S, Whitlock E, Callaghan K, Nicola NA, Kershaw NJ, Babon JJ. Nat Commun 9 1558 (2018)
  3. Lanatoside C Induces G2/M Cell Cycle Arrest and Suppresses Cancer Cell Growth by Attenuating MAPK, Wnt, JAK-STAT, and PI3K/AKT/mTOR Signaling Pathways. Reddy D, Kumavath R, Ghosh P, Barh D. Biomolecules 9 E792 (2019)
  4. Structure of a Janus kinase cytokine receptor complex reveals the basis for dimeric activation. Glassman CR, Tsutsumi N, Saxton RA, Lupardus PJ, Jude KM, Garcia KC. Science 376 163-169 (2022)
  5. Relative Binding Free Energy Calculations Applied to Protein Homology Models. Cappel D, Hall ML, Lenselink EB, Beuming T, Qi J, Bradner J, Sherman W. J Chem Inf Model 56 2388-2400 (2016)
  6. Simulating protein-ligand binding with neural network potentials. Lahey SJ, Rowley CN. Chem Sci 11 2362-2368 (2020)
  7. Insights into the Binding Recognition and Susceptibility of Tofacitinib toward Janus Kinases. Sanachai K, Mahalapbutr P, Choowongkomon K, Poo-Arporn RP, Wolschann P, Rungrotmongkol T. ACS Omega 5 369-377 (2020)
  8. Death-associated protein kinase controls STAT3 activity in intestinal epithelial cells. Chakilam S, Gandesiri M, Rau TT, Agaimy A, Vijayalakshmi M, Ivanovska J, Wirtz RM, Schulze-Luehrmann J, Benderska N, Wittkopf N, Chellappan A, Ruemmele P, Vieth M, Rave-Fränk M, Christiansen H, Hartmann A, Neufert C, Atreya R, Becker C, Steinberg P, Schneider-Stock R. Am J Pathol 182 1005-1020 (2013)
  9. c-Src binds to the cancer drug Ruxolitinib with an active conformation. Duan Y, Chen L, Chen Y, Fan XG. PLoS One 9 e106225 (2014)
  10. NSC114792, a novel small molecule identified through structure-based computational database screening, selectively inhibits JAK3. Kim BH, Jee JG, Yin CH, Sandoval C, Jayabose S, Kitamura D, Bach EA, Baeg GH. Mol Cancer 9 36 (2010)
  11. Survey of phosphorylation near drug binding sites in the Protein Data Bank (PDB) and their effects. Smith KP, Gifford KM, Waitzman JS, Rice SE. Proteins 83 25-36 (2015)
  12. Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking. Bajusz D, Rácz A, Héberger K. Molecules 24 E2690 (2019)
  13. Computer aided designing of novel pyrrolopyridine derivatives as JAK1 inhibitors. Keretsu S, Ghosh S, Cho SJ. Sci Rep 11 23051 (2021)
  14. Structural basis of Janus kinase trans-activation. Caveney NA, Saxton RA, Waghray D, Glassman CR, Tsutsumi N, Hubbard SR, Garcia KC. Cell Rep 42 112201 (2023)
  15. Mapping RNAPII CTD Phosphorylation Reveals That the Identity and Modification of Seventh Heptad Residues Direct Tyr1 Phosphorylation. Burkholder NT, Sipe SN, Escobar EE, Venkatramani M, Irani S, Yang W, Wu H, Matthews WM, Brodbelt JS, Zhang Y. ACS Chem Biol 14 2264-2275 (2019)
  16. A Novel Scalarized Scaffold Hopping Algorithm with Graph-Based Variational Autoencoder for Discovery of JAK1 Inhibitors. Yu Y, Xu T, Li J, Qiu Y, Rong Y, Gong Z, Cheng X, Dong L, Liu W, Li J, Dou D, Huang J. ACS Omega 6 22945-22954 (2021)
  17. Development of a high-throughput crystal structure-determination platform for JAK1 using a novel metal-chelator soaking system. Caspers NL, Han S, Rajamohan F, Hoth LR, Geoghegan KF, Subashi TA, Vazquez ML, Kaila N, Cronin CN, Johnson E, Kurumbail RG. Acta Crystallogr F Struct Biol Commun 72 840-845 (2016)
  18. Identification of Potent and Selective JAK1 Lead Compounds Through Ligand-Based Drug Design Approaches. Babu S, Nagarajan SK, Sathish S, Negi VS, Sohn H, Madhavan T. Front Pharmacol 13 837369 (2022)
  19. Novel Potential Janus Kinase Inhibitors with Therapeutic Prospects in Rheumatoid Arthritis Addressed by In Silico Studies. Radu AF, Bungau SG, Negru AP, Uivaraseanu B, Bogdan MA. Molecules 28 4699 (2023)
  20. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3. Kim BH, Yi EH, Jee JG, Jeong AJ, Sandoval C, Park IC, Baeg GH, Ye SK. J Cell Mol Med 24 7427-7438 (2020)
  21. Bioinformatics-Guided Identification of Ethyl Acetate Extract of Citri Reticulatae Pericarpium as a Functional Food Ingredient with Anti-Inflammatory Potential. Ma E, Jin L, Qian C, Feng C, Zhao Z, Tian H, Yang D. Molecules 27 5435 (2022)
  22. Levamisole Suppresses CD4+ T-Cell Proliferation and Antigen-Presenting Cell Activation in Aplastic Anemia by Regulating the JAK/STAT and TLR Signaling Pathways. Wang J, Liu J, Wang M, Zhao F, Ge M, Liu L, Jiang E, Feng S, Han M, Pei X, Zheng Y. Front Immunol 13 907808 (2022)
  23. Design, synthesis and evaluation of (R)-3-(7-(methyl(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-5-azaspiro[2.4]heptan-5-yl)-3-oxopropanenitrile as a JAK1-selective inhibitor. Chough C, Lee S, Joung M, Lee J, Kim JH, Kim BM. Medchemcomm 9 477-489 (2018)
  24. Identification of pan-kinase-family inhibitors using graph convolutional networks to reveal family-sensitive pre-moieties. Lin XY, Huang YW, Fan YW, Chen YT, Pathak N, Hsu YC, Yang JM. BMC Bioinformatics 23 247 (2022)
  25. Novel method to identify group-specific non-catalytic pockets of human kinome for drug design. Wang H, Guan Z, Qiu J, Jia Y, Zeng C, Zhao Y. RSC Adv 10 2004-2015 (2020)
  26. The Potential Role of Phenolic Acids from Salvia miltiorrhiza and Cynara scolymus and Their Derivatives as JAK Inhibitors: An In Silico Study. Liao HJ, Tzen JTC. Int J Mol Sci 23 4033 (2022)
  27. Discovery of novel JAK1 inhibitors through combining machine learning, structure-based pharmacophore modeling and bio-evaluation. Wang Z, Sun L, Xu Y, Liang P, Xu K, Huang J. J Transl Med 21 579 (2023)
  28. Molecular Recognition of FDA-Approved Small Molecule Protein Kinase Drugs in Protein Kinases. Zhu Y, Hu X. Molecules 27 7124 (2022)
  29. Molecular docking analysis of the oral tumor target JAK STAT 3 with oxo-azo compounds. Karikalan K, Veeraraghavan VP, Sekaran S, Rengasamy G, Sankaran K, Eswaramoorthy R. Bioinformation 19 63-68 (2023)
  30. Nanodiamond (ND)-Based ND@CuAl2O4@Fe3O4 electrochemical sensor for Tofacitinib detection: A unified approach to integrate experimental data with DFT and molecular docking. Bouali W, Kurtay G, Genç AA, Ahmed HEH, Soylak M, Erk N, Karimi-Maleh H. Environ Res 238 117166 (2023)
  31. Synchrotron Fourier Transform Infrared Microscopy Spectra in Cellular Effects of Janus Kinase Inhibitors on Myelofibrosis Cancer Cells. Siriwaseree J, Sanachai K, Aiebchun T, Tabtimmai L, Kuaprasert B, Choowongkomon K. ACS Omega 7 22797-22803 (2022)


Reviews citing this publication (28)

  1. FDA-approved small-molecule kinase inhibitors. Wu P, Nielsen TE, Clausen MH. Trends Pharmacol Sci 36 422-439 (2015)
  2. The molecular details of cytokine signaling via the JAK/STAT pathway. Morris R, Kershaw NJ, Babon JJ. Protein Sci 27 1984-2009 (2018)
  3. Interleukin-6: designing specific therapeutics for a complex cytokine. Garbers C, Heink S, Korn T, Rose-John S. Nat Rev Drug Discov 17 395-412 (2018)
  4. Biology and significance of the JAK/STAT signalling pathways. Kiu H, Nicholson SE. Growth Factors 30 88-106 (2012)
  5. Leukemia inhibitory factor (LIF). Nicola NA, Babon JJ. Cytokine Growth Factor Rev 26 533-544 (2015)
  6. Janus kinase inhibitors for the treatment of myeloproliferative neoplasias and beyond. Quintás-Cardama A, Kantarjian H, Cortes J, Verstovsek S. Nat Rev Drug Discov 10 127-140 (2011)
  7. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Coskun M, Salem M, Pedersen J, Nielsen OH. Pharmacol Res 76 1-8 (2013)
  8. Janus kinase (JAK) inhibitors in the treatment of inflammatory and neoplastic diseases. Roskoski R. Pharmacol Res 111 784-803 (2016)
  9. Ten things you should know about protein kinases: IUPHAR Review 14. Fabbro D, Cowan-Jacob SW, Moebitz H. Br J Pharmacol 172 2675-2700 (2015)
  10. Inflammatory pathways of importance for management of inflammatory bowel disease. Pedersen J, Coskun M, Soendergaard C, Salem M, Nielsen OH. World J Gastroenterol 20 64-77 (2014)
  11. The molecular basis of IL-10 function: from receptor structure to the onset of signaling. Walter MR. Curr Top Microbiol Immunol 380 191-212 (2014)
  12. Recent progress and perspective in JAK inhibitors for rheumatoid arthritis: from bench to bedside. Tanaka Y. J Biochem 158 173-179 (2015)
  13. The Changing Landscape of Alopecia Areata: The Therapeutic Paradigm. Renert-Yuval Y, Guttman-Yassky E. Adv Ther 34 1594-1609 (2017)
  14. Selective inhibitors of the Janus kinase Jak3--Are they effective? Thoma G, Drückes P, Zerwes HG. Bioorg Med Chem Lett 24 4617-4621 (2014)
  15. New insights into the structure and function of the pseudokinase domain in JAK2. Silvennoinen O, Ungureanu D, Niranjan Y, Hammaren H, Bandaranayake R, Hubbard SR. Biochem Soc Trans 41 1002-1007 (2013)
  16. The current status and the future of JAK2 inhibitors for the treatment of myeloproliferative diseases. Hitoshi Y, Lin N, Payan DG, Markovtsov V. Int J Hematol 91 189-200 (2010)
  17. Virus-drug interactions--molecular insight into immunosuppression and HCV. Pan Q, Tilanus HW, Metselaar HJ, Janssen HL, van der Laan LJ. Nat Rev Gastroenterol Hepatol 9 355-362 (2012)
  18. Specific therapy to regulate inflammation in rheumatoid arthritis: molecular aspects. García-Hernández MH, González-Amaro R, Portales-Pérez DP. Immunotherapy 6 623-636 (2014)
  19. An Update on JAK Inhibitors. Musumeci F, Greco C, Giacchello I, Fallacara AL, Ibrahim MM, Grossi G, Brullo C, Schenone S. Curr Med Chem 26 1806-1832 (2019)
  20. miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Kmiołek T, Paradowska-Gorycka A. Cells 11 452 (2022)
  21. Targeting the Janus kinases in rheumatoid arthritis: focus on tofacitinib. Yamaoka K, Tanaka Y. Expert Opin Pharmacother 15 103-113 (2014)
  22. Progress toward JAK1-selective inhibitors. Menet CJ, Mammoliti O, López-Ramos M. Future Med Chem 7 203-235 (2015)
  23. Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19. Li D, Hu J, Li D, Yang W, Yin SF, Qiu R. Top Curr Chem (Cham) 379 4 (2021)
  24. Inherent formulation issues of kinase inhibitors. Herbrink M, Schellens JH, Beijnen JH, Nuijen B. J Control Release 239 118-127 (2016)
  25. Insights into the Potential Mechanisms of JAK2V617F Somatic Mutation Contributing Distinct Phenotypes in Myeloproliferative Neoplasms. Gou P, Zhang W, Giraudier S. Int J Mol Sci 23 1013 (2022)
  26. Tofacitinib in ulcerative colitis. Archer TP, Moran GW, Ghosh S. Immunotherapy 8 495-502 (2016)
  27. Molecular mechanisms of neuroendocrine differentiation in prostate cancer progression. Xie Y, Ning S, Hu J. J Cancer Res Clin Oncol 148 1813-1823 (2022)
  28. New Applications of JAK/STAT Inhibitors in Pediatrics: Current Use of Ruxolitinib. Marcuzzi A, Rimondi E, Melloni E, Gonelli A, Grasso AG, Barbi E, Maximova N. Pharmaceuticals (Basel) 15 374 (2022)

Articles citing this publication (62)

  1. Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Bandaranayake RM, Ungureanu D, Shan Y, Shaw DE, Silvennoinen O, Hubbard SR. Nat Struct Mol Biol 19 754-759 (2012)
  2. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Chem Biol 18 314-323 (2011)
  3. Combination of tumor necrosis factor α and interleukin-6 induces mouse osteoclast-like cells with bone resorption activity both in vitro and in vivo. Yokota K, Sato K, Miyazaki T, Kitaura H, Kayama H, Miyoshi F, Araki Y, Akiyama Y, Takeda K, Mimura T. Arthritis Rheumatol 66 121-129 (2014)
  4. Inhibition of JAKs in macrophages increases lipopolysaccharide-induced cytokine production by blocking IL-10-mediated feedback. Pattison MJ, Mackenzie KF, Arthur JS. J Immunol 189 2784-2792 (2012)
  5. Kinase domain mutations confer resistance to novel inhibitors targeting JAK2V617F in myeloproliferative neoplasms. Deshpande A, Reddy MM, Schade GO, Ray A, Chowdary TK, Griffin JD, Sattler M. Leukemia 26 708-715 (2012)
  6. JAK2 V617F constitutive activation requires JH2 residue F595: a pseudokinase domain target for specific inhibitors. Dusa A, Mouton C, Pecquet C, Herman M, Constantinescu SN. PLoS One 5 e11157 (2010)
  7. Oncogenic JAK1 and JAK2-activating mutations resistant to ATP-competitive inhibitors. Hornakova T, Springuel L, Devreux J, Dusa A, Constantinescu SN, Knoops L, Renauld JC. Haematologica 96 845-853 (2011)
  8. Structural snapshots of full-length Jak1, a transmembrane gp130/IL-6/IL-6Rα cytokine receptor complex, and the receptor-Jak1 holocomplex. Lupardus PJ, Skiniotis G, Rice AJ, Thomas C, Fischer S, Walz T, Garcia KC. Structure 19 45-55 (2011)
  9. INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Li J, Favata M, Kelley JA, Caulder E, Thomas B, Wen X, Sparks RB, Arvanitis A, Rogers JD, Combs AP, Vaddi K, Solomon KA, Scherle PA, Newton R, Fridman JS. Neoplasia 12 28-38 (2010)
  10. JAK Kinases in Health and Disease: An Update. Laurence A, Pesu M, Silvennoinen O, O'Shea J. Open Rheumatol J 6 232-244 (2012)
  11. IL10 receptor is a novel therapeutic target in DLBCLs. Béguelin W, Sawh S, Chambwe N, Chan FC, Jiang Y, Choo JW, Scott DW, Chalmers A, Geng H, Tsikitas L, Tam W, Bhagat G, Gascoyne RD, Shaknovich R. Leukemia 29 1684-1694 (2015)
  12. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. Goedken ER, Argiriadi MA, Banach DL, Fiamengo BA, Foley SE, Frank KE, George JS, Harris CM, Hobson AD, Ihle DC, Marcotte D, Merta PJ, Michalak ME, Murdock SE, Tomlinson MJ, Voss JW. J Biol Chem 290 4573-4589 (2015)
  13. Selective functional inhibition of JAK-3 is sufficient for efficacy in collagen-induced arthritis in mice. Lin TH, Hegen M, Quadros E, Nickerson-Nutter CL, Appell KC, Cole AG, Shao Y, Tam S, Ohlmeyer M, Wang B, Goodwin DG, Kimble EF, Quintero J, Gao M, Symanowicz P, Wrocklage C, Lussier J, Schelling SH, Hewet AG, Xuan D, Krykbaev R, Togias J, Xu X, Harrison R, Mansour T, Collins M, Clark JD, Webb ML, Seidl KJ. Arthritis Rheum 62 2283-2293 (2010)
  14. Combination treatment in vitro with Nutlin, a small-molecule antagonist of MDM2, and pegylated interferon-α 2a specifically targets JAK2V617F-positive polycythemia vera cells. Lu M, Wang X, Li Y, Tripodi J, Mosoyan G, Mascarenhas J, Kremyanskaya M, Najfeld V, Hoffman R. Blood 120 3098-3105 (2012)
  15. Identification of a redox-sensitive switch within the JAK2 catalytic domain. Smith JK, Patil CN, Patlolla S, Gunter BW, Booz GW, Duhé RJ. Free Radic Biol Med 52 1101-1110 (2012)
  16. Structural Insights into JAK2 Inhibition by Ruxolitinib, Fedratinib, and Derivatives Thereof. Davis RR, Li B, Yun SY, Chan A, Nareddy P, Gunawan S, Ayaz M, Lawrence HR, Reuther GW, Lawrence NJ, Schönbrunn E. J Med Chem 64 2228-2241 (2021)
  17. Mechanistic insights into activation and SOCS3-mediated inhibition of myeloproliferative neoplasm-associated JAK2 mutants from biochemical and structural analyses. Varghese LN, Ungureanu D, Liau NP, Young SN, Laktyushin A, Hammaren H, Lucet IS, Nicola NA, Silvennoinen O, Babon JJ, Murphy JM. Biochem J 458 395-405 (2014)
  18. Effect of NS-018, a selective JAK2V617F inhibitor, in a murine model of myelofibrosis. Nakaya Y, Shide K, Naito H, Niwa T, Horio T, Miyake J, Shimoda K. Blood Cancer J 4 e174 (2014)
  19. Inhibitory effects of the JAK inhibitor CP690,550 on human CD4(+) T lymphocyte cytokine production. Migita K, Miyashita T, Izumi Y, Koga T, Komori A, Maeda Y, Jiuchi Y, Aiba Y, Yamasaki S, Kawakami A, Nakamura M, Ishibashi H. BMC Immunol 12 51 (2011)
  20. Influence of Janus kinase inhibition on interleukin 6-mediated induction of acute-phase serum amyloid A in rheumatoid synovium. Migita K, Koga T, Komori A, Torigoshi T, Maeda Y, Izumi Y, Sato J, Jiuchi Y, Miyashita T, Yamasaki S, Kawakami A, Nakamura M, Motokawa S, Ishibashi H. J Rheumatol 38 2309-2317 (2011)
  21. Strategic use of conformational bias and structure based design to identify potent JAK3 inhibitors with improved selectivity against the JAK family and the kinome. Lynch SM, DeVicente J, Hermann JC, Jaime-Figueroa S, Jin S, Kuglstatter A, Li H, Lovey A, Menke J, Niu L, Patel V, Roy D, Soth M, Steiner S, Tivitmahaisoon P, Vu MD, Yee C. Bioorg Med Chem Lett 23 2793-2800 (2013)
  22. Structure-based design of oxygen-linked macrocyclic kinase inhibitors: discovery of SB1518 and SB1578, potent inhibitors of Janus kinase 2 (JAK2) and Fms-like tyrosine kinase-3 (FLT3). Poulsen A, William A, Blanchard S, Lee A, Nagaraj H, Wang H, Teo E, Tan E, Goh KC, Dymock B. J Comput Aided Mol Des 26 437-450 (2012)
  23. Transforming JAK1 mutations exhibit differential signalling, FERM domain requirements and growth responses to interferon-γ. Gordon GM, Lambert QT, Daniel KG, Reuther GW. Biochem J 432 255-265 (2010)
  24. Discovery of a highly selective JAK3 inhibitor for the treatment of rheumatoid arthritis. Pei H, He L, Shao M, Yang Z, Ran Y, Li D, Zhou Y, Tang M, Wang T, Gong Y, Chen X, Yang S, Xiang M, Chen L. Sci Rep 8 5273 (2018)
  25. Design and synthesis of tricyclic JAK3 inhibitors with picomolar affinities as novel molecular probes. Gehringer M, Pfaffenrot E, Bauer S, Laufer SA. ChemMedChem 9 277-281 (2014)
  26. Targeting kinases for the treatment of inflammatory diseases. Müller S, Knapp S. Expert Opin Drug Discov 5 867-881 (2010)
  27. Expression, purification, characterization and crystallization of non- and phosphorylated states of JAK2 and JAK3 kinase domain. Hall T, Emmons TL, Chrencik JE, Gormley JA, Weinberg RA, Leone JW, Hirsch JL, Saabye MJ, Schindler JF, Day JE, Williams JM, Kiefer JR, Lightle SA, Harris MS, Guru S, Fischer HD, Tomasselli AG. Protein Expr Purif 69 54-63 (2010)
  28. A new regulatory switch in a JAK protein kinase. Tsui V, Gibbons P, Ultsch M, Mortara K, Chang C, Blair W, Pulk R, Stanley M, Starovasnik M, Williams D, Lamers M, Leonard P, Magnuson S, Liang J, Eigenbrot C. Proteins 79 393-401 (2011)
  29. Cooperative effects of Janus and Aurora kinase inhibition by CEP701 in cells expressing Jak2V617F. Gäbler K, Rolvering C, Kaczor J, Eulenfeld R, Méndez SÁ, Berchem G, Palissot V, Behrmann I, Haan C. J Cell Mol Med 17 265-276 (2013)
  30. Pyridones as Highly Selective, Noncovalent Inhibitors of T790M Double Mutants of EGFR. Bryan MC, Burdick DJ, Chan BK, Chen Y, Clausen S, Dotson J, Eigenbrot C, Elliott R, Hanan EJ, Heald R, Jackson P, La H, Lainchbury M, Malek S, Mann SE, Purkey HE, Schaefer G, Schmidt S, Seward E, Sideris S, Wang S, Yen I, Yu C, Heffron TP. ACS Med Chem Lett 7 100-104 (2016)
  31. 2-Aminopyrazolo[1,5-a]pyrimidines as potent and selective inhibitors of JAK2. Ledeboer MW, Pierce AC, Duffy JP, Gao H, Messersmith D, Salituro FG, Nanthakumar S, Come J, Zuccola HJ, Swenson L, Shlyakter D, Mahajan S, Hoock T, Fan B, Tsai WJ, Kolaczkowski E, Carrier S, Hogan JK, Zessis R, Pazhanisamy S, Bennani YL. Bioorg Med Chem Lett 19 6529-6533 (2009)
  32. JAK inhibitors impair GM-CSF-mediated signaling in innate immune cells. Fujita Y, Matsuoka N, Temmoku J, Furuya-Yashiro M, Asano T, Sato S, Matsumoto H, Watanabe H, Kozuru H, Yatsuhashi H, Kawakami A, Migita K. BMC Immunol 21 35 (2020)
  33. Pyrrole-3-carboxamides as potent and selective JAK2 inhibitors. Brasca MG, Nesi M, Avanzi N, Ballinari D, Bandiera T, Bertrand J, Bindi S, Canevari G, Carenzi D, Casero D, Ceriani L, Ciomei M, Cirla A, Colombo M, Cribioli S, Cristiani C, Della Vedova F, Fachin G, Fasolini M, Felder ER, Galvani A, Isacchi A, Mirizzi D, Motto I, Panzeri A, Pesenti E, Vianello P, Gnocchi P, Donati D. Bioorg Med Chem 22 4998-5012 (2014)
  34. Tofacitinib and analogs as inhibitors of the histone kinase PRK1 (PKN1). Ostrovskyi D, Rumpf T, Eib J, Lumbroso A, Slynko I, Klaeger S, Heinzlmeir S, Forster M, Gehringer M, Pfaffenrot E, Bauer SM, Schmidtkunz K, Wenzler S, Metzger E, Kuster B, Laufer S, Schüle R, Sippl W, Breit B, Jung M. Future Med Chem 8 1537-1551 (2016)
  35. Docking-based virtual screening of Brazilian natural compounds using the OOMT as the pharmacological target database. Carregal AP, Maciel FV, Carregal JB, Dos Reis Santos B, da Silva AM, Taranto AG. J Mol Model 23 111 (2017)
  36. Molecular docking, 3D QSAR and dynamics simulation studies of imidazo-pyrrolopyridines as janus kinase 1 (JAK 1) inhibitors. Itteboina R, Ballu S, Sivan SK, Manga V. Comput Biol Chem 64 33-46 (2016)
  37. Design and evaluation of novel 8-oxo-pyridopyrimidine Jak1/2 inhibitors. Labadie S, Barrett K, Blair WS, Chang C, Deshmukh G, Eigenbrot C, Gibbons P, Johnson A, Kenny JR, Kohli PB, Liimatta M, Lupardus PJ, Shia S, Steffek M, Ubhayakar S, van Abbema A, Zak M. Bioorg Med Chem Lett 23 5923-5930 (2013)
  38. Discovery of novel JAK2 and EGFR inhibitors from a series of thiazole-based chalcone derivatives. Sanachai K, Aiebchun T, Mahalapbutr P, Seetaha S, Tabtimmai L, Maitarad P, Xenikakis I, Geronikaki A, Choowongkomon K, Rungrotmongkol T. RSC Med Chem 12 430-438 (2021)
  39. Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model. Cho CH, Roh KH, Lim NY, Park SJ, Park S, Kim HW. Graefes Arch Clin Exp Ophthalmol 260 3553-3563 (2022)
  40. Tyrosine Kinase 2 Signalling Drives Pathogenic T cells in Colitis. De Vries LCS, Ghiboub M, van Hamersveld PHP, Welting O, Verseijden C, Bell MJ, Rioja I, Prinjha RK, Koelink PJ, Strobl B, Müller M, D'Haens GR, Wildenberg ME, De Jonge WJ. J Crohns Colitis 15 617-630 (2021)
  41. Molecular modeling-driven approach for identification of Janus kinase 1 inhibitors through 3D-QSAR, docking and molecular dynamics simulations. Itteboina R, Ballu S, Sivan SK, Manga V. J Recept Signal Transduct Res 37 453-469 (2017)
  42. Pharmacological control of receptor of advanced glycation end-products and its biological effects in psoriasis. Mezentsev AV, Mezentsev AV, Bruskin SA, Soboleva AG, Sobolev VV, Piruzian ES. Int J Biomed Sci 9 112-122 (2013)
  43. Enhancing specificity in the Janus kinases: a study on the thienopyridine JAK2 selective mechanism combined molecular dynamics simulation. Li JJ, Cheng P, Tu J, Zhai HL, Zhang XY. Mol Biosyst 12 575-587 (2016)
  44. Ensemble docking-based virtual screening yields novel spirocyclic JAK1 inhibitors. Bajusz D, Ferenczy GG, Keserű GM. J Mol Graph Model 70 275-283 (2016)
  45. Synthesis, Crystal Structure, Theoretical Calculations, Antibacterial Activity, Electrochemical Behavior, and Molecular Docking of Ni(II) and Cu(II) Complexes with Pyridoxal-Semicarbazone. Jevtovic V, Alshammari N, Latif S, Alsukaibi AKD, Humaidi J, Alanazi TYA, Abdulaziz F, Matalka SI, Pantelić NĐ, Marković M, Rakić A, Dimić D. Molecules 27 6322 (2022)
  46. Targeting the JAK/STAT Pathway: A Combined Ligand- and Target-Based Approach. Galvez-Llompart M, Ocello R, Rullo L, Stamatakos S, Alessandrini I, Zanni R, Tuñón I, Cavalli A, Candeletti S, Masetti M, Romualdi P, Recanatini M. J Chem Inf Model 61 3091-3108 (2021)
  47. Conversion of a False Virtual Screen Hit into Selective JAK2 JH2 Domain Binders Using Convergent Design Strategies. Henry SP, Liosi ME, Ippolito JA, Cutrona KJ, Krimmer SG, Newton AS, Schlessinger J, Jorgensen WL. ACS Med Chem Lett 13 819-826 (2022)
  48. Linear propargylic alcohol functionality attached to the indazole-7-carboxamide as a JAK1-specific linear probe group. Kim MK, Shin H, Cho SY, Chong Y. Bioorg Med Chem 22 1156-1162 (2014)
  49. Design, synthesis, and SAR study of highly potent, selective, irreversible covalent JAK3 inhibitors. He L, Shao M, Wang T, Lan T, Zhang C, Chen L. Mol Divers 22 343-358 (2018)
  50. Discovery of JAK2/3 Inhibitors from Quinoxalinone-Containing Compounds. Sanachai K, Mahalapbutr P, Tabtimmai L, Seetaha S, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. ACS Omega 7 33587-33598 (2022)
  51. Interferon-γ induces interleukin-6 production by neutrophils via the Janus kinase (JAK)-signal transducer and activator of transcription (STAT) pathway. Yoshida S, Yamada S, Yokose K, Matsumoto H, Fujita Y, Asano T, Matsuoka N, Temmoku J, Sato S, Yoshiro-Furuya M, Watanabe H, Migita K. BMC Res Notes 14 447 (2021)
  52. Selectivity and Ranking of Tight-Binding JAK-STAT Inhibitors Using Markovian Milestoning with Voronoi Tessellations. Ojha AA, Srivastava A, Votapka LW, Amaro RE. J Chem Inf Model 63 2469-2482 (2023)
  53. Understanding the structural features of JAK2 inhibitors: a combined 3D-QSAR, DFT and molecular dynamics study. Babu S, Nagarajan SK, Madhavan T. Mol Divers 23 845-874 (2019)
  54. Unraveling the Molecular Mechanism of Recognition of Selected Next-Generation Antirheumatoid Arthritis Inhibitors by Janus Kinase 1. Sk MF, Jonniya NA, Roy R, Kar P. ACS Omega 7 6195-6209 (2022)
  55. Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways. Hassanein EHM, Sayed AM, El-Ghafar OAMA, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Kyung SY, Park JH, Kim HS, Ali FEM. Arch Pharm Res 46 339-359 (2023)
  56. Identification of 8-Hydroxyquinoline Derivatives Active Against Somatic V658F Mutant JAK1-Dependent Cells. Kiss R, Bajusz D, Baskin R, Tóth K, Monostory K, Sayeski PP, Keserű GM. Arch Pharm (Weinheim) 349 925-933 (2016)
  57. Pharmacophore-Based Virtual Screening and Experimental Validation of Pyrazolone-Derived Inhibitors toward Janus Kinases. Sanachai K, Mahalapbutr P, Hengphasatporn K, Shigeta Y, Seetaha S, Tabtimmai L, Langer T, Wolschann P, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. ACS Omega 7 33548-33559 (2022)
  58. A computationally affordable approach for accurate prediction of the binding affinity of JAK2 inhibitors. Mai NT, Lan NT, Vu TY, Tung NT, Phung HTT. J Mol Model 28 163 (2022)
  59. In Silico and In Vitro Study of Janus Kinases Inhibitors from Naphthoquinones. Sanachai K, Mahalapbutr P, Tabtimmai L, Seetaha S, Kaekratoke N, Chamni S, Azam SS, Choowongkomon K, Rungrotmongkol T. Molecules 28 597 (2023)
  60. Japanese pediatric patient with refractory steroid-resistant ulcerative colitis successfully treated with Tofacitinib: A case report. Kakiuchi T, Yoshiura M. Medicine (Baltimore) 101 e31757 (2022)
  61. Next-Generation JAK2 Inhibitors for the Treatment of Myeloproliferative Neoplasms: Lessons from Structure-Based Drug Discovery Approaches. Nair PC, Piehler J, Tvorogov D, Ross DM, Lopez AF, Gotlib J, Thomas D. Blood Cancer Discov 4 352-364 (2023)
  62. Preclinical Characterization of the Selective JAK1 Inhibitor LW402 for Treatment of Rheumatoid Arthritis. Zhang N, Zhang C, Zeng Z, Zhang J, Du S, Bao C, Wang Z. J Inflamm Res 14 2133-2147 (2021)