3ecv Citations

Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants.

Proc Natl Acad Sci U S A 106 6980-5 (2009)
Related entries: 3ecu, 3ecw

Cited: 73 times
EuropePMC logo PMID: 19369197

Abstract

The structural and dynamical properties of the metal-free form of WT human superoxide dismutase 1 (SOD1) and its familial amyotrophic lateral sclerosis (fALS)-related mutants, T54R and I113T, were characterized both in solution, through NMR, and in the crystal, through X-ray diffraction. We found that all 3 X-ray structures show significant structural disorder in 2 loop regions that are, at variance, well defined in the fully-metalated structures. Interestingly, the apo state crystallizes only at low temperatures, whereas all 3 proteins in the metalated form crystallize at any temperature, suggesting that crystallization selects one of the most stable conformations among the manifold adopted by the apo form in solution. Indeed, NMR experiments show that the protein in solution is highly disordered, sampling a large range of conformations. The large conformational variability of the apo state allows the free reduced cysteine Cys-6 to become highly solvent accessible in solution, whereas it is essentially buried in the metalated state and the crystal structures. Such solvent accessibility, together with that of Cys-111, accounts for the tendency to oligomerization of the metal-free state. The present results suggest that the investigation of the solution state coupled with that of the crystal state can provide major insights into SOD1 pathway toward oligomerization in relation to fALS.

Reviews - 3ecv mentioned but not cited (1)

Articles - 3ecv mentioned but not cited (2)

  1. Structure and function of the Zika virus full-length NS5 protein. Zhao B, Yi G, Du F, Chuang YC, Vaughan RC, Sankaran B, Kao CC, Li P. Nat Commun 8 14762 (2017)
  2. Structural and dynamic aspects related to oligomerization of apo SOD1 and its mutants. Banci L, Bertini I, Boca M, Calderone V, Cantini F, Girotto S, Vieru M. Proc Natl Acad Sci U S A 106 6980-6985 (2009)


Reviews citing this publication (12)

  1. Superoxide dismutases and superoxide reductases. Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Chem Rev 114 3854-3918 (2014)
  2. Basic mechanisms of neurodegeneration: a critical update. Jellinger KA. J Cell Mol Med 14 457-487 (2010)
  3. Recent advances in our understanding of neurodegeneration. Jellinger KA. J Neural Transm (Vienna) 116 1111-1162 (2009)
  4. An emerging role for misfolded wild-type SOD1 in sporadic ALS pathogenesis. Rotunno MS, Bosco DA. Front Cell Neurosci 7 253 (2013)
  5. Cellular copper distribution: a mechanistic systems biology approach. Banci L, Bertini I, Cantini F, Ciofi-Baffoni S. Cell Mol Life Sci 67 2563-2589 (2010)
  6. Role of mitochondria in mutant SOD1 linked amyotrophic lateral sclerosis. Tan W, Pasinelli P, Trotti D. Biochim Biophys Acta 1842 1295-1301 (2014)
  7. Protein misfolding in the late-onset neurodegenerative diseases: common themes and the unique case of amyotrophic lateral sclerosis. Mulligan VK, Chakrabartty A. Proteins 81 1285-1303 (2013)
  8. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Angew Chem Int Ed Engl 60 9215-9246 (2021)
  9. Mechanisms of SOD1 regulation by post-translational modifications. Banks CJ, Andersen JL. Redox Biol 26 101270 (2019)
  10. The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Sirangelo I, Iannuzzi C. Molecules 22 E1429 (2017)
  11. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Hanspal MA, Dobson CM, Yerbury JJ, Kumita JR. Biochim Biophys Acta Mol Basis Dis 1863 2762-2771 (2017)
  12. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Sirangelo I, Iannuzzi C. Int J Mol Sci 22 6609 (2021)

Articles citing this publication (58)

  1. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. Pokrishevsky E, Grad LI, Yousefi M, Wang J, Mackenzie IR, Cashman NR. PLoS One 7 e35050 (2012)
  2. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators. Tõugu V, Karafin A, Zovo K, Chung RS, Howells C, West AK, Palumaa P. J Neurochem 110 1784-1795 (2009)
  3. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Luchinat E, Barbieri L, Rubino JT, Kozyreva T, Cantini F, Banci L. Nat Commun 5 5502 (2014)
  4. Amyotrophic lateral sclerosis-like superoxide dismutase 1 proteinopathy is associated with neuronal loss in Parkinson's disease brain. Trist BG, Davies KM, Cottam V, Genoud S, Ortega R, Roudeau S, Carmona A, De Silva K, Wasinger V, Lewis SJG, Sachdev P, Smith B, Troakes C, Vance C, Shaw C, Al-Sarraj S, Ball HJ, Halliday GM, Hare DJ, Double KL. Acta Neuropathol 134 113-127 (2017)
  5. Endothelial cell palmitoylproteomic identifies novel lipid-modified targets and potential substrates for protein acyl transferases. Marin EP, Derakhshan B, Lam TT, Davalos A, Sessa WC. Circ Res 110 1336-1344 (2012)
  6. SOD1 mutations targeting surface hydrogen bonds promote amyotrophic lateral sclerosis without reducing apo-state stability. Byström R, Andersen PM, Gröbner G, Oliveberg M. J Biol Chem 285 19544-19552 (2010)
  7. Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization. Teilum K, Smith MH, Schulz E, Christensen LC, Solomentsev G, Oliveberg M, Akke M. Proc Natl Acad Sci U S A 106 18273-18278 (2009)
  8. Disulfide scrambling describes the oligomer formation of superoxide dismutase (SOD1) proteins in the familial form of amyotrophic lateral sclerosis. Toichi K, Yamanaka K, Furukawa Y. J Biol Chem 288 4970-4980 (2013)
  9. TDP-43 or FUS-induced misfolded human wild-type SOD1 can propagate intercellularly in a prion-like fashion. Pokrishevsky E, Grad LI, Cashman NR. Sci Rep 6 22155 (2016)
  10. Susceptibility of Mutant SOD1 to Form a Destabilized Monomer Predicts Cellular Aggregation and Toxicity but Not In vitro Aggregation Propensity. McAlary L, Aquilina JA, Yerbury JJ. Front Neurosci 10 499 (2016)
  11. Aggregation propensities of superoxide dismutase G93 hotspot mutants mirror ALS clinical phenotypes. Pratt AJ, Shin DS, Merz GE, Rambo RP, Lancaster WA, Dyer KN, Borbat PP, Poole FL, Adams MW, Adams MW, Freed JH, Crane BR, Tainer JA, Getzoff ED. Proc Natl Acad Sci U S A 111 E4568-76 (2014)
  12. Cutting off functional loops from homodimeric enzyme superoxide dismutase 1 (SOD1) leaves monomeric β-barrels. Danielsson J, Kurnik M, Lang L, Oliveberg M. J Biol Chem 286 33070-33083 (2011)
  13. In-cell NMR in E. coli to monitor maturation steps of hSOD1. Banci L, Barbieri L, Bertini I, Cantini F, Luchinat E. PLoS One 6 e23561 (2011)
  14. Global structural motions from the strain of a single hydrogen bond. Danielsson J, Awad W, Saraboji K, Kurnik M, Lang L, Leinartaite L, Marklund SL, Logan DT, Oliveberg M. Proc Natl Acad Sci U S A 110 3829-3834 (2013)
  15. Palmitoylation of superoxide dismutase 1 (SOD1) is increased for familial amyotrophic lateral sclerosis-linked SOD1 mutants. Antinone SE, Ghadge GD, Lam TT, Wang L, Roos RP, Green WN. J Biol Chem 288 21606-21617 (2013)
  16. Dimerization, oligomerization, and aggregation of human amyotrophic lateral sclerosis copper/zinc superoxide dismutase 1 protein mutant forms in live cells. Kim J, Lee H, Lee JH, Kwon DY, Genovesio A, Fenistein D, Ogier A, Brondani V, Grailhe R. J Biol Chem 289 15094-15103 (2014)
  17. Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Sen Mojumdar S, N Scholl Z, Dee DR, Rouleau L, Anand U, Garen C, Woodside MT. Nat Commun 8 1881 (2017)
  18. Size-selective concentration and label-free characterization of protein aggregates using a Raman active nanofluidic device. Choi I, Huh YS, Erickson D. Lab Chip 11 632-638 (2011)
  19. Structural, stability, dynamic and binding properties of the ALS-causing T46I mutant of the hVAPB MSP domain as revealed by NMR and MD simulations. Lua S, Qin H, Lim L, Shi J, Gupta G, Song J. PLoS One 6 e27072 (2011)
  20. Mechanical probes of SOD1 predict systematic trends in metal and dimer affinity of ALS-associated mutants. Das A, Plotkin SS. J Mol Biol 425 850-874 (2013)
  21. Destabilization of the dimer interface is a common consequence of diverse ALS-associated mutations in metal free SOD1. Broom HR, Rumfeldt JA, Vassall KA, Meiering EM. Protein Sci 24 2081-2089 (2015)
  22. Identification of a misfolded region in superoxide dismutase 1 that is exposed in amyotrophic lateral sclerosis. Rotunno MS, Auclair JR, Maniatis S, Shaffer SA, Agar J, Bosco DA. J Biol Chem 289 28527-28538 (2014)
  23. Mechanistic aspects of hSOD1 maturation from the solution structure of Cu(I) -loaded hCCS domain 1 and analysis of disulfide-free hSOD1 mutants. Banci L, Cantini F, Kozyreva T, Rubino JT. Chembiochem 14 1839-1844 (2013)
  24. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Tak YJ, Park JH, Rhim H, Kang S. Int J Mol Sci 21 E7525 (2020)
  25. Aberrant zinc binding to immature conformers of metal-free copper-zinc superoxide dismutase triggers amorphous aggregation. Leal SS, Cristóvão JS, Biesemeier A, Cardoso I, Gomes CM. Metallomics 7 333-346 (2015)
  26. Glycation in Demetalated Superoxide Dismutase 1 Prevents Amyloid Aggregation and Produces Cytotoxic Ages Adducts. Sirangelo I, Vella FM, Irace G, Manco G, Iannuzzi C. Front Mol Biosci 3 55 (2016)
  27. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, Hare DJ, White M, Altvater J, Fifita JA, Hogan A, Grima N, Blair IP, Kysenius K, Crouch PJ, Carmona A, Rufin Y, Claverol S, Van Malderen S, Falkenberg G, Paterson DJ, Smith B, Troakes C, Vance C, Shaw CE, Al-Sarraj S, Cordwell S, Halliday G, Ortega R, Double KL. Brain 145 3108-3130 (2022)
  28. A misfolded dimer of Cu/Zn-superoxide dismutase leading to pathological oligomerization in amyotrophic lateral sclerosis. Anzai I, Tokuda E, Mukaiyama A, Akiyama S, Endo F, Yamanaka K, Misawa H, Furukawa Y. Protein Sci 26 484-496 (2017)
  29. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Kumar V, Prakash A, Lynn AM. Biopolymers 109 e23102 (2018)
  30. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Zeineddine R, Farrawell NE, Lambert-Smith IA, Yerbury JJ. Cell Stress Chaperones 22 893-902 (2017)
  31. Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation. Manjula R, Wright GSA, Strange RW, Padmanabhan B. FEBS Lett 592 1725-1737 (2018)
  32. Oligomerization of Cu,Zn-Superoxide Dismutase (SOD1) by Docosahexaenoic Acid and Its Hydroperoxides In Vitro: Aggregation Dependence on Fatty Acid Unsaturation and Thiols. Appolinário PP, Medinas DB, Chaves-Filho AB, Genaro-Mattos TC, Cussiol JR, Netto LE, Augusto O, Miyamoto S. PLoS One 10 e0125146 (2015)
  33. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. Prakash A, Kumar V, Pandey P, Bharti DR, Vishwakarma P, Singh R, Hassan MI, Lynn AM. J Biomol Struct Dyn 36 2605-2617 (2018)
  34. Identification of human monoclonal antibodies specific for human SOD1 recognizing distinct epitopes and forms of SOD1. Broering TJ, Wang H, Boatright NK, Wang Y, Baptista K, Shayan G, Garrity KA, Kayatekin C, Bosco DA, Matthews CR, Ambrosino DM, Xu Z, Babcock GJ. PLoS One 8 e61210 (2013)
  35. Immunochemical characterization on pathological oligomers of mutant Cu/Zn-superoxide dismutase in amyotrophic lateral sclerosis. Tokuda E, Anzai I, Nomura T, Toichi K, Watanabe M, Ohara S, Watanabe S, Yamanaka K, Morisaki Y, Misawa H, Furukawa Y. Mol Neurodegener 12 2 (2017)
  36. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. Tompa DR, Kadhirvel S. J Biomol Struct Dyn 36 4085-4098 (2018)
  37. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: Potential implications in ALS. Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos TC, Tallman KA, Porter NA, Augusto O, Miyamoto S. Redox Biol 19 105-115 (2018)
  38. Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human-A Discrete Molecular Dynamics Study. Srinivasan E, Rajasekaran R. Cell Biochem Biophys 76 231-241 (2018)
  39. Disulfide scrambling in superoxide dismutase 1 reduces its cytotoxic effect in cultured cells and promotes protein aggregation. Leinartaitė L, Johansson AS. PLoS One 8 e78060 (2013)
  40. The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS model. Sannigrahi A, Chowdhury S, Das B, Banerjee A, Halder A, Kumar A, Saleem M, Naganathan AN, Karmakar S, Chattopadhyay K. Elife 10 e61453 (2021)
  41. Colorimetric tracking of protein structural evolution based on the distance-dependent light scattering of embedded gold nanoparticles. Choi I, Yang YI, Jeong E, Kim K, Hong S, Kang T, Yi J. Chem Commun (Camb) 48 2286-2288 (2012)
  42. DNA-triggered aggregation of copper, zinc superoxide dismutase in the presence of ascorbate. Yin J, Hu S, Jiang W, Liu L, Lan S, Song X, Liu C. PLoS One 5 e12328 (2010)
  43. Huntingtin fragments and SOD1 mutants form soluble oligomers in the cell. Park YN, Zhao X, Norton M, Taylor JP, Eisenberg E, Greene LE. PLoS One 7 e40329 (2012)
  44. Lipid-associated aggregate formation of superoxide dismutase-1 is initiated by membrane-targeting loops. Chng CP, Strange RW. Proteins 82 3194-3209 (2014)
  45. Molecular mechanisms underlying the impact of mutations in SOD1 on its conformational properties associated with amyotrophic lateral sclerosis as revealed with molecular modelling. Alemasov NA, Ivanisenko NV, Ramachandran S, Ivanisenko VA. BMC Struct Biol 18 1 (2018)
  46. Exposure of Solvent-Inaccessible Regions in the Amyloidogenic Protein Human SOD1 Determined by Hydroxyl Radical Footprinting. Sheng Y, Capri J, Waring A, Valentine JS, Whitelegge J. J Am Soc Mass Spectrom 30 218-226 (2019)
  47. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. Jahan I, Nayeem SM. RSC Adv 10 27598-27614 (2020)
  48. Solid-state NMR studies of metal-free SOD1 fibrillar structures. Banci L, Blaževitš O, Cantini F, Danielsson J, Lang L, Luchinat C, Mao J, Oliveberg M, Ravera E. J Biol Inorg Chem 19 659-666 (2014)
  49. T54R mutation destabilizes the dimer of superoxide dismutase 1T54R by inducing steric clashes at the dimer interface. Ghosh DK, Kumar A, Ranjan A. RSC Adv 10 10776-10788 (2020)
  50. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Nat Commun 13 3491 (2022)
  51. Dynamic properties of SOD1 mutants can predict survival time of patients carrying familial amyotrophic lateral sclerosis. Alemasov NA, Ivanisenko NV, Medvedev SP, Zakian SM, Kolchanov NA, Ivanisenko VA. J Biomol Struct Dyn 35 645-656 (2017)
  52. Interaction of Half Oxa-/Half cis-Platin Complex with Human Superoxide Dismutase and Induced Reduction of Neurotoxicity. Cantini F, Calderone V, Di Cesare Mannelli L, Korsak M, Gonnelli L, Francesconi O, Ghelardini C, Banci L, Nativi C. ACS Med Chem Lett 9 1094-1098 (2018)
  53. The Role of Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis: Identification of Signaling Pathways, Regulators, Molecular Interaction Networks, and Biological Functions through Bioinformatics. Suthar SK, Lee SY. Brain Sci 13 151 (2023)
  54. A protocol to automatically calculate homo-oligomeric protein structures through the integration of evolutionary constraints and NMR ambiguous contacts. Sala D, Cerofolini L, Fragai M, Giachetti A, Luchinat C, Rosato A. Comput Struct Biotechnol J 18 114-124 (2020)
  55. Behavioral and Cognitive Phenotypes of Patients With Amyotrophic Lateral Sclerosis Carrying SOD1 Variants. Bella ED, Bersano E, Bruzzone MG, Gellera C, Pensato V, Lauria G, Consonni M. Neurology 10.1212/WNL.0000000000201044 (2022)
  56. Computational insight into in silico analysis and molecular dynamics simulation of the dimer interface residues of ALS-linked hSOD1 forms in apo/holo states: a combined experimental and bioinformatic perspective. Zaji HD, Seyedalipour B, Hanun HM, Baziyar P, Hosseinkhani S, Akhlaghi M. 3 Biotech 13 92 (2023)
  57. Metal migration and subunit swapping in ALS-linked SOD1: Zn2+ transfer between mutant and wild-type occurs faster than the rate of heterodimerization. Dashnaw CM, Zhang AY, Gonzalez M, Koone JC, Shaw BF. J Biol Chem 298 102610 (2022)
  58. Molecular Mechanisms of Aggregation of Canine SOD1 E40K Amyloidogenic Mutant Protein. Wakayama K, Kimura S, Kobatake Y, Kamishina H, Nishii N, Takashima S, Honda R, Kamatari YO. Molecules 28 156 (2022)


Related citations provided by authors (2)

  1. Metal-free superoxide dismutase forms soluble oligomers under physiological conditions: a possible general mechanism for familial ALS.. Banci L, Bertini I, Durazo A, Girotto S, Gralla EB, Martinelli M, Valentine JS, Vieru M, Whitelegge JP Proc. Natl. Acad. Sci. U.S.A. 104 11263-11267 (2007)
  2. SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization.. Banci L, Bertini I, Boca M, Girotto S, Martinelli M, Valentine JS, Vieru M PLoS ONE 3 1677- (2008)