3dbs Citations

The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .

Abstract

Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis, biological activity, and further profiling of these compounds are described. This work resulted in the discovery of 17, GDC-0941, which is a potent, selective, orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.

Reviews - 3dbs mentioned but not cited (5)

  1. Drugging the PI3 kinome: from chemical tools to drugs in the clinic. Workman P, Clarke PA, Raynaud FI, van Montfort RL. Cancer Res 70 2146-2157 (2010)
  2. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Shuttleworth SJ, Silva FA, Cecil AR, Tomassi CD, Hill TJ, Raynaud FI, Clarke PA, Workman P. Curr Med Chem 18 2686-2714 (2011)
  3. Structural Determinants of Isoform Selectivity in PI3K Inhibitors. Miller MS, Thompson PE, Gabelli SB. Biomolecules 9 E82 (2019)
  4. Advances in chemical proteomic evaluation of lipid kinases-DAG kinases as a case study. Ware TB, Hsu KL. Curr Opin Chem Biol 65 101-108 (2021)
  5. Target-Based Small Molecule Drug Discovery for Colorectal Cancer: A Review of Molecular Pathways and In Silico Studies. Moshawih S, Lim AF, Ardianto C, Goh KW, Kifli N, Goh HP, Jarrar Q, Ming LC. Biomolecules 12 878 (2022)

Articles - 3dbs mentioned but not cited (12)

  1. Discovery of 1-(4-(4-propionylpiperazin-1-yl)-3-(trifluoromethyl)phenyl)-9-(quinolin-3-yl)benzo[h][1,6]naphthyridin-2(1H)-one as a highly potent, selective mammalian target of rapamycin (mTOR) inhibitor for the treatment of cancer. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS. J Med Chem 53 7146-7155 (2010)
  2. Discovery of 9-(6-aminopyridin-3-yl)-1-(3-(trifluoromethyl)phenyl)benzo[h][1,6]naphthyridin-2(1H)-one (Torin2) as a potent, selective, and orally available mammalian target of rapamycin (mTOR) inhibitor for treatment of cancer. Liu Q, Wang J, Kang SA, Thoreen CC, Hur W, Ahmed T, Sabatini DM, Gray NS. J Med Chem 54 1473-1480 (2011)
  3. Kinome-wide selectivity profiling of ATP-competitive mammalian target of rapamycin (mTOR) inhibitors and characterization of their binding kinetics. Liu Q, Kirubakaran S, Hur W, Niepel M, Westover K, Thoreen CC, Wang J, Ni J, Patricelli MP, Vogel K, Riddle S, Waller DL, Traynor R, Sanda T, Zhao Z, Kang SA, Zhao J, Look AT, Sorger PK, Sabatini DM, Gray NS. J Biol Chem 287 9742-9752 (2012)
  4. Why Some Targets Benefit from beyond Rule of Five Drugs. Egbert M, Whitty A, Keserű GM, Vajda S. J Med Chem 62 10005-10025 (2019)
  5. Development of ATP-competitive mTOR inhibitors. Liu Q, Kang SA, Thoreen CC, Hur W, Wang J, Chang JW, Markhard A, Zhang J, Sim T, Sabatini DM, Gray NS. Methods Mol Biol 821 447-460 (2012)
  6. Protocatechuic Acid, a Phenolic from Sansevieria roxburghiana Leaves, Suppresses Diabetic Cardiomyopathy via Stimulating Glucose Metabolism, Ameliorating Oxidative Stress, and Inhibiting Inflammation. Bhattacharjee N, Dua TK, Khanra R, Joardar S, Nandy A, Saha A, De Feo V, Dewanjee S. Front Pharmacol 8 251 (2017)
  7. Letter Selective ATP-competitive inhibitors of TOR suppress rapamycin-insensitive function of TORC2 in Saccharomyces cerevisiae. Liu Q, Ren T, Fresques T, Oppliger W, Niles BJ, Hur W, Sabatini DM, Hall MN, Powers T, Gray NS. ACS Chem Biol 7 982-987 (2012)
  8. CK-3, A Novel Methsulfonyl Pyridine Derivative, Suppresses Hepatocellular Carcinoma Proliferation and Invasion by Blocking the PI3K/AKT/mTOR and MAPK/ERK Pathways. Wu Q, Liu TY, Hu BC, Li X, Wu YT, Sun XT, Jiang XW, Wang S, Qin XC, Ding HW, Zhao QC. Front Oncol 11 717626 (2021)
  9. Discovery of novel selective PI3Kγ inhibitors through combining machine learning-based virtual screening with multiple protein structures and bio-evaluation. Zhu J, Li K, Xu L, Cai Y, Chen Y, Zhao X, Li H, Huang G, Jin J. J Adv Res 36 1-13 (2022)
  10. Design, synthesis, and biological evaluation of new thieno[2,3-d] pyrimidine derivatives as targeted therapy for PI3K with molecular modelling study. Elmenier FM, Lasheen DS, Abouzid KAM. J Enzyme Inhib Med Chem 37 315-332 (2022)
  11. The Guareschi Pyridine Scaffold as a Valuable Platform for the Identification of Selective PI3K Inhibitors. Galli U, Ciraolo E, Massarotti A, Margaria JP, Sorba G, Hirsch E, Tron GC. Molecules 20 17275-17287 (2015)
  12. The mechanisms of Huangqi Guizhi Wuwu decoction in treating ischaemic stroke based on network pharmacology and experiment verification. Liao W, Wang M, Wu Y, Du J, Li Y, Su A, Zhong L, Xie Z, Gong M, Liang J, Wang P, Liu Z, Wang L. Pharm Biol 61 1014-1029 (2023)


Reviews citing this publication (94)

  1. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D'Orazi G. Aging (Albany NY) 8 603-619 (2016)
  2. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Bäsecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA. Oncotarget 2 135-164 (2011)
  3. Mutations in the phosphatidylinositol 3-kinase pathway: role in tumor progression and therapeutic implications in breast cancer. Miller TW, Rexer BN, Garrett JT, Arteaga CL. Breast Cancer Res 13 224 (2011)
  4. Discovery of small molecule cancer drugs: successes, challenges and opportunities. Hoelder S, Clarke PA, Workman P. Mol Oncol 6 155-176 (2012)
  5. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. Miller TW, Balko JM, Arteaga CL. J Clin Oncol 29 4452-4461 (2011)
  6. Inhibition of the PI3K/AKT/mTOR Pathway in Solid Tumors. LoRusso PM. J Clin Oncol 34 3803-3815 (2016)
  7. Targeting the PI3K/AKT/mTOR pathway in triple-negative breast cancer: a review. Costa RLB, Han HS, Gradishar WJ. Breast Cancer Res Treat 169 397-406 (2018)
  8. Probing the probes: fitness factors for small molecule tools. Workman P, Collins I. Chem Biol 17 561-577 (2010)
  9. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. J Hematol Oncol 6 88 (2013)
  10. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Sci Signal 4 re2 (2011)
  11. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Zhao HF, Wang J, Shao W, Wu CP, Chen ZP, To ST, Li WP. Mol Cancer 16 100 (2017)
  12. PI3K inhibitors are finally coming of age. Vanhaesebroeck B, Perry MWD, Brown JR, André F, Okkenhaug K. Nat Rev Drug Discov 20 741-769 (2021)
  13. Targeting PI3K/Akt signal transduction for cancer therapy. He Y, Sun MM, Zhang GG, Yang J, Chen KS, Xu WW, Li B. Signal Transduct Target Ther 6 425 (2021)
  14. Molecular predictors of response to trastuzumab and lapatinib in breast cancer. Esteva FJ, Yu D, Hung MC, Hortobagyi GN. Nat Rev Clin Oncol 7 98-107 (2010)
  15. Strategies for co-targeting the PI3K/AKT/mTOR pathway in NSCLC. Heavey S, O'Byrne KJ, Gately K. Cancer Treat Rev 40 445-456 (2014)
  16. PI3K and Akt as molecular targets for cancer therapy: current clinical outcomes. Pal I, Mandal M. Acta Pharmacol Sin 33 1441-1458 (2012)
  17. Phosphoinositide 3-kinase (PI3K) pathway inhibitors in solid tumors: From laboratory to patients. Janku F. Cancer Treat Rev 59 93-101 (2017)
  18. Status of PI3K inhibition and biomarker development in cancer therapeutics. Markman B, Atzori F, Pérez-García J, Tabernero J, Baselga J. Ann Oncol 21 683-691 (2010)
  19. PI3K and mTOR inhibitors: a new generation of targeted anticancer agents. Brachmann S, Fritsch C, Maira SM, García-Echeverría C. Curr Opin Cell Biol 21 194-198 (2009)
  20. The PI3K/Akt/PTEN/mTOR pathway: a fruitful target for inducing cell death in rheumatoid arthritis? Malemud CJ. Future Med Chem 7 1137-1147 (2015)
  21. Targeting the PI3K/AKT/mTOR signaling pathway in glioblastoma: novel therapeutic agents and advances in understanding. Sami A, Karsy M. Tumour Biol 34 1991-2002 (2013)
  22. Targeting the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway: an emerging treatment strategy for squamous cell lung carcinoma. Beck JT, Ismail A, Tolomeo C. Cancer Treat Rev 40 980-989 (2014)
  23. Endocrine resistance in hormone-responsive breast cancer: mechanisms and therapeutic strategies. Murphy CG, Dickler MN. Endocr Relat Cancer 23 R337-52 (2016)
  24. Inhibition of PI3K signaling spurs new therapeutic opportunities in inflammatory/autoimmune diseases and hematological malignancies. Foster JG, Blunt MD, Carter E, Ward SG. Pharmacol Rev 64 1027-1054 (2012)
  25. Estrogen Receptor-Positive Breast Cancer: Exploiting Signaling Pathways Implicated in Endocrine Resistance. Brufsky AM, Dickler MN. Oncologist 23 528-539 (2018)
  26. Key signaling pathways in thyroid cancer. Zaballos MA, Santisteban P. J Endocrinol 235 R43-R61 (2017)
  27. Small-molecule inhibitors of the PI3K signaling network. McNamara CR, Degterev A. Future Med Chem 3 549-565 (2011)
  28. Efficacy of PI3K inhibitors in advanced breast cancer. Verret B, Cortes J, Bachelot T, Andre F, Arnedos M. Ann Oncol 30 x12-x20 (2019)
  29. PI3K Inhibitors in Cancer: Clinical Implications and Adverse Effects. Mishra R, Patel H, Alanazi S, Kilroy MK, Garrett JT. Int J Mol Sci 22 3464 (2021)
  30. Preclinical rationale for PI3K/Akt/mTOR pathway inhibitors as therapy for epidermal growth factor receptor inhibitor-resistant non-small-cell lung cancer. Gadgeel SM, Wozniak A. Clin Lung Cancer 14 322-332 (2013)
  31. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Zhao W, Qiu Y, Kong D. Acta Pharm Sin B 7 27-37 (2017)
  32. Clinical development of phosphatidylinositol 3-kinase inhibitors for cancer treatment. Brana I, Siu LL. BMC Med 10 161 (2012)
  33. New inhibitors of the mammalian target of rapamycin signaling pathway for cancer. Albert S, Serova M, Dreyer C, Sablin MP, Faivre S, Raymond E. Expert Opin Investig Drugs 19 919-930 (2010)
  34. Optimal targeting of the mTORC1 kinase in human cancer. Lane HA, Breuleux M. Curr Opin Cell Biol 21 219-229 (2009)
  35. Allosteric and ATP-competitive kinase inhibitors of mTOR for cancer treatment. García-Echeverría C. Bioorg Med Chem Lett 20 4308-4312 (2010)
  36. Emerging metabolic targets in cancer therapy. Zhao Y, Liu H, Riker AI, Fodstad O, Ledoux SP, Wilson GL, Tan M. Front Biosci (Landmark Ed) 16 1844-1860 (2011)
  37. Structure-based design of molecular cancer therapeutics. van Montfort RL, Workman P. Trends Biotechnol 27 315-328 (2009)
  38. PI3Kδ-selective and PI3Kα/δ-combinatorial inhibitors in clinical development for B-cell non-Hodgkin lymphoma. Lampson BL, Brown JR. Expert Opin Investig Drugs 26 1267-1279 (2017)
  39. In vitro models of cancer stem cells and clinical applications. S Franco S, Szczesna K, Iliou MS, Al-Qahtani M, Mobasheri A, Kobolák J, Dinnyés A. BMC Cancer 16 738 (2016)
  40. Targeting PI3K/AKT/mTOR Signaling Pathway in Breast Cancer. Li H, Prever L, Hirsch E, Gulluni F. Cancers (Basel) 13 3517 (2021)
  41. Targeting the PI3K/AKT/mTOR Signaling Pathway in Lung Cancer: An Update Regarding Potential Drugs and Natural Products. Iksen, Pothongsrisit S, Pongrakhananon V. Molecules 26 4100 (2021)
  42. Development of phosphoinositide-3 kinase pathway inhibitors for advanced cancer. Cleary JM, Shapiro GI. Curr Oncol Rep 12 87-94 (2010)
  43. ZSTK474, a novel phosphatidylinositol 3-kinase inhibitor identified using the JFCR39 drug discovery system. Kong DX, Yamori T. Acta Pharmacol Sin 31 1189-1197 (2010)
  44. New phosphatidylinositol 3-kinase inhibitors for cancer. Bowles DW, Jimeno A. Expert Opin Investig Drugs 20 507-518 (2011)
  45. Wnt and PI3K/Akt/mTOR Survival Pathways as Therapeutic Targets in Glioblastoma. Barzegar Behrooz A, Talaie Z, Jusheghani F, Łos MJ, Klonisch T, Ghavami S. Int J Mol Sci 23 1353 (2022)
  46. Copanlisib for treatment of B-cell malignancies: the development of a PI3K inhibitor with considerable differences to idelalisib. Krause G, Hassenrück F, Hallek M. Drug Des Devel Ther 12 2577-2590 (2018)
  47. Recent syntheses of PI3K/Akt/mTOR signaling pathway inhibitors. Welker ME, Kulik G. Bioorg Med Chem 21 4063-4091 (2013)
  48. Standard of care therapy for malignant glioma and its effect on tumor and stromal cells. Jones TS, Holland EC. Oncogene 31 1995-2006 (2012)
  49. Current State of Breast Cancer Diagnosis, Treatment, and Theranostics. Bhushan A, Gonsalves A, Menon JU. Pharmaceutics 13 723 (2021)
  50. Recent Advances in the Development of Indazole-based Anticancer Agents. Dong J, Zhang Q, Wang Z, Huang G, Li S. ChemMedChem 13 1490-1507 (2018)
  51. Genetically engineered mouse models of PI3K signaling in breast cancer. Klarenbeek S, van Miltenburg MH, Jonkers J. Mol Oncol 7 146-164 (2013)
  52. The chemical biology of phosphoinositide 3-kinases. Wymann MP, Schultz C. Chembiochem 13 2022-2035 (2012)
  53. Synthetic lethality by co-targeting mitochondrial apoptosis and PI3K/Akt/mTOR signaling. Fulda S. Mitochondrion 19 Pt A 85-87 (2014)
  54. Application of computational methods for anticancer drug discovery, design, and optimization. Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Bol Med Hosp Infant Mex 73 411-423 (2016)
  55. Does the PI3K pathway play a role in basal breast cancer? Moulder SL. Clin Breast Cancer 10 Suppl 3 S66-71 (2010)
  56. Mechanisms of Resistance to PI3K Inhibitors in Cancer: Adaptive Responses, Drug Tolerance and Cellular Plasticity. Wright SCE, Vasilevski N, Serra V, Rodon J, Eichhorn PJA. Cancers (Basel) 13 1538 (2021)
  57. Inhibiting PI3K as a therapeutic strategy against cancer. Paz-Ares L, Blanco-Aparicio C, García-Carbonero R, Carnero A. Clin Transl Oncol 11 572-579 (2009)
  58. Trafficking highways to the intercalated disc: new insights unlocking the specificity of connexin 43 localization. Zhang SS, Shaw RM. Cell Commun Adhes 21 43-54 (2014)
  59. Furthering the design and the discovery of small molecule ATP-competitive mTOR inhibitors as an effective cancer treatment. Lv X, Ma X, Hu Y. Expert Opin Drug Discov 8 991-1012 (2013)
  60. Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. You KS, Yi YW, Cho J, Park JS, Seong YS. Pharmaceuticals (Basel) 14 589 (2021)
  61. Targeting phosphoinositide 3-kinase signalling in lung cancer. Wojtalla A, Arcaro A. Crit Rev Oncol Hematol 80 278-290 (2011)
  62. Novel inhibitors of the PI3K family. Carnero A. Expert Opin Investig Drugs 18 1265-1277 (2009)
  63. Protein Tyrosine Signaling and its Potential Therapeutic Implications in Carcinogenesis. Kim M, Baek M, Kim DJ. Curr Pharm Des 23 4226-4246 (2017)
  64. Recent Advances in Dual PI3K/mTOR Inhibitors for Tumour Treatment. Wu X, Xu Y, Liang Q, Yang X, Huang J, Wang J, Zhang H, Shi J. Front Pharmacol 13 875372 (2022)
  65. PI3K inhibitors as novel cancer therapies: implications for cardiovascular medicine. McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY. J Card Fail 19 268-282 (2013)
  66. Pleiotropic functions of Rho GTPase signaling: a Trojan horse or Achilles' heel for breast cancer treatment? McHenry PR, Vargo-Gogola T. Curr Drug Targets 11 1043-1058 (2010)
  67. Recent development of ATP-competitive small molecule phosphatidylinostitol-3-kinase inhibitors as anticancer agents. Liu Y, Wan WZ, Li Y, Zhou GL, Liu XG. Oncotarget 8 7181-7200 (2017)
  68. BH3-mimetics: recent developments in cancer therapy. Townsend PA, Kozhevnikova MV, Cexus ONF, Zamyatnin AA, Soond SM. J Exp Clin Cancer Res 40 355 (2021)
  69. Inhibitors of phosphoinositide-3-kinase: a structure-based approach to understanding potency and selectivity. Sundstrom TJ, Anderson AC, Wright DL. Org Biomol Chem 7 840-850 (2009)
  70. Strategies to overcome resistance to epidermal growth factor receptor monoclonal antibody therapy in metastatic colorectal cancer. Jeong WJ, Cha PH, Choi KY. World J Gastroenterol 20 9862-9871 (2014)
  71. Somatic mutations in PI3Kalpha: structural basis for enzyme activation and drug design. Gabelli SB, Mandelker D, Schmidt-Kittler O, Vogelstein B, Amzel LM. Biochim Biophys Acta 1804 533-540 (2010)
  72. Targeting phosphatidylinositol 3-kinase signaling in acute myelogenous leukemia. Evangelisti C, Evangelisti C, Bressanin D, Buontempo F, Chiarini F, Lonetti A, Soncin M, Spartà A, McCubrey JA, Martelli AM. Expert Opin Ther Targets 17 921-936 (2013)
  73. Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. Lin F, de Gooijer MC, Hanekamp D, Brandsma D, Beijnen JH, van Tellingen O. CNS Oncol 2 271-288 (2013)
  74. Clinical development of phosphatidylinositol-3 kinase pathway inhibitors. Arteaga CL. Curr Top Microbiol Immunol 347 189-208 (2010)
  75. PI3Kδ Inhibitors as Immunomodulatory Agents for the Treatment of Lymphoma Patients. Tarantelli C, Argnani L, Zinzani PL, Bertoni F. Cancers (Basel) 13 5535 (2021)
  76. Phosphoinositide 3-kinase α inhibitors: a patent review. Denny WA. Expert Opin Ther Pat 23 789-799 (2013)
  77. Targeting PI3Kδ: emerging therapy for chronic lymphocytic leukemia and beyond. Wei M, Wang X, Song Z, Jiao M, Ding J, Meng LH, Zhang A. Med Res Rev 35 720-752 (2015)
  78. Anticipating mechanisms of resistance to PI3K inhibition in breast cancer: a challenge in the era of precision medicine. Leroy C, Amante RJ, Bentires-Alj M. Biochem Soc Trans 42 733-741 (2014)
  79. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Abramson HN. Oncotarget 7 81926-81968 (2016)
  80. PI3K Inhibitors in Advanced Breast Cancer: The Past, The Present, New Challenges and Future Perspectives. Fuso P, Muratore M, D'Angelo T, Paris I, Carbognin L, Tiberi G, Pavese F, Duranti S, Orlandi A, Tortora G, Scambia G, Fabi A. Cancers (Basel) 14 2161 (2022)
  81. Selective and potent small-molecule inhibitors of PI3Ks. Jeong Y, Kwon D, Hong S. Future Med Chem 6 737-756 (2014)
  82. Lipid kinases as therapeutic targets for chronic pain. Loo L, Wright BD, Zylka MJ. Pain 156 Suppl 1 S2-S10 (2015)
  83. Targeting PI3K/Akt signaling in prostate cancer therapy. Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. J Cell Commun Signal 17 423-443 (2023)
  84. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Sirico M, D'Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Cancers (Basel) 15 703 (2023)
  85. Davis-Beirut Reaction: Diverse Chemistries of Highly Reactive Nitroso Intermediates in Heterocycle Synthesis. Zhu JS, Haddadin MJ, Kurth MJ. Acc Chem Res 52 2256-2265 (2019)
  86. Potential role of PI3K inhibitors in the treatment of breast cancer. Carvalho S, Schmitt F, Schmitt F. Future Oncol 6 1251-1263 (2010)
  87. Rationale-based therapeutic combinations with PI3K inhibitors in cancer treatment. Castel P, Toska E, Zumsteg ZS, Carmona FJ, Elkabets M, Bosch A, Scaltriti M. Mol Cell Oncol 1 e963447 (2014)
  88. Signaling pathways as therapeutic targets in biliary tract cancer. Yang J, Farren MR, Ahn D, Bekaii-Saab T, Lesinski GB. Expert Opin Ther Targets 21 485-498 (2017)
  89. PI3K-AKT-Targeting Breast Cancer Treatments: Natural Products and Synthetic Compounds. Yuan Y, Long H, Zhou Z, Fu Y, Jiang B. Biomolecules 13 93 (2023)
  90. Chemical and Structural Strategies to Selectively Target mTOR Kinase. Borsari C, De Pascale M, Wymann MP. ChemMedChem 16 2744-2759 (2021)
  91. Computational Approaches Towards Kinases as Attractive Targets for Anticancer Drug Discovery and Development. Hameed R, Khan A, Khan S, Perveen S. Anticancer Agents Med Chem 19 592-598 (2019)
  92. Emerging immunological drugs for chronic lymphocytic leukemia. Robak P, Smolewski P, Robak T. Expert Opin Emerg Drugs 20 423-447 (2015)
  93. Targeting PI3K/AKT/mTOR Pathway in Breast Cancer: From Biology to Clinical Challenges. Cerma K, Piacentini F, Moscetti L, Barbolini M, Canino F, Tornincasa A, Caggia F, Cerri S, Molinaro A, Dominici M, Omarini C. Biomedicines 11 109 (2023)
  94. Phosphoinositide 3-Kinase (PI3K) Inhibitors and Breast Cancer: An Overview of Current Achievements. Bertucci A, Bertucci F, Gonçalves A. Cancers (Basel) 15 1416 (2023)

Articles citing this publication (308)

  1. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Junttila TT, Akita RW, Parsons K, Fields C, Lewis Phillips GD, Friedman LS, Sampath D, Sliwkowski MX. Cancer Cell 15 429-440 (2009)
  2. A comprehensive transcriptional portrait of human cancer cell lines. Klijn C, Durinck S, Stawiski EW, Haverty PM, Jiang Z, Liu H, Degenhardt J, Mayba O, Gnad F, Liu J, Pau G, Reeder J, Cao Y, Mukhyala K, Selvaraj SK, Yu M, Zynda GJ, Brauer MJ, Wu TD, Gentleman RC, Manning G, Yauch RL, Bourgon R, Stokoe D, Modrusan Z, Neve RM, de Sauvage FJ, Settleman J, Seshagiri S, Zhang Z. Nat Biotechnol 33 306-312 (2015)
  3. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, Cantwell J, Luu C, Cornella-Taracido I, Harrington E, Fekkes P, Lei H, Fang Q, Digan ME, Burdick D, Powers AF, Helliwell SB, D'Aquin S, Bastien J, Wang H, Wiederschain D, Kuerth J, Bergman P, Schwalb D, Thomas J, Ugwonali S, Harbinski F, Tallarico J, Wilson CJ, Myer VE, Porter JA, Bussiere DE, Finan PM, Labow MA, Mao X, Hamann LG, Manning BD, Valdez RA, Nicholson T, Schirle M, Knapp MS, Keaney EP, Murphy LO. Nat Cell Biol 16 1069-1079 (2014)
  4. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). García-Martínez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR. Biochem J 421 29-42 (2009)
  5. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, Wang TL, Glas R, Slamon D, Velculescu VE, Kuman RJ, Shih IeM. Am J Pathol 174 1597-1601 (2009)
  6. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Chakrabarty A, Sánchez V, Kuba MG, Rinehart C, Arteaga CL. Proc Natl Acad Sci U S A 109 2718-2723 (2012)
  7. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, Fritsch C, Blasco F, Blanz J, Aichholz R, Hamon J, Fabbro D, Caravatti G. Bioorg Med Chem Lett 23 3741-3748 (2013)
  8. First-in-human phase I study of pictilisib (GDC-0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in patients with advanced solid tumors. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, Clarke PA, Raynaud FI, Levy G, Ware JA, Mazina K, Lin R, Wu J, Fredrickson J, Spoerke JM, Lackner MR, Yan Y, Friedman LS, Kaye SB, Derynck MK, Workman P, de Bono JS. Clin Cancer Res 21 77-86 (2015)
  9. Cell-cycle reprogramming for PI3K inhibition overrides a relapse-specific C481S BTK mutation revealed by longitudinal functional genomics in mantle cell lymphoma. Chiron D, Di Liberto M, Martin P, Huang X, Sharman J, Blecua P, Mathew S, Vijay P, Eng K, Ali S, Johnson A, Chang B, Ely S, Elemento O, Mason CE, Leonard JP, Chen-Kiang S. Cancer Discov 4 1022-1035 (2014)
  10. Identifying genotype-dependent efficacy of single and combined PI3K- and MAPK-pathway inhibition in cancer. Sos ML, Fischer S, Ullrich R, Peifer M, Heuckmann JM, Koker M, Heynck S, Stückrath I, Weiss J, Fischer F, Michel K, Goel A, Regales L, Politi KA, Perera S, Getlik M, Heukamp LC, Ansén S, Zander T, Beroukhim R, Kashkar H, Shokat KM, Sellers WR, Rauh D, Orr C, Hoeflich KP, Friedman L, Wong KK, Pao W, Thomas RK. Proc Natl Acad Sci U S A 106 18351-18356 (2009)
  11. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Bago R, Malik N, Munson MJ, Prescott AR, Davies P, Sommer E, Shpiro N, Ward R, Cross D, Ganley IG, Alessi DR. Biochem J 463 413-427 (2014)
  12. mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Elkabets M, Vora S, Juric D, Morse N, Mino-Kenudson M, Muranen T, Tao J, Campos AB, Rodon J, Ibrahim YH, Serra V, Rodrik-Outmezguine V, Hazra S, Singh S, Kim P, Quadt C, Liu M, Huang A, Rosen N, Engelman JA, Scaltriti M, Baselga J. Sci Transl Med 5 196ra99 (2013)
  13. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Raynaud FI, Eccles SA, Patel S, Alix S, Box G, Chuckowree I, Folkes A, Gowan S, De Haven Brandon A, Di Stefano F, Hayes A, Henley AT, Lensun L, Pergl-Wilson G, Robson A, Saghir N, Zhyvoloup A, McDonald E, Sheldrake P, Shuttleworth S, Valenti M, Wan NC, Clarke PA, Workman P. Mol Cancer Ther 8 1725-1738 (2009)
  14. Discovery of GSK2126458, a Highly Potent Inhibitor of PI3K and the Mammalian Target of Rapamycin. Knight SD, Adams ND, Burgess JL, Chaudhari AM, Darcy MG, Donatelli CA, Luengo JI, Newlander KA, Parrish CA, Ridgers LH, Sarpong MA, Schmidt SJ, Van Aller GS, Carson JD, Diamond MA, Elkins PA, Gardiner CM, Garver E, Gilbert SA, Gontarek RR, Jackson JR, Kershner KL, Luo L, Raha K, Sherk CS, Sung CM, Sutton D, Tummino PJ, Wegrzyn RJ, Auger KR, Dhanak D. ACS Med Chem Lett 1 39-43 (2010)
  15. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Ilic N, Utermark T, Widlund HR, Roberts TM. Proc Natl Acad Sci U S A 108 E699-708 (2011)
  16. Therapeutic targeting of cancers with loss of PTEN function. Dillon LM, Miller TW. Curr Drug Targets 15 65-79 (2014)
  17. Kinase and BET Inhibitors Together Clamp Inhibition of PI3K Signaling and Overcome Resistance to Therapy. Stratikopoulos EE, Dendy M, Szabolcs M, Khaykin AJ, Lefebvre C, Zhou MM, Parsons R. Cancer Cell 27 837-851 (2015)
  18. Identification of NVP-BKM120 as a Potent, Selective, Orally Bioavailable Class I PI3 Kinase Inhibitor for Treating Cancer. Burger MT, Pecchi S, Wagman A, Ni ZJ, Knapp M, Hendrickson T, Atallah G, Pfister K, Zhang Y, Bartulis S, Frazier K, Ng S, Smith A, Verhagen J, Haznedar J, Huh K, Iwanowicz E, Xin X, Menezes D, Merritt H, Lee I, Wiesmann M, Kaufman S, Crawford K, Chin M, Bussiere D, Shoemaker K, Zaror I, Maira SM, Voliva CF. ACS Med Chem Lett 2 774-779 (2011)
  19. The p110 delta structure: mechanisms for selectivity and potency of new PI(3)K inhibitors. Berndt A, Miller S, Williams O, Le DD, Houseman BT, Pacold JI, Gorrec F, Hon WC, Liu Y, Rommel C, Gaillard P, Rückle T, Schwarz MK, Shokat KM, Shaw JP, Williams RL. Nat Chem Biol 6 117-124 (2010)
  20. Clinical activity of gemcitabine plus pertuzumab in platinum-resistant ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. Makhija S, Amler LC, Glenn D, Ueland FR, Gold MA, Dizon DS, Paton V, Lin CY, Januario T, Ng K, Strauss A, Kelsey S, Sliwkowski MX, Matulonis U. J Clin Oncol 28 1215-1223 (2010)
  21. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Zhang X, Vadas O, Perisic O, Anderson KE, Clark J, Hawkins PT, Stephens LR, Williams RL. Mol Cell 41 567-578 (2011)
  22. mTOR Mediated Anti-Cancer Drug Discovery. Liu Q, Thoreen C, Wang J, Sabatini D, Gray NS. Drug Discov Today Ther Strateg 6 47-55 (2009)
  23. Proteogenomic characterization of pancreatic ductal adenocarcinoma. Cao L, Huang C, Cui Zhou D, Hu Y, Lih TM, Savage SR, Krug K, Clark DJ, Schnaubelt M, Chen L, da Veiga Leprevost F, Eguez RV, Yang W, Pan J, Wen B, Dou Y, Jiang W, Liao Y, Shi Z, Terekhanova NV, Cao S, Lu RJ, Li Y, Liu R, Zhu H, Ronning P, Wu Y, Wyczalkowski MA, Easwaran H, Danilova L, Mer AS, Yoo S, Wang JM, Liu W, Haibe-Kains B, Thiagarajan M, Jewell SD, Hostetter G, Newton CJ, Li QK, Roehrl MH, Fenyö D, Wang P, Nesvizhskii AI, Mani DR, Omenn GS, Boja ES, Mesri M, Robles AI, Rodriguez H, Bathe OF, Chan DW, Hruban RH, Ding L, Zhang B, Zhang H, Clinical Proteomic Tumor Analysis Consortium. Cell 184 5031-5052.e26 (2021)
  24. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Filbin MG, Dabral SK, Pazyra-Murphy MF, Ramkissoon S, Kung AL, Pak E, Chung J, Theisen MA, Sun Y, Franchetti Y, Sun Y, Shulman DS, Redjal N, Tabak B, Beroukhim R, Wang Q, Zhao J, Dorsch M, Buonamici S, Ligon KL, Kelleher JF, Segal RA. Nat Med 19 1518-1523 (2013)
  25. Autoregulation of connexin43 gap junction formation by internally translated isoforms. Smyth JW, Shaw RM. Cell Rep 5 611-618 (2013)
  26. A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Fan Q, Aksoy O, Wong RA, Ilkhanizadeh S, Novotny CJ, Gustafson WC, Truong AY, Cayanan G, Simonds EF, Haas-Kogan D, Phillips JJ, Nicolaides T, Okaniwa M, Shokat KM, Weiss WA. Cancer Cell 31 424-435 (2017)
  27. Endogenous Nur77 Is a Specific Indicator of Antigen Receptor Signaling in Human T and B Cells. Ashouri JF, Weiss A. J Immunol 198 657-668 (2017)
  28. Liposarcoma: molecular genetics and therapeutics. Conyers R, Young S, Thomas DM. Sarcoma 2011 483154 (2011)
  29. TORC1 suppression predicts responsiveness to RAF and MEK inhibition in BRAF-mutant melanoma. Corcoran RB, Rothenberg SM, Hata AN, Faber AC, Piris A, Nazarian RM, Brown RD, Godfrey JT, Winokur D, Walsh J, Mino-Kenudson M, Maheswaran S, Settleman J, Wargo JA, Flaherty KT, Haber DA, Engelman JA. Sci Transl Med 5 196ra98 (2013)
  30. Prolonged production of reactive oxygen species in response to B cell receptor stimulation promotes B cell activation and proliferation. Wheeler ML, Defranco AL. J Immunol 189 4405-4416 (2012)
  31. Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1. Lemke J, von Karstedt S, Abd El Hay M, Conti A, Arce F, Montinaro A, Papenfuss K, El-Bahrawy MA, Walczak H. Cell Death Differ 21 491-502 (2014)
  32. Identification of an oncogenic RAB protein. Wheeler DB, Zoncu R, Root DE, Sabatini DM, Sawyers CL. Science 350 211-217 (2015)
  33. P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse. Iyengar S, Clear A, Bödör C, Maharaj L, Lee A, Calaminici M, Matthews J, Iqbal S, Auer R, Gribben J, Joel S. Blood 121 2274-2284 (2013)
  34. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Tao JJ, Castel P, Radosevic-Robin N, Elkabets M, Auricchio N, Aceto N, Weitsman G, Barber P, Vojnovic B, Ellis H, Morse N, Viola-Villegas NT, Bosch A, Juric D, Hazra S, Singh S, Kim P, Bergamaschi A, Maheswaran S, Ng T, Penault-Llorca F, Lewis JS, Carey LA, Perou CM, Baselga J, Scaltriti M. Sci Signal 7 ra29 (2014)
  35. Suppression of nuclear factor-κB activation and inflammation in microglia by physically modified saline. Khasnavis S, Jana A, Roy A, Mazumder M, Bhushan B, Wood T, Ghosh S, Watson R, Pahan K. J Biol Chem 287 29529-29542 (2012)
  36. Akt determines cell fate through inhibition of the PERK-eIF2α phosphorylation pathway. Mounir Z, Krishnamoorthy JL, Wang S, Papadopoulou B, Campbell S, Muller WJ, Hatzoglou M, Koromilas AE. Sci Signal 4 ra62 (2011)
  37. Preclinical efficacy of MEK inhibition in Nras-mutant AML. Burgess MR, Hwang E, Firestone AJ, Huang T, Xu J, Zuber J, Bohin N, Wen T, Kogan SC, Haigis KM, Sampath D, Lowe S, Shannon K, Li Q. Blood 124 3947-3955 (2014)
  38. Targeting PI3K in Cancer: Any Good News? Martini M, Ciraolo E, Gulluni F, Hirsch E. Front Oncol 3 108 (2013)
  39. MDM2 regulates hypoxic hypoxia-inducible factor 1α stability in an E3 ligase, proteasome, and PTEN-phosphatidylinositol 3-kinase-AKT-dependent manner. Joshi S, Singh AR, Durden DL. J Biol Chem 289 22785-22797 (2014)
  40. Activating BRAF and PIK3CA mutations cooperate to promote anaplastic thyroid carcinogenesis. Charles RP, Silva J, Iezza G, Phillips WA, McMahon M. Mol Cancer Res 12 979-986 (2014)
  41. PIK3CA and AKT1 mutations have distinct effects on sensitivity to targeted pathway inhibitors in an isogenic luminal breast cancer model system. Beaver JA, Gustin JP, Yi KH, Rajpurohit A, Thomas M, Gilbert SF, Rosen DM, Ho Park B, Lauring J. Clin Cancer Res 19 5413-5422 (2013)
  42. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, Couchman JR. Mol Biol Cell 22 3609-3624 (2011)
  43. Activating PIK3CA alleles and lymphangiogenic phenotype of lymphatic endothelial cells isolated from lymphatic malformations. Osborn AJ, Dickie P, Neilson DE, Glaser K, Lynch KA, Gupta A, Dickie BH. Hum Mol Genet 24 926-938 (2015)
  44. Binge alcohol drinking by mice requires intact group 1 metabotropic glutamate receptor signaling within the central nucleus of the amygdala. Cozzoli DK, Courson J, Wroten MG, Greentree DI, Lum EN, Campbell RR, Thompson AB, Maliniak D, Worley PF, Jonquieres G, Klugmann M, Finn DA, Szumlinski KK. Neuropsychopharmacology 39 435-444 (2014)
  45. The Biological Role of PI3K Pathway in Lung Cancer. Sarris EG, Saif MW, Syrigos KN. Pharmaceuticals (Basel) 5 1236-1264 (2012)
  46. The synergistic interaction of MEK and PI3K inhibitors is modulated by mTOR inhibition. Haagensen EJ, Kyle S, Beale GS, Maxwell RJ, Newell DR. Br J Cancer 106 1386-1394 (2012)
  47. Antitumor activity of pimasertib, a selective MEK 1/2 inhibitor, in combination with PI3K/mTOR inhibitors or with multi-targeted kinase inhibitors in pimasertib-resistant human lung and colorectal cancer cells. Martinelli E, Troiani T, D'Aiuto E, Morgillo F, Vitagliano D, Capasso A, Costantino S, Ciuffreda LP, Merolla F, Vecchione L, De Vriendt V, Tejpar S, Nappi A, Sforza V, Martini G, Berrino L, De Palma R, Ciardiello F. Int J Cancer 133 2089-2101 (2013)
  48. PI3K Inhibition Reduces Mammary Tumor Growth and Facilitates Antitumor Immunity and Anti-PD1 Responses. Sai J, Owens P, Novitskiy SV, Hawkins OE, Vilgelm AE, Yang J, Sobolik T, Lavender N, Johnson AC, McClain C, Ayers GD, Kelley MC, Sanders M, Mayer IA, Moses HL, Boothby M, Richmond A. Clin Cancer Res 23 3371-3384 (2017)
  49. Pictilisib PI3Kinase inhibitor (a phosphatidylinositol 3-kinase [PI3K] inhibitor) plus paclitaxel for the treatment of hormone receptor-positive, HER2-negative, locally recurrent, or metastatic breast cancer: interim analysis of the multicentre, placebo-controlled, phase II randomised PEGGY study. Vuylsteke P, Huizing M, Petrakova K, Roylance R, Laing R, Chan S, Abell F, Gendreau S, Rooney I, Apt D, Zhou J, Singel S, Fehrenbacher L. Ann Oncol 27 2059-2066 (2016)
  50. Cross talk between the Akt and p38α pathways in macrophages downstream of Toll-like receptor signaling. McGuire VA, Gray A, Monk CE, Santos SG, Lee K, Aubareda A, Crowe J, Ronkina N, Schwermann J, Batty IH, Leslie NR, Dean JL, O'Keefe SJ, Boothby M, Gaestel M, Arthur JS. Mol Cell Biol 33 4152-4165 (2013)
  51. ErbB2 Pathway Activation upon Smad4 Loss Promotes Lung Tumor Growth and Metastasis. Liu J, Cho SN, Akkanti B, Jin N, Mao J, Long W, Chen T, Zhang Y, Tang X, Wistub II, Creighton CJ, Kheradmand F, DeMayo FJ. Cell Rep 10 1599-1613 (2015)
  52. Inhibition profiles of phosphatidylinositol 3-kinase inhibitors against PI3K superfamily and human cancer cell line panel JFCR39. Kong D, Dan S, Yamazaki K, Yamori T. Eur J Cancer 46 1111-1121 (2010)
  53. P-REX1 creates a positive feedback loop to activate growth factor receptor, PI3K/AKT and MEK/ERK signaling in breast cancer. Dillon LM, Bean JR, Yang W, Shee K, Symonds LK, Balko JM, McDonald WH, Liu S, Gonzalez-Angulo AM, Mills GB, Arteaga CL, Miller TW. Oncogene 34 3968-3976 (2015)
  54. Differential AKT dependency displayed by mouse models of BRAFV600E-initiated melanoma. Marsh Durban V, Deuker MM, Bosenberg MW, Phillips W, McMahon M. J Clin Invest 123 5104-5118 (2013)
  55. K-RAS mutant pancreatic tumors show higher sensitivity to MEK than to PI3K inhibition in vivo. Hofmann I, Weiss A, Elain G, Schwaederle M, Sterker D, Romanet V, Schmelzle T, Lai A, Brachmann SM, Bentires-Alj M, Roberts TM, Sellers WR, Hofmann F, Maira SM. PLoS One 7 e44146 (2012)
  56. Synergistic co-targeting of prostate-specific membrane antigen and androgen receptor in prostate cancer. Murga JD, Moorji SM, Han AQ, Magargal WW, DiPippo VA, Olson WC. Prostate 75 242-254 (2015)
  57. Activity of the pan-class I phosphoinositide 3-kinase inhibitor NVP-BKM120 in T-cell acute lymphoblastic leukemia. Lonetti A, Antunes IL, Chiarini F, Orsini E, Buontempo F, Ricci F, Tazzari PL, Pagliaro P, Melchionda F, Pession A, Bertaina A, Locatelli F, McCubrey JA, Barata JT, Martelli AM. Leukemia 28 1196-1206 (2014)
  58. Pharmacokinetic-pharmacodynamic modeling of tumor growth inhibition and biomarker modulation by the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Salphati L, Wong H, Belvin M, Bradford D, Edgar KA, Prior WW, Sampath D, Wallin JJ. Drug Metab Dispos 38 1436-1442 (2010)
  59. Phosphoproteomic analysis implicates the mTORC2-FoxO1 axis in VEGF signaling and feedback activation of receptor tyrosine kinases. Zhuang G, Yu K, Jiang Z, Chung A, Yao J, Ha C, Toy K, Soriano R, Haley B, Blackwood E, Sampath D, Bais C, Lill JR, Ferrara N. Sci Signal 6 ra25 (2013)
  60. Site-specific activation of AKT protects cells from death induced by glucose deprivation. Gao M, Liang J, Lu Y, Guo H, German P, Bai S, Jonasch E, Yang X, Mills GB, Ding Z. Oncogene 33 745-755 (2014)
  61. The hVps34-SGK3 pathway alleviates sustained PI3K/Akt inhibition by stimulating mTORC1 and tumour growth. Bago R, Sommer E, Castel P, Crafter C, Bailey FP, Shpiro N, Baselga J, Cross D, Eyers PA, Alessi DR. EMBO J 35 1902-1922 (2016)
  62. Acquired PIK3CA amplification causes resistance to selective phosphoinositide 3-kinase inhibitors in breast cancer. Huw LY, O'Brien C, Pandita A, Mohan S, Spoerke JM, Lu S, Wang Y, Hampton GM, Wilson TR, Lackner MR. Oncogenesis 2 e83 (2013)
  63. Chemical interrogation of FOXO3a nuclear translocation identifies potent and selective inhibitors of phosphoinositide 3-kinases. Link W, Oyarzabal J, Serelde BG, Albarran MI, Rabal O, Cebriá A, Alfonso P, Fominaya J, Renner O, Peregrina S, Soilán D, Ceballos PA, Hernández AI, Lorenzo M, Pevarello P, Granda TG, Kurz G, Carnero A, Bischoff JR. J Biol Chem 284 28392-28400 (2009)
  64. EGFR inhibitors identified as a potential treatment for chordoma in a focused compound screen. Scheipl S, Barnard M, Cottone L, Jorgensen M, Drewry DH, Zuercher WJ, Turlais F, Ye H, Leite AP, Smith JA, Leithner A, Möller P, Brüderlein S, Guppy N, Amary F, Tirabosco R, Strauss SJ, Pillay N, Flanagan AM. J Pathol 239 320-334 (2016)
  65. Phosphatidylinositol-3-kinase as a therapeutic target in melanoma. Aziz SA, Davies M, Pick E, Zito C, Jilaveanu L, Camp RL, Rimm DL, Kluger Y, Kluger HM. Clin Cancer Res 15 3029-3036 (2009)
  66. Defining key signaling nodes and therapeutic biomarkers in NF1-mutant cancers. Malone CF, Fromm JA, Maertens O, DeRaedt T, Ingraham R, Cichowski K. Cancer Discov 4 1062-1073 (2014)
  67. Synthesis and biological evaluation of novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-(difluoromethyl)-1-[4,6-di(4-morpholinyl)-1,3,5-triazin-2-yl]-1H-benzimidazole (ZSTK474). Rewcastle GW, Gamage SA, Flanagan JU, Frederick R, Denny WA, Baguley BC, Kestell P, Singh R, Kendall JD, Marshall ES, Lill CL, Lee WJ, Kolekar S, Buchanan CM, Jamieson SM, Shepherd PR. J Med Chem 54 7105-7126 (2011)
  68. The insulin response integrates increased TGF-β signaling through Akt-induced enhancement of cell surface delivery of TGF-β receptors. Budi EH, Muthusamy BP, Derynck R. Sci Signal 8 ra96 (2015)
  69. 5-(4,6-Dimorpholino-1,3,5-triazin-2-yl)-4-(trifluoromethyl)pyridin-2-amine (PQR309), a Potent, Brain-Penetrant, Orally Bioavailable, Pan-Class I PI3K/mTOR Inhibitor as Clinical Candidate in Oncology. Beaufils F, Cmiljanovic N, Cmiljanovic V, Bohnacker T, Melone A, Marone R, Jackson E, Zhang X, Sele A, Borsari C, Mestan J, Hebeisen P, Hillmann P, Giese B, Zvelebil M, Fabbro D, Williams RL, Rageot D, Wymann MP. J Med Chem 60 7524-7538 (2017)
  70. FAK mediates a compensatory survival signal parallel to PI3K-AKT in PTEN-null T-ALL cells. You D, Xin J, Volk A, Wei W, Schmidt R, Scurti G, Nand S, Breuer EK, Kuo PC, Breslin P, Kini AR, Nishimura MI, Zeleznik-Le NJ, Zhang J. Cell Rep 10 2055-2068 (2015)
  71. IRS4 induces mammary tumorigenesis and confers resistance to HER2-targeted therapy through constitutive PI3K/AKT-pathway hyperactivation. Ikink GJ, Boer M, Bakker ER, Hilkens J. Nat Commun 7 13567 (2016)
  72. Loss of oncogenic Notch1 with resistance to a PI3K inhibitor in T-cell leukaemia. Dail M, Wong J, Lawrence J, O'Connor D, Nakitandwe J, Chen SC, Xu J, Lee LB, Akagi K, Li Q, Aster JC, Pear WS, Downing JR, Sampath D, Shannon K. Nature 513 512-516 (2014)
  73. Selective inhibition of phosphoinositide 3-kinase p110α preserves lymphocyte function. So L, Yea SS, Oak JS, Lu M, Manmadhan A, Ke QH, Janes MR, Kessler LV, Kucharski JM, Li LS, Martin MB, Ren P, Jessen KA, Liu Y, Rommel C, Fruman DA. J Biol Chem 288 5718-5731 (2013)
  74. Overcoming cancer cell resistance to VSV oncolysis with JAK1/2 inhibitors. Escobar-Zarate D, Liu YP, Suksanpaisan L, Russell SJ, Peng KW. Cancer Gene Ther 20 582-589 (2013)
  75. Design and Characterization of SGK3-PROTAC1, an Isoform Specific SGK3 Kinase PROTAC Degrader. Tovell H, Testa A, Zhou H, Shpiro N, Crafter C, Ciulli A, Alessi DR. ACS Chem Biol 14 2024-2034 (2019)
  76. PI3'-kinase inhibition forestalls the onset of MEK1/2 inhibitor resistance in BRAF-mutated melanoma. Deuker MM, Marsh Durban V, Phillips WA, McMahon M. Cancer Discov 5 143-153 (2015)
  77. SYK regulates mTOR signaling in AML. Carnevale J, Ross L, Puissant A, Banerji V, Stone RM, DeAngelo DJ, Ross KN, Stegmaier K. Leukemia 27 2118-2128 (2013)
  78. Hedgehog/GLI and PI3K signaling in the initiation and maintenance of chronic lymphocytic leukemia. Kern D, Regl G, Hofbauer SW, Altenhofer P, Achatz G, Dlugosz A, Schnidar H, Greil R, Hartmann TN, Hartmann TN, Aberger F. Oncogene 34 5341-5351 (2015)
  79. Phosphoproteomic characterization of DNA damage response in melanoma cells following MEK/PI3K dual inhibition. Kirkpatrick DS, Bustos DJ, Dogan T, Chan J, Phu L, Young A, Friedman LS, Belvin M, Song Q, Bakalarski CE, Hoeflich KP. Proc Natl Acad Sci U S A 110 19426-19431 (2013)
  80. Active PI3K pathway causes an invasive phenotype which can be reversed or promoted by blocking the pathway at divergent nodes. Wallin JJ, Guan J, Edgar KA, Zhou W, Francis R, Torres AC, Haverty PM, Eastham-Anderson J, Arena S, Bardelli A, Griffin S, Goodall JE, Grimshaw KM, Hoeflich KP, Torrance C, Belvin M, Friedman LS. PLoS One 7 e36402 (2012)
  81. Effect of PI3K- and mTOR-specific inhibitors on spontaneous B-cell follicular lymphomas in PTEN/LKB1-deficient mice. García-Martínez JM, Wullschleger S, Preston G, Guichard S, Fleming S, Alessi DR, Duce SL. Br J Cancer 104 1116-1125 (2011)
  82. Modulation of telomere protection by the PI3K/AKT pathway. Méndez-Pertuz M, Martínez P, Blanco-Aparicio C, Gómez-Casero E, Belen García A, Martínez-Torrecuadrada J, Palafox M, Cortés J, Serra V, Pastor J, Blasco MA. Nat Commun 8 1278 (2017)
  83. Modulators of sensitivity and resistance to inhibition of PI3K identified in a pharmacogenomic screen of the NCI-60 human tumor cell line collection. Kwei KA, Baker JB, Pelham RJ. PLoS One 7 e46518 (2012)
  84. Objective, Quantitative, Data-Driven Assessment of Chemical Probes. Antolin AA, Tym JE, Komianou A, Collins I, Workman P, Al-Lazikani B. Cell Chem Biol 25 194-205.e5 (2018)
  85. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. Zhou W, Jubb AM, Lyle K, Xiao Q, Ong CC, Desai R, Fu L, Gnad F, Song Q, Haverty PM, Aust D, Grützmann R, Romero M, Totpal K, Neve RM, Yan Y, Forrest WF, Wang Y, Raja R, Pilarsky C, de Jesus-Acosta A, Belvin M, Friedman LS, Merchant M, Jaffee EM, Zheng L, Koeppen H, Hoeflich KP. J Pathol 234 502-513 (2014)
  86. DNA damage-induced inhibition of rRNA synthesis by DNA-PK and PARP-1. Calkins AS, Iglehart JD, Lazaro JB. Nucleic Acids Res 41 7378-7386 (2013)
  87. Toxoplasma gondii Proliferation Require Down-Regulation of Host Nox4 Expression via Activation of PI3 Kinase/Akt Signaling Pathway. Zhou W, Quan JH, Lee YH, Shin DW, Cha GH. PLoS One 8 e66306 (2013)
  88. Combining trail with PI3 kinase or HSP90 inhibitors enhances apoptosis in colorectal cancer cells via suppression of survival signaling. Saturno G, Valenti M, De Haven Brandon A, Thomas GV, Eccles S, Clarke PA, Workman P. Oncotarget 4 1185-1198 (2013)
  89. Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation. Zhang Z, Christin JR, Wang C, Ge K, Oktay MH, Guo W. Cell Rep 16 3146-3156 (2016)
  90. Nuclear phospho-Akt increase predicts synergy of PI3K inhibition and doxorubicin in breast and ovarian cancer. Wallin JJ, Guan J, Prior WW, Edgar KA, Kassees R, Sampath D, Belvin M, Friedman LS. Sci Transl Med 2 48ra66 (2010)
  91. PI3Kδ inhibitor idelalisib in combination with BTK inhibitor ONO/GS-4059 in diffuse large B cell lymphoma with acquired resistance to PI3Kδ and BTK inhibitors. Yahiaoui A, Meadows SA, Sorensen RA, Cui ZH, Keegan KS, Brockett R, Chen G, Quéva C, Li L, Tannheimer SL. PLoS One 12 e0171221 (2017)
  92. Involvement of the Syk-mTOR pathway in follicular lymphoma cell invasion and angiogenesis. Fruchon S, Kheirallah S, Al Saati T, Ysebaert L, Laurent C, Leseux L, Fournié JJ, Laurent G, Bezombes C. Leukemia 26 795-805 (2012)
  93. The PI3K and MAPK/p38 pathways control stress granule assembly in a hierarchical manner. Heberle AM, Razquin Navas P, Langelaar-Makkinje M, Kasack K, Sadik A, Faessler E, Hahn U, Marx-Stoelting P, Opitz CA, Sers C, Heiland I, Schäuble S, Thedieck K. Life Sci Alliance 2 e201800257 (2019)
  94. The PI3K inhibitor GDC-0941 combines with existing clinical regimens for superior activity in multiple myeloma. Munugalavadla V, Mariathasan S, Slaga D, Du C, Berry L, Del Rosario G, Yan Y, Boe M, Sun L, Friedman LS, Chesi M, Leif Bergsagel P, Ebens A. Oncogene 33 316-325 (2014)
  95. The effects of PI3K-mediated signalling on glioblastoma cell behaviour. Langhans J, Schneele L, Trenkler N, von Bandemer H, Nonnenmacher L, Karpel-Massler G, Siegelin MD, Zhou S, Halatsch ME, Debatin KM, Westhoff MA. Oncogenesis 6 398 (2017)
  96. Tubulin mRNA stability is sensitive to change in microtubule dynamics caused by multiple physiological and toxic cues. Gasic I, Boswell SA, Mitchison TJ. PLoS Biol 17 e3000225 (2019)
  97. Discovery of a Potent Class of PI3Kα Inhibitors with Unique Binding Mode via Encoded Library Technology (ELT). Yang H, Medeiros PF, Raha K, Elkins P, Lind KE, Lehr R, Adams ND, Burgess JL, Schmidt SJ, Knight SD, Auger KR, Schaber MD, Franklin GJ, Ding Y, DeLorey JL, Centrella PA, Mataruse S, Skinner SR, Clark MA, Cuozzo JW, Evindar G. ACS Med Chem Lett 6 531-536 (2015)
  98. The Phosphatidylinositol 3-Kinase Pathway as a Potential Therapeutic Target in Bladder Cancer. Zeng SX, Zhu Y, Ma AH, Yu W, Zhang H, Lin TY, Shi W, Tepper CG, Henderson PT, Airhart S, Guo JM, Xu CL, deVere White RW, Pan CX. Clin Cancer Res 23 6580-6591 (2017)
  99. Anti-cancer Therapies in High Grade Gliomas. Tanase CP, Enciu AM, Mihai S, Neagu AI, Calenic B, Cruceru ML. Curr Proteomics 10 246-260 (2013)
  100. Class IA phosphatidylinositol 3-kinase regulates osteoclastic bone resorption through protein kinase B-mediated vesicle transport. Shinohara M, Nakamura M, Masuda H, Hirose J, Kadono Y, Iwasawa M, Nagase Y, Ueki K, Kadowaki T, Sasaki T, Kato S, Nakamura H, Tanaka S, Takayanagi H. J Bone Miner Res 27 2464-2475 (2012)
  101. Effects of isoform-selective phosphatidylinositol 3-kinase inhibitors on osteoclasts: actions on cytoskeletal organization, survival, and resorption. Shugg RP, Thomson A, Tanabe N, Kashishian A, Steiner BH, Puri KD, Pereverzev A, Lannutti BJ, Jirik FR, Dixon SJ, Sims SM. J Biol Chem 288 35346-35357 (2013)
  102. Physical association of PDK1 with AKT1 is sufficient for pathway activation independent of membrane localization and phosphatidylinositol 3 kinase. Ding Z, Liang J, Li J, Lu Y, Ariyaratna V, Lu Z, Davies MA, Westwick JK, Mills GB. PLoS One 5 e9910 (2010)
  103. RTK-Dependent Inducible Degradation of Mutant PI3Kα Drives GDC-0077 (Inavolisib) Efficacy. Song KW, Edgar KA, Hanan EJ, Hafner M, Oeh J, Merchant M, Sampath D, Nannini MA, Hong R, Phu L, Forrest WF, Stawiski E, Schmidt S, Endres N, Guan J, Wallin JJ, Cheong J, Plise EG, Lewis Phillips GD, Salphati L, Heffron TP, Olivero AG, Malek S, Staben ST, Kirkpatrick DS, Dey A, Friedman LS. Cancer Discov 12 204-219 (2022)
  104. p53 is a major component of the transcriptional and apoptotic program regulated by PI 3-kinase/Akt/GSK3 signaling. Nayak G, Cooper GM. Cell Death Dis 3 e400 (2012)
  105. GDC-0941 sensitizes breast cancer to ABT-737 in vitro and in vivo through promoting the degradation of Mcl-1. Zheng L, Yang W, Zhang C, Ding WJ, Zhu H, Lin NM, Wu HH, He QJ, Yang B. Cancer Lett 309 27-36 (2011)
  106. Phosphatidyl inositol-3 kinase (PIK3CA) E545K mutation confers cisplatin resistance and a migratory phenotype in cervical cancer cells. Arjumand W, Merry CD, Wang C, Saba E, McIntyre JB, Fang S, Kornaga E, Ghatage P, Doll CM, Lees-Miller SP. Oncotarget 7 82424-82439 (2016)
  107. Reciprocal feedback inhibition of the androgen receptor and PI3K as a novel therapy for castrate-sensitive and -resistant prostate cancer. Qi W, Morales C, Cooke LS, Johnson B, Somer B, Mahadevan D. Oncotarget 6 41976-41987 (2015)
  108. BKM-120 (Buparlisib): A Phosphatidyl-Inositol-3 Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma. Speranza MC, Nowicki MO, Behera P, Cho CF, Chiocca EA, Lawler SE. Sci Rep 6 20189 (2016)
  109. E-Cadherin and EpCAM expression by NSCLC tumour cells associate with normal fibroblast activation through a pathway initiated by integrin αvβ6 and maintained through TGFβ signalling. Eberlein C, Rooney C, Ross SJ, Farren M, Weir HM, Barry ST. Oncogene 34 704-716 (2015)
  110. Effects of nominally selective inhibitors of the kinases PI3K, SGK1 and PKB on the insulin-dependent control of epithelial Na+ absorption. Mansley MK, Wilson SM. Br J Pharmacol 161 571-588 (2010)
  111. Molecular insights into the membrane-associated phosphatidylinositol 4-kinase IIα. Zhou Q, Li J, Yu H, Zhai Y, Gao Z, Liu Y, Pang X, Zhang L, Schulten K, Sun F, Chen C. Nat Commun 5 3552 (2014)
  112. Oncogenic activity of the regulatory subunit p85β of phosphatidylinositol 3-kinase (PI3K). Ito Y, Hart JR, Ueno L, Vogt PK. Proc Natl Acad Sci U S A 111 16826-16829 (2014)
  113. Transgenic expression of oncogenic BRAF induces loss of stem cells in the mouse intestine, which is antagonized by β-catenin activity. Riemer P, Sreekumar A, Reinke S, Rad R, Schäfer R, Sers C, Bläker H, Herrmann BG, Morkel M. Oncogene 34 3164-3175 (2015)
  114. A chemical biology approach identified PI3K as a potential therapeutic target for neurofibromatosis type 2. Petrilli AM, Fuse MA, Donnan MS, Bott M, Sparrow NA, Tondera D, Huffziger J, Frenzel C, Malany CS, Echeverri CJ, Smith L, Fernández-Valle C. Am J Transl Res 6 471-493 (2014)
  115. The PI3K inhibitor GDC-0941 displays promising in vitro and in vivo efficacy for targeted medulloblastoma therapy. Ehrhardt M, Craveiro RB, Holst MI, Pietsch T, Dilloo D. Oncotarget 6 802-813 (2015)
  116. PI3K-independent mTOR activation promotes lapatinib resistance and IAP expression that can be effectively reversed by mTOR and Hsp90 inhibition. Brady SW, Zhang J, Tsai MH, Yu D. Cancer Biol Ther 16 402-411 (2015)
  117. Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling. Bossler F, Kuhn BJ, Günther T, Kraemer SJ, Khalkar P, Adrian S, Lohrey C, Holzer A, Shimobayashi M, Dürst M, Mayer A, Rösl F, Grundhoff A, Krijgsveld J, Hoppe-Seyler K, Hoppe-Seyler F. mBio 10 e02323-18 (2019)
  118. Synergistic effects of concurrent blockade of PI3K and MEK pathways in pancreatic cancer preclinical models. Zhong H, Sanchez C, Spitzer D, Plambeck-Suess S, Gibbs J, Hawkins WG, Denardo D, Gao F, Pufahl RA, Lockhart AC, Xu M, Linehan D, Weber J, Wang-Gillam A. PLoS One 8 e77243 (2013)
  119. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras. Akutagawa J, Huang TQ, Epstein I, Chang T, Quirindongo-Crespo M, Cottonham CL, Dail M, Slusher BS, Friedman LS, Sampath D, Braun BS. Leukemia 30 1335-1343 (2016)
  120. The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines. Shi F, Guo H, Zhang R, Liu H, Wu L, Wu Q, Liu J, Liu T, Zhang Q. Neuroscience 346 298-308 (2017)
  121. Interferon-γ activates transglutaminase 2 via a phosphatidylinositol-3-kinase-dependent pathway: implications for celiac sprue therapy. Diraimondo TR, Klöck C, Khosla C. J Pharmacol Exp Ther 341 104-114 (2012)
  122. A phase Ib study of pictilisib (GDC-0941) in combination with paclitaxel, with and without bevacizumab or trastuzumab, and with letrozole in advanced breast cancer. Schöffski P, Cresta S, Mayer IA, Wildiers H, Damian S, Gendreau S, Rooney I, Morrissey KM, Spoerke JM, Ng VW, Singel SM, Winer E. Breast Cancer Res 20 109 (2018)
  123. Engineering multivalent antibodies to target heregulin-induced HER3 signaling in breast cancer cells. Kang JC, Poovassery JS, Bansal P, You S, Manjarres IM, Ober RJ, Ward ES. MAbs 6 340-353 (2014)
  124. PI3K inhibition enhances doxorubicin-induced apoptosis in sarcoma cells. Marklein D, Graab U, Naumann I, Yan T, Ridzewski R, Nitzki F, Rosenberger A, Dittmann K, Wienands J, Wojnowski L, Fulda S, Hahn H. PLoS One 7 e52898 (2012)
  125. PIK3CA(H1047R) Accelerates and Enhances KRAS(G12D)-Driven Lung Tumorigenesis. Green S, Trejo CL, McMahon M. Cancer Res 75 5378-5391 (2015)
  126. Preclinical assessment of the absorption and disposition of the phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor GDC-0980 and prediction of its pharmacokinetics and efficacy in human. Salphati L, Pang J, Plise EG, Lee LB, Olivero AG, Prior WW, Sampath D, Wong S, Zhang X. Drug Metab Dispos 40 1785-1796 (2012)
  127. Antibody targeting of HER2/HER3 signaling overcomes heregulin-induced resistance to PI3K inhibition in prostate cancer. Poovassery JS, Kang JC, Kim D, Ober RJ, Ward ES. Int J Cancer 137 267-277 (2015)
  128. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Xiao X, Liang J, Huang C, Li K, Xing F, Zhu W, Lin Z, Xu W, Wu G, Zhang J, Lin X, Tan Y, Cai J, Hu J, Chen X, Huang Y, Qin Z, Qiu P, Su X, Chen L, Lin Y, Zhang H, Yan G. Nat Commun 9 4342 (2018)
  129. Ndfip1 represses cell proliferation by controlling Pten localization and signaling specificity. Howitt J, Low LH, Putz U, Doan A, Lackovic J, Goh CP, Gunnersen J, Silke J, Tan SS. J Mol Cell Biol 7 119-131 (2015)
  130. PK-PD modeling of combination efficacy effect from administration of the MEK inhibitor GDC-0973 and PI3K inhibitor GDC-0941 in A2058 xenografts. Choo EF, Ng CM, Berry L, Belvin M, Lewin-Koh N, Merchant M, Salphati L. Cancer Chemother Pharmacol 71 133-143 (2013)
  131. Potent and selective inhibitors of PI3Kδ: obtaining isoform selectivity from the affinity pocket and tryptophan shelf. Sutherlin DP, Baker S, Bisconte A, Blaney PM, Brown A, Chan BK, Chantry D, Castanedo G, DePledge P, Goldsmith P, Goldstein DM, Hancox T, Kaur J, Knowles D, Kondru R, Lesnick J, Lucas MC, Lewis C, Murray J, Nadin AJ, Nonomiya J, Pang J, Pegg N, Price S, Reif K, Safina BS, Salphati L, Staben S, Seward EM, Shuttleworth S, Sohal S, Sweeney ZK, Ultsch M, Waszkowycz B, Wei B. Bioorg Med Chem Lett 22 4296-4302 (2012)
  132. The present and future of PI3K inhibitors for cancer therapy. Castel P, Toska E, Engelman JA, Scaltriti M. Nat Cancer 2 587-597 (2021)
  133. Class IA PI3K inhibition inhibits cell growth and proliferation in mantle cell lymphoma. Tabe Y, Jin L, Konopleva M, Shikami M, Kimura S, Andreeff M, Raffeld M, Miida T. Acta Haematol 131 59-69 (2014)
  134. Defective K-Ras oncoproteins overcome impaired effector activation to initiate leukemia in vivo. Shieh A, Ward AF, Donlan KL, Harding-Theobald ER, Xu J, Mullighan CG, Zhang C, Chen SC, Su X, Downing JR, Bollag GE, Shannon KM. Blood 121 4884-4893 (2013)
  135. Mechanism of activation of SGK3 by growth factors via the Class 1 and Class 3 PI3Ks. Malik N, Macartney T, Hornberger A, Anderson KE, Tovell H, Prescott AR, Alessi DR. Biochem J 475 117-135 (2018)
  136. Phosphoinositide 3-Kinase Signaling Can Modulate MHC Class I and II Expression. Chandrasekaran S, Sasaki M, Scharer CD, Kissick HT, Patterson DG, Magliocca KR, Seykora JT, Sapkota B, Gutman DA, Cooper LA, Lesinski GB, Waller EK, Thomas SN, Kotenko SV, Boss JM, Moreno CS, Swerlick RA, Pollack BP. Mol Cancer Res 17 2395-2409 (2019)
  137. MCL-1-independent mechanisms of synergy between dual PI3K/mTOR and BCL-2 inhibition in diffuse large B cell lymphoma. Lee JS, Tang SS, Ortiz V, Vo TT, Fruman DA. Oncotarget 6 35202-35217 (2015)
  138. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling. Ersoy BA, Tarun A, D'Aquino K, Hancer NJ, Ukomadu C, White MF, Michel T, Manning BD, Cohen DE. Sci Signal 6 ra64 (2013)
  139. In vitro multifaceted activities of a specific group of novel phosphatidylinositol 3-kinase inhibitors on hotspot mutant PIK3CA. Kong D, Yamori T, Yamazaki K, Dan S. Invest New Drugs 32 1134-1143 (2014)
  140. A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. Lee MB, Carr DT, Kiflezghi MG, Zhao YT, Kim DB, Thon S, Moore MD, Li MAK, Kaeberlein M. Geroscience 39 419-428 (2017)
  141. Analysis of phosphoinositide 3-kinase inhibitors by bottom-up electron-transfer dissociation hydrogen/deuterium exchange mass spectrometry. Masson GR, Maslen SL, Williams RL. Biochem J 474 1867-1877 (2017)
  142. BMX acts downstream of PI3K to promote colorectal cancer cell survival and pathway inhibition sensitizes to the BH3 mimetic ABT-737. Potter DS, Kelly P, Denneny O, Juvin V, Stephens LR, Dive C, Morrow CJ. Neoplasia 16 147-157 (2014)
  143. Concurrent HER or PI3K Inhibition Potentiates the Antitumor Effect of the ERK Inhibitor Ulixertinib in Preclinical Pancreatic Cancer Models. Jiang H, Xu M, Li L, Grierson P, Dodhiawala P, Highkin M, Zhang D, Li Q, Wang-Gillam A, Lim KH. Mol Cancer Ther 17 2144-2155 (2018)
  144. Exploiting high-throughput cell line drug screening studies to identify candidate therapeutic agents in head and neck cancer. Nichols AC, Black M, Yoo J, Pinto N, Fernandes A, Haibe-Kains B, Boutros PC, Barrett JW. BMC Pharmacol Toxicol 15 66 (2014)
  145. Oncogenic β-catenin and PIK3CA instruct network states and cancer phenotypes in intestinal organoids. Riemer P, Rydenfelt M, Marks M, van Eunen K, Thedieck K, Herrmann BG, Blüthgen N, Sers C, Morkel M. J Cell Biol 216 1567-1577 (2017)
  146. PIK3CA dependence and sensitivity to therapeutic targeting in urothelial carcinoma. Ross RL, McPherson HR, Kettlewell L, Shnyder SD, Hurst CD, Alder O, Knowles MA. BMC Cancer 16 553 (2016)
  147. Phosphoinositide-3-kinase (PI3K) inhibitors: identification of new scaffolds using virtual screening. Frédérick R, Mawson C, Kendall JD, Chaussade C, Rewcastle GW, Shepherd PR, Denny WA. Bioorg Med Chem Lett 19 5842-5847 (2009)
  148. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines. van Alphen C, Cloos J, Beekhof R, Cucchi DGJ, Piersma SR, Knol JC, Henneman AA, Pham TV, van Meerloo J, Ossenkoppele GJ, Verheul HMW, Janssen JJWM, Jimenez CR. Mol Cell Proteomics 19 884-899 (2020)
  149. A mass spectrometry-based proteome map of drug action in lung cancer cell lines. Ruprecht B, Di Bernardo J, Wang Z, Mo X, Ursu O, Christopher M, Fernandez RB, Zheng L, Dill BD, Wang H, Xu Y, Liaw A, Mortison JD, Siriwardana N, Andresen B, Glick M, Tata JR, Kutilek V, Cornella-Taracido I, Chi A. Nat Chem Biol 16 1111-1119 (2020)
  150. BAFF activation of the ERK5 MAP kinase pathway regulates B cell survival. Jacque E, Schweighoffer E, Tybulewicz VL, Ley SC. J Exp Med 212 883-892 (2015)
  151. Biochemical, biological and structural properties of romidepsin (FK228) and its analogs as novel HDAC/PI3K dual inhibitors. Saijo K, Imamura J, Narita K, Oda A, Shimodaira H, Katoh T, Ishioka C. Cancer Sci 106 208-215 (2015)
  152. Cross-species proteomics reveals specific modulation of signaling in cancer and stromal cells by phosphoinositide 3-kinase (PI3K) inhibitors. Rajeeve V, Vendrell I, Wilkes E, Torbett N, Cutillas PR. Mol Cell Proteomics 13 1457-1470 (2014)
  153. Discovery and Biological Profiling of Potent and Selective mTOR Inhibitor GDC-0349. Pei Z, Blackwood E, Liu L, Malek S, Belvin M, Koehler MF, Ortwine DF, Chen H, Cohen F, Kenny JR, Bergeron P, Lau K, Ly C, Zhao X, Estrada AA, Truong T, Epler JA, Nonomiya J, Trinh L, Sideris S, Lesnick J, Bao L, Vijapurkar U, Mukadam S, Tay S, Deshmukh G, Chen YH, Ding X, Friedman LS, Lyssikatos JP. ACS Med Chem Lett 4 103-107 (2013)
  154. Discovery of 2-methoxy-3-phenylsulfonamino-5-(quinazolin-6-yl or quinolin-6-yl)benzamides as novel PI3K inhibitors and anticancer agents by bioisostere. Shao T, Wang J, Chen JG, Wang XM, Li H, Li YP, Li Y, Yang GD, Mei QB, Zhang SQ. Eur J Med Chem 75 96-105 (2014)
  155. INPP4B and PTEN Loss Leads to PI-3,4-P2 Accumulation and Inhibition of PI3K in TNBC. Reed DE, Shokat KM. Mol Cancer Res 15 765-775 (2017)
  156. Inhibitory activity of flavonoids against class I phosphatidylinositol 3-kinase isoforms. Kong D, Zhang Y, Yamori T, Duan H, Jin M. Molecules 16 5159-5167 (2011)
  157. Loss of UTX/KDM6A and the activation of FGFR3 converge to regulate differentiation gene-expression programs in bladder cancer. Barrows D, Feng L, Carroll TS, Allis CD. Proc Natl Acad Sci U S A 117 25732-25741 (2020)
  158. Novel quantitative autophagy analysis by organelle flow cytometry after cell sonication. Degtyarev M, Reichelt M, Lin K. PLoS One 9 e87707 (2014)
  159. PI3K drives the de novo synthesis of coenzyme A from vitamin B5. Dibble CC, Barritt SA, Perry GE, Lien EC, Geck RC, DuBois-Coyne SE, Bartee D, Zengeya TT, Cohen EB, Yuan M, Hopkins BD, Meier JL, Clohessy JG, Asara JM, Cantley LC, Toker A. Nature 608 192-198 (2022)
  160. Phase Ia/Ib study of the pan-class I PI3K inhibitor pictilisib (GDC-0941) administered as a single agent in Japanese patients with solid tumors and in combination in Japanese patients with non-squamous non-small cell lung cancer. Yamamoto N, Fujiwara Y, Tamura K, Kondo S, Iwasa S, Tanabe Y, Horiike A, Yanagitani N, Kitazono S, Inatani M, Tanaka J, Nishio M. Invest New Drugs 35 37-46 (2017)
  161. Repression of glucocorticoid-stimulated angiopoietin-like 4 gene transcription by insulin. Kuo T, Chen TC, Yan S, Foo F, Ching C, McQueen A, Wang JC. J Lipid Res 55 919-928 (2014)
  162. Role of P-glycoprotein and breast cancer resistance protein-1 in the brain penetration and brain pharmacodynamic activity of the novel phosphatidylinositol 3-kinase inhibitor GDC-0941. Salphati L, Lee LB, Pang J, Plise EG, Zhang X. Drug Metab Dispos 38 1422-1426 (2010)
  163. Synergistic effects of inhibiting the MNK-eIF4E and PI3K/AKT/ mTOR pathways on cell migration in MDA-MB-231 cells. Lineham E, Tizzard GJ, Coles SJ, Spencer J, Morley SJ. Oncotarget 9 14148-14159 (2018)
  164. Targeting the PI3K/mTOR pathway in murine endocrine cell lines: in vitro and in vivo effects on tumor cell growth. Couderc C, Poncet G, Villaume K, Blanc M, Gadot N, Walter T, Lepinasse F, Hervieu V, Cordier-Bussat M, Scoazec JY, Roche C. Am J Pathol 178 336-344 (2011)
  165. A Phase I Dose-Escalation Study of the Safety and Pharmacokinetics of Pictilisib in Combination with Erlotinib in Patients with Advanced Solid Tumors. Leong S, Moss RA, Bowles DW, Ware JA, Zhou J, Spoerke JM, Lackner MR, Shankar G, Schutzman JL, van der Noll R, Voest EE, Schellens JHM. Oncologist 22 1491-1499 (2017)
  166. A yeast-based in vivo bioassay to screen for class I phosphatidylinositol 3-kinase specific inhibitors. Fernández-Acero T, Rodríguez-Escudero I, Vicente F, Monteiro MC, Tormo JR, Cantizani J, Molina M, Cid VJ. J Biomol Screen 17 1018-1029 (2012)
  167. PI3K blockage synergizes with PLK1 inhibition preventing endoreduplication and enhancing apoptosis in anaplastic thyroid cancer. De Martino D, Yilmaz E, Orlacchio A, Ranieri M, Zhao K, Di Cristofano A. Cancer Lett 439 56-65 (2018)
  168. Pancreatic cancer intrinsic PI3Kα activity accelerates metastasis and rewires macrophage component. Thibault B, Ramos-Delgado F, Pons-Tostivint E, Therville N, Cintas C, Arcucci S, Cassant-Sourdy S, Reyes-Castellanos G, Tosolini M, Villard AV, Cayron C, Baer R, Bertrand-Michel J, Pagan D, Ferreira Da Mota D, Yan H, Falcomatà C, Muscari F, Bournet B, Delord JP, Aksoy E, Carrier A, Cordelier P, Saur D, Basset C, Guillermet-Guibert J. EMBO Mol Med 13 e13502 (2021)
  169. Phase I trial of MEK 1/2 inhibitor pimasertib combined with mTOR inhibitor temsirolimus in patients with advanced solid tumors. Mita M, Fu S, Piha-Paul SA, Janku F, Mita A, Natale R, Guo W, Zhao C, Kurzrock R, Naing A. Invest New Drugs 35 616-626 (2017)
  170. Quantitative Proteomics Reveals Fundamental Regulatory Differences in Oncogenic HRAS and Isocitrate Dehydrogenase (IDH1) Driven Astrocytoma. Doll S, Urisman A, Oses-Prieto JA, Arnott D, Burlingame AL. Mol Cell Proteomics 16 39-56 (2017)
  171. [18F]-FLT positron emission tomography can be used to image the response of sensitive tumors to PI3-kinase inhibition with the novel agent GDC-0941. Cawthorne C, Burrows N, Gieling RG, Morrow CJ, Forster D, Gregory J, Radigois M, Smigova A, Babur M, Simpson K, Hodgkinson C, Brown G, McMahon A, Dive C, Hiscock D, Wilson I, Williams KJ. Mol Cancer Ther 12 819-828 (2013)
  172. β-TrCP1 degradation is a novel action mechanism of PI3K/mTOR inhibitors in triple-negative breast cancer cells. Yi YW, Kang HJ, Bae EJ, Oh S, Seong YS, Bae I. Exp Mol Med 47 e143 (2015)
  173. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance. Willemsen-Seegers N, Uitdehaag JCM, Prinsen MBW, de Vetter JRF, de Man J, Sawa M, Kawase Y, Buijsman RC, Zaman GJR. J Mol Biol 429 574-586 (2017)
  174. Discovery of 2-arylthieno[3,2-d]pyrimidines containing 8-oxa-3-azabi-cyclo[3.2.1]octane in the 4-position as potent inhibitors of mTOR with selectivity over PI3K. Verheijen JC, Yu K, Toral-Barza L, Hollander I, Zask A. Bioorg Med Chem Lett 20 375-379 (2010)
  175. Discovery of phosphatidylinositol 3-kinase inhibitory compounds from the Screening Committee of Anticancer Drugs (SCADS) library. Kong D, Yamazaki K, Yamori T. Biol Pharm Bull 33 1600-1604 (2010)
  176. Discovery of pyrazolo[1,5-a]pyridines as p110α-selective PI3 kinase inhibitors. Kendall JD, O'Connor PD, Marshall AJ, Frédérick R, Marshall ES, Lill CL, Lee WJ, Kolekar S, Chao M, Malik A, Yu S, Chaussade C, Buchanan C, Rewcastle GW, Baguley BC, Flanagan JU, Jamieson SM, Denny WA, Shepherd PR. Bioorg Med Chem 20 69-85 (2012)
  177. Human Epidermal Growth Factor Receptor 2 (HER2) Impedes MLK3 Kinase Activity to Support Breast Cancer Cell Survival. Das S, Sondarva G, Viswakarma N, Nair RS, Osipo C, Tzivion G, Rana B, Rana A. J Biol Chem 290 21705-21712 (2015)
  178. Dissecting mechanisms of resistance to targeted drug combination therapy in human colorectal cancer. Clarke PA, Roe T, Swabey K, Hobbs SM, McAndrew C, Tomlin K, Westwood I, Burke R, van Montfort R, Workman P. Oncogene 38 5076-5090 (2019)
  179. Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Walpole GFW, Pacheco J, Chauhan N, Clark J, Anderson KE, Abbas YM, Brabant-Kirwan D, Montaño-Rendón F, Liu Z, Zhu H, Brumell JH, Deiters A, Stephens LR, Hawkins PT, Hammond GRV, Grinstein S, Fairn GD. Nat Cell Biol 24 708-722 (2022)
  180. Loss of glucocorticoid receptor expression mediates in vivo dexamethasone resistance in T-cell acute lymphoblastic leukemia. Wandler AM, Huang BJ, Craig JW, Hayes K, Yan H, Meyer LK, Scacchetti A, Monsalve G, Dail M, Li Q, Wong JC, Weinberg O, Hasserjian RP, Kogan SC, Jonsson P, Yamamoto K, Sampath D, Nakitandwe J, Downing JR, Zhang J, Aster JC, Taylor BS, Shannon K. Leukemia 34 2025-2037 (2020)
  181. Pre-clinical use of isogenic cell lines and tumours in vitro and in vivo for predictive biomarker discovery; impact of KRAS and PI3KCA mutation status on MEK inhibitor activity is model dependent. Haagensen EJ, Thomas HD, Mudd C, Tsonou E, Wiggins CM, Maxwell RJ, Moore JD, Newell DR. Eur J Cancer 56 69-76 (2016)
  182. Preclinical evaluation and reverse phase protein Array-based profiling of PI3K and MEK inhibitors in endometrial carcinoma in vitro. Aslan O, Cremona M, Morgan C, Cheung LW, Mills GB, Hennessy BT. BMC Cancer 18 168 (2018)
  183. Synthesis and in Vitro and in Vivo Evaluation of Phosphoinositide-3-kinase Inhibitors. Burger MT, Knapp M, Wagman A, Ni ZJ, Hendrickson T, Atallah G, Zhang Y, Frazier K, Verhagen J, Pfister K, Ng S, Smith A, Bartulis S, Merrit H, Weismann M, Xin X, Haznedar J, Voliva CF, Iwanowicz E, Pecchi S. ACS Med Chem Lett 2 34-38 (2011)
  184. A probabilistic method to report predictions from a human liver microsomes stability QSAR model: a practical tool for drug discovery. Aliagas I, Gobbi A, Heffron T, Lee ML, Ortwine DF, Zak M, Khojasteh SC. J Comput Aided Mol Des 29 327-338 (2015)
  185. Antiproliferative activities of halogenated thieno[3,2-d]pyrimidines. Temburnikar KW, Zimmermann SC, Kim NT, Ross CR, Gelbmann C, Salomon CE, Wilson GM, Balzarini J, Seley-Radtke KL. Bioorg Med Chem 22 2113-2122 (2014)
  186. Identification of differential PI3K pathway target dependencies in T-cell acute lymphoblastic leukemia through a large cancer cell panel screen. Lynch JT, McEwen R, Crafter C, McDermott U, Garnett MJ, Barry ST, Davies BR. Oncotarget 7 22128-22139 (2016)
  187. Imidazo[1,2-a]pyrazines as novel PI3K inhibitors. Martínez González S, Hernández AI, Varela C, Rodríguez-Arístegui S, Alvarez RM, García AB, Lorenzo M, Rivero V, Oyarzabal J, Rabal O, Bischoff JR, Albarrán M, Cebriá A, Alfonso P, Link W, Fominaya J, Pastor J. Bioorg Med Chem Lett 22 1874-1878 (2012)
  188. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC. Heavey S, Cuffe S, Finn S, Young V, Ryan R, Nicholson S, Leonard N, McVeigh N, Barr M, O'Byrne K, Gately K. Oncotarget 7 79526-79543 (2016)
  189. Mechanisms of apoptosis induction by simultaneous inhibition of PI3K and FLT3-ITD in AML cells in the hypoxic bone marrow microenvironment. Jin L, Tabe Y, Lu H, Borthakur G, Miida T, Kantarjian H, Andreeff M, Konopleva M. Cancer Lett 329 45-58 (2013)
  190. Novel purine and pyrazolo[3,4-d]pyrimidine inhibitors of PI3 kinase-alpha: Hit to lead studies. Gilbert AM, Nowak P, Brooijmans N, Bursavich MG, Dehnhardt C, Santos ED, Feldberg LR, Hollander I, Kim S, Lombardi S, Park K, Venkatesan AM, Mallon R. Bioorg Med Chem Lett 20 636-639 (2010)
  191. Plasma Metabolomic Changes following PI3K Inhibition as Pharmacodynamic Biomarkers: Preclinical Discovery to Phase I Trial Evaluation. Ang JE, Pandher R, Ang JC, Asad YJ, Henley AT, Valenti M, Box G, de Haven Brandon A, Baird RD, Friedman L, Derynck M, Vanhaesebroeck B, Eccles SA, Kaye SB, Workman P, de Bono JS, Raynaud FI. Mol Cancer Ther 15 1412-1424 (2016)
  192. Synthesis and structure-activity relationships of dual PI3K/mTOR inhibitors based on a 4-amino-6-methyl-1,3,5-triazine sulfonamide scaffold. Wurz RP, Liu L, Yang K, Nishimura N, Bo Y, Pettus LH, Caenepeel S, Freeman DJ, McCarter JD, Mullady EL, Miguel TS, Wang L, Zhang N, Andrews KL, Whittington DA, Jiang J, Subramanian R, Hughes PE, Norman MH. Bioorg Med Chem Lett 22 5714-5720 (2012)
  193. The PI3K inhibitor taselisib overcomes letrozole resistance in a breast cancer model expressing aromatase. Hoeflich KP, Guan J, Edgar KA, O'Brien C, Savage H, Wilson TR, Neve RM, Friedman LS, Wallin JJ. Genes Cancer 7 73-85 (2016)
  194. The enhanced in vivo activity of the combination of a MEK and a PI3K inhibitor correlates with [18F]-FLT PET in human colorectal cancer xenograft tumour-bearing mice. Haagensen EJ, Thomas HD, Wilson I, Harnor SJ, Payne SL, Rennison T, Smith KM, Maxwell RJ, Newell DR. PLoS One 8 e81763 (2013)
  195. A Genome-scale CRISPR Screen Identifies the ERBB and mTOR Signaling Networks as Key Determinants of Response to PI3K Inhibition in Pancreatic Cancer. Milton CK, Self AJ, Clarke PA, Banerji U, Piccioni F, Root DE, Whittaker SR. Mol Cancer Ther 19 1423-1435 (2020)
  196. Bilateral blockade of MEK- and PI3K-mediated pathways downstream of mutant KRAS as a treatment approach for peritoneal mucinous malignancies. Kuracha MR, Thomas P, Loggie BW, Govindarajan V. PLoS One 12 e0179510 (2017)
  197. Cbl-PI3K interaction regulates Cathepsin K secretion in osteoclasts. Yu J, Adapala NS, Doherty L, Sanjay A. Bone 127 376-385 (2019)
  198. Design, synthesis, biological evaluation and docking studies of novel 2-substituted-4-morpholino-7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives as dual PI3Kα/mTOR inhibitors. Lei F, Sun C, Xu S, Wang Q, OuYang Y, Chen C, Xia H, Wang L, Zheng P, Zhu W. Eur J Med Chem 116 27-35 (2016)
  199. Discovery of novel 2-piperidinol-3-(arylsulfonyl)quinoxalines as phosphoinositide 3-kinase α (PI3Kα) inhibitors. Wu P, Su Y, Liu X, Yang B, He Q, Hu Y. Bioorg Med Chem 20 2837-2844 (2012)
  200. Genetic disruption of the PI3K regulatory subunits, p85α, p55α, and p50α, normalizes mutant PTPN11-induced hypersensitivity to GM-CSF. Goodwin CB, Yang Z, Yin F, Yu M, Chan RJ. Haematologica 97 1042-1047 (2012)
  201. Identification of GNE-293, a potent and selective PI3Kδ inhibitor: navigating in vitro genotoxicity while improving potency and selectivity. Safina BS, Sweeney ZK, Li J, Chan BK, Bisconte A, Carrera D, Castanedo G, Flagella M, Heald R, Lewis C, Murray JM, Nonomiya J, Pang J, Price S, Reif K, Salphati L, Seward EM, Wei B, Sutherlin DP. Bioorg Med Chem Lett 23 4953-4959 (2013)
  202. Oncogenic PIK3CA mutations increase dependency on the mRNA cap methyltransferase, RNMT, in breast cancer cells. Dunn S, Lombardi O, Lukoszek R, Cowling VH. Open Biol 9 190052 (2019)
  203. Selective targeting of the mTORC1/2 protein kinase complexes leads to antileukemic effects in vitro and in vivo. Schuster K, Zheng J, Arbini AA, Zhang CC, Scaglioni PP. Blood Cancer J 1 e34 (2011)
  204. The Novel PIM1 Inhibitor NMS-P645 Reverses PIM1-Dependent Effects on TMPRSS2/ERG Positive Prostate Cancer Cells And Shows Anti-Proliferative Activity in Combination with PI3K Inhibition. Mologni L, Magistroni V, Casuscelli F, Montemartini M, Gambacorti-Passerini C. J Cancer 8 140-145 (2017)
  205. Theoretical studies on beta and delta isoform-specific binding mechanisms of phosphoinositide 3-kinase inhibitors. Zhu J, Pan P, Li Y, Wang M, Li D, Cao B, Mao X, Hou T. Mol Biosyst 10 454-466 (2014)
  206. 2,4-Diaminothieno[3,2-d]pyrimidines, a new class of anthelmintic with activity against adult and egg stages of whipworm. Partridge FA, Forman R, Willis NJ, Bataille CJR, Murphy EA, Brown AE, Heyer-Chauhan N, Marinič B, Sowood DJC, Wynne GM, Else KJ, Russell AJ, Sattelle DB. PLoS Negl Trop Dis 12 e0006487 (2018)
  207. 11C-Labeled Pictilisib (GDC-0941) as a Molecular Tracer Targeting Phosphatidylinositol 3-Kinase (PI3K) for Breast Cancer Imaging. Han N, Jiang Y, Gai Y, Liu Q, Yuan L, Wang Y, Li M, Zhang Y, Lan X. Contrast Media Mol Imaging 2019 1760184 (2019)
  208. Amphiregulin and PTEN evoke a multimodal mechanism of acquired resistance to PI3K inhibition. Edgar KA, Crocker L, Cheng E, Wagle MC, Wongchenko M, Yan Y, Wilson TR, Dompe N, Neve RM, Belvin M, Sampath D, Friedman LS, Wallin JJ. Genes Cancer 5 113-126 (2014)
  209. Discovery of a Novel Series of Thienopyrimidine as Highly Potent and Selective PI3K Inhibitors. Han F, Lin S, Liu P, Liu X, Tao J, Deng X, Yi C, Xu H. ACS Med Chem Lett 6 434-438 (2015)
  210. Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase β isoform. Staben ST, Ndubaku C, Blaquiere N, Belvin M, Bull RJ, Dudley D, Edgar K, Gray D, Heald R, Heffron TP, Jones GE, Jones M, Kolesnikov A, Lee L, Lesnick J, Lewis C, Murray J, McLean NJ, Nonomiya J, Olivero AG, Ord R, Pang J, Price S, Prior WW, Rouge L, Salphati L, Sampath D, Wallin J, Wang L, Wei B, Weismann C, Wu P. Bioorg Med Chem Lett 23 2606-2613 (2013)
  211. Effects of novel isoform-selective phosphoinositide 3-kinase inhibitors on natural killer cell function. Yea SS, So L, Mallya S, Lee J, Rajasekaran K, Malarkannan S, Fruman DA. PLoS One 9 e99486 (2014)
  212. Ligand-based 3-D pharmacophore generation and molecular docking of mTOR kinase inhibitors. Tanneeru K, Guruprasad L. J Mol Model 18 1611-1624 (2012)
  213. PI3K-AKT signaling is a downstream effector of retinoid prevention of murine basal cell carcinogenesis. So PL, Wang GY, Wang K, Chuang M, Chiueh VC, Kenny PA, Epstein EH. Cancer Prev Res (Phila) 7 407-417 (2014)
  214. Phosphatidylinositide 3-kinase (PI3K) and PI3K-related kinase (PIKK) activity contributes to radioresistance in thyroid carcinomas. Burrows N, Williams J, Telfer BA, Resch J, Valentine HR, Fitzmaurice RJ, Eustace A, Irlam J, Rowling EJ, Hoang-Vu C, West CM, Brabant G, Williams KJ. Oncotarget 7 63106-63123 (2016)
  215. Phosphoproteomics reveals that the hVPS34 regulated SGK3 kinase specifically phosphorylates endosomal proteins including Syntaxin-7, Syntaxin-12, RFIP4 and WDR44. Malik N, Nirujogi RS, Peltier J, Macartney T, Wightman M, Prescott AR, Gourlay R, Trost M, Alessi DR, Karapetsas A. Biochem J 476 3081-3107 (2019)
  216. Reactivation of AKT signaling following treatment of cancer cells with PI3K inhibitors attenuates their antitumor effects. Dufour M, Dormond-Meuwly A, Pythoud C, Demartines N, Dormond O. Biochem Biophys Res Commun 438 32-37 (2013)
  217. Regioselective synthesis of 2-(bromomethyl)-5-aryl-thiophene derivatives via palladium (0) catalyzed suzuki cross-coupling reactions: as antithrombotic and haemolytically active molecules. Rizwan K, Zubair M, Rasool N, Ali S, Zahoor AF, Rana UA, Khan SU, Shahid M, Zia-Ul-Haq M, Jaafar HZ. Chem Cent J 8 74 (2014)
  218. Synergistic effects of SHP2 and PI3K pathway inhibitors in GAB2-overexpressing ovarian cancer. Sun B, Jensen NR, Chung D, Yang M, LaRue AC, Cheung HW, Wang Q. Am J Cancer Res 9 145-159 (2019)
  219. Thiazolidinedione-based PI3Kα inhibitors: an analysis of biochemical and virtual screening methods. Pinson JA, Schmidt-Kittler O, Zhu J, Jennings IG, Kinzler KW, Vogelstein B, Chalmers DK, Thompson PE. ChemMedChem 6 514-522 (2011)
  220. Activity-based protein profiling reveals GSTO1 as the covalent target of piperlongumine and a promising target for combination therapy for cancer. Li L, Zhao Y, Cao R, Li L, Cai G, Li J, Qi X, Chen S, Zhang Z. Chem Commun (Camb) 55 4407-4410 (2019)
  221. Design, Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Selective PI3Kβ Inhibitors. Cao S, Cao R, Liu X, Luo X, Zhong W. Molecules 21 E876 (2016)
  222. Design, synthesis and antiproliferative activity evaluation of m-(4-morpholinyl-1,3,5-triazin-2-yl)benzamides in vitro. Wang XM, Xu J, Xin MH, Lu SM, Lu SM, Zhang SQ. Bioorg Med Chem Lett 25 1730-1735 (2015)
  223. Discovery of Novel and Orally Bioavailable Inhibitors of PI3 Kinase Based on Indazole Substituted Morpholino-Triazines. Dugar S, Hollinger FP, Mahajan D, Sen S, Kuila B, Arora R, Pawar Y, Shinde V, Rahinj M, Kapoor KK, Bhumkar R, Rai S, Kulkarni R. ACS Med Chem Lett 6 1190-1194 (2015)
  224. Discovery of a Novel Series of 7-Azaindole Scaffold Derivatives as PI3K Inhibitors with Potent Activity. Yang C, Zhang X, Wang Y, Yang Y, Liu X, Deng M, Jia Y, Ling Y, Meng LH, Zhou Y. ACS Med Chem Lett 8 875-880 (2017)
  225. Discovery of a novel tricyclic 4H-thiazolo[5',4':4,5]pyrano[2,3-c]pyridine-2-amino scaffold and its application in a PI3Kα inhibitor with high PI3K isoform selectivity and potent cellular activity. Gerspacher M, Fairhurst RA, Mah R, Roehn-Carnemolla E, Furet P, Fritsch C, Guthy DA. Bioorg Med Chem Lett 25 3582-3584 (2015)
  226. Immunoaffinity enrichment coupled to quantitative mass spectrometry reveals ubiquitin-mediated signaling events. Yu K, Phu L, Varfolomeev E, Bustos D, Vucic D, Kirkpatrick DS. J Mol Biol 427 2121-2134 (2015)
  227. Inhibition of Mammalian target of rapamycin in human acute myeloid leukemia cells has diverse effects that depend on the environmental in vitro stress. Ryningen A, Reikvam H, Nepstad I, Paulsen Rye K, Bruserud O. Bone Marrow Res 2012 329061 (2012)
  228. Novel imidazolopyrimidines as dual PI3-Kinase/mTOR inhibitors. Venkatesan AM, Dehnhardt CM, Chen Z, Santos ED, Dos Santos O, Bursavich M, Gilbert AM, Ellingboe JW, Ayral-Kaloustian S, Khafizova G, Brooijmans N, Mallon R, Hollander I, Feldberg L, Lucas J, Yu K, Gibbons J, Abraham R, Mansour TS. Bioorg Med Chem Lett 20 653-656 (2010)
  229. Structure-based design of thienobenzoxepin inhibitors of PI3-kinase. Staben ST, Siu M, Goldsmith R, Olivero AG, Do S, Burdick DJ, Heffron TP, Dotson J, Sutherlin DP, Zhu BY, Tsui V, Le H, Lee L, Lesnick J, Lewis C, Murray JM, Nonomiya J, Pang J, Prior WW, Salphati L, Rouge L, Sampath D, Sideris S, Wiesmann C, Wu P. Bioorg Med Chem Lett 21 4054-4058 (2011)
  230. Synthetic Essentiality of Metabolic Regulator PDHK1 in PTEN-Deficient Cells and Cancers. Chatterjee N, Pazarentzos E, Mayekar MK, Gui P, Allegakoen DV, Hrustanovic G, Olivas V, Lin L, Verschueren E, Johnson JR, Hofree M, Yan JJ, Newton BW, Dollen JV, Earnshaw CH, Flanagan J, Chan E, Asthana S, Ideker T, Wu W, Suzuki J, Barad BA, Kirichok Y, Fraser JS, Weiss WA, Krogan NJ, Tulpule A, Sabnis AJ, Bivona TG. Cell Rep 28 2317-2330.e8 (2019)
  231. The anti-ErbB2 antibody H2-18 and the pan-PI3K inhibitor GDC-0941 effectively inhibit trastuzumab-resistant ErbB2-overexpressing breast cancer. Wang L, Yu X, Wang C, Pan S, Liang B, Zhang Y, Chong X, Meng Y, Dong J, Zhao Y, Yang Y, Wang H, Gao J, Wei H, Zhao J, Wang H, Hu C, Xiao W, Li B. Oncotarget 8 52877-52888 (2017)
  232. WNK1 regulates uterine homeostasis and its ability to support pregnancy. Chi RA, Wang T, Huang CL, Wu SP, Young SL, Lydon JP, DeMayo FJ. JCI Insight 5 141832 (2020)
  233. Combined inhibition of PI3K and Src kinases demonstrates synergistic therapeutic efficacy in clear-cell renal carcinoma. Roelants C, Giacosa S, Pillet C, Bussat R, Champelovier P, Bastien O, Guyon L, Arnoux V, Cochet C, Filhol O. Oncotarget 9 30066-30078 (2018)
  234. Endosomal Phosphatidylinositol 3-Kinase Is Essential for Canonical GPCR Signaling. Uchida Y, Rutaganira FU, Jullié D, Shokat KM, von Zastrow M. Mol Pharmacol 91 65-73 (2017)
  235. Epstein-Barr Virus Latent Membrane Protein 1 Regulates Host B Cell MicroRNA-155 and Its Target FOXO3a via PI3K p110α Activation. Hatton O, Smith MM, Alexander M, Mandell M, Sherman C, Stesney MW, Hui ST, Dohrn G, Medrano J, Ringwalt K, Harris-Arnold A, Maloney EM, Krams SM, Martinez OM. Front Microbiol 10 2692 (2019)
  236. ErbB2-positive mammary tumors can escape PI3K-p110α loss through downregulation of the Pten tumor suppressor. Simond AM, Rao T, Zuo D, Zhao JJ, Muller WJ. Oncogene 36 6059-6066 (2017)
  237. Integration of Receptor Tyrosine Kinases Determines Sensitivity to PI3Kα-selective Inhibitors in Breast Cancer. Xu YC, Wang X, Chen Y, Chen SM, Yang XY, Sun YM, Geng MY, Ding J, Meng LH. Theranostics 7 974-986 (2017)
  238. MEK-inhibitor-mediated rescue of skeletal myopathy caused by activating Hras mutation in a Costello syndrome mouse model. Tidyman WE, Goodwin AF, Maeda Y, Klein OD, Rauen KA. Dis Model Mech 15 dmm049166 (2022)
  239. PI3K inhibitor GDC-0941 enhances apoptotic effects of BH-3 mimetic ABT-737 in AML cells in the hypoxic bone marrow microenvironment. Jin L, Tabe Y, Kojima K, Shikami M, Benito J, Ruvolo V, Wang RY, McQueen T, Ciurea SO, Miida T, Andreeff M, Konopleva M. J Mol Med (Berl) 91 1383-1397 (2013)
  240. PIK3CA-mutated melanoma cells rely on cooperative signaling through mTORC1/2 for sustained proliferation. Silva JM, Deuker MM, Baguley BC, McMahon M. Pigment Cell Melanoma Res 30 353-367 (2017)
  241. Palladium(0) catalyzed Suzuki cross-coupling reaction of 2,5-dibromo-3-methylthiophene: selectivity, characterization, DFT studies and their biological evaluations. Rizwan K, Zubair M, Rasool N, Mahmood T, Ayub K, Alitheen NB, Aziz MNM, Akhtar MN, Nasim FU, Bukhary SM, Ahmad VU, Rani M. Chem Cent J 12 49 (2018)
  242. The antitumor effect of GDC-0941 alone and in combination with rapamycin in breast cancer cells. Zheng J, Zou X, Yao J. Chemotherapy 58 273-281 (2012)
  243. mTORC1 Inhibition Induces Resistance to Methotrexate and 6-Mercaptopurine in Ph+ and Ph-like B-ALL. Vo TT, Lee JS, Nguyen D, Lui B, Pandori W, Khaw A, Mallya S, Lu M, Müschen M, Konopleva M, Fruman DA. Mol Cancer Ther 16 1942-1953 (2017)
  244. Access to functionalized thienopyridines via a reagent-capsule-assisted coupling, thiolation and cyclization cascade sequence. Cai J, Huang S, He R, Chen L, Chen D, Jiang S, Li B, Li Y. Org Biomol Chem 15 333-337 (2017)
  245. Conformational selection versus induced fit in kinases: the case of PI3K-γ. D'Abramo M, Rabal O, Oyarzabal J, Gervasio FL. Angew Chem Int Ed Engl 51 642-646 (2012)
  246. EGFRvIII tumorigenicity requires PDGFRA co-signaling and reveals therapeutic vulnerabilities in glioblastoma. Yeo AT, Jun HJ, Appleman VA, Zhang P, Varma H, Sarkaria JN, Charest A. Oncogene 40 2682-2696 (2021)
  247. Effectiveness of combined treatment using X-rays and a phosphoinositide 3-kinase inhibitor, ZSTK474, on proliferation of HeLa cells in vitro and in vivo. Anzai K, Sekine-Suzuki E, Ueno M, Okamura M, Yoshimi H, Dan S, Yaguchi S, Enami J, Yamori T, Okayasu R. Cancer Sci 102 1176-1180 (2011)
  248. Enhanced anti-tumour activity of the combination of the novel MEK inhibitor WX-554 and the novel PI3K inhibitor WX-037. Haagensen EJ, Thomas HD, Schmalix WA, Payne AC, Kevorkian L, Allen RA, Bevan P, Maxwell RJ, Newell DR. Cancer Chemother Pharmacol 78 1269-1281 (2016)
  249. Fragment-based discovery of hydroxy-indazole-carboxamides as novel small molecule inhibitors of Hsp90. Buchstaller HP, Eggenweiler HM, Sirrenberg C, Grädler U, Musil D, Hoppe E, Zimmermann A, Schwartz H, März J, Bomke J, Wegener A, Wolf M. Bioorg Med Chem Lett 22 4396-4403 (2012)
  250. Inhibition of PI3K suppresses propagation of drug-tolerant cancer cell subpopulations enriched by 5-fluorouracil. Ishida K, Ito C, Ohmori Y, Kume K, Sato KA, Koizumi Y, Konta A, Iwaya T, Nukatsuka M, Kobunai T, Takechi T, Nishizuka SS. Sci Rep 7 2262 (2017)
  251. Local synthesis of the phosphatidylinositol-3,4-bisphosphate lipid drives focal adhesion turnover. Posor Y, Kampyli C, Bilanges B, Ganguli S, Koch PA, Wallroth A, Morelli D, Jenkins M, Alliouachene S, Deltcheva E, Baum B, Haucke V, Vanhaesebroeck B. Dev Cell 57 1694-1711.e7 (2022)
  252. Comment PI(3) kinases: revealing the delta lady. Workman P, van Montfort RL. Nat Chem Biol 6 82-83 (2010)
  253. Unremitting cell proliferation in the secretory phase of eutopic endometriosis: involvement of pAkt and pGSK3β. Franco-Murillo Y, Miranda-Rodríguez JA, Rendón-Huerta E, Montaño LF, Cornejo GV, Gómez LP, Valdez-Morales FJ, Gonzalez-Sanchez I, Cerbón M. Reprod Sci 22 502-510 (2015)
  254. Fyn and TOM1L1 are recruited to clathrin-coated pits and regulate Akt signaling. Cabral-Dias R, Lucarelli S, Zak K, Rahmani S, Judge G, Abousawan J, DiGiovanni LF, Vural D, Anderson KE, Sugiyama MG, Genc G, Hong W, Botelho RJ, Fairn GD, Kim PK, Antonescu CN. J Cell Biol 221 e201808181 (2022)
  255. HS-133, a novel fluorescent phosphatidylinositol 3-kinase inhibitor as a potential imaging and anticancer agent for targeted therapy. Lee JH, Jung KH, Lee H, Son MK, Yun SM, Ahn SH, Lee KR, Lee S, Kim D, Hong S, Hong SS. Oncotarget 5 10180-10197 (2014)
  256. High-Complexity shRNA Libraries and PI3 Kinase Inhibition in Cancer: High-Fidelity Synthetic Lethality Predictions. Mues M, Karra L, Romero-Moya D, Wandler A, Hangauer MJ, Ksionda O, Thus Y, Lindenbergh M, Shannon K, McManus MT, Roose JP. Cell Rep 27 631-647.e5 (2019)
  257. High-throughput screening compatible cell-based assay for interrogating activated notch signaling. Hancock MK, Kopp L, Bi K. Assay Drug Dev Technol 7 68-79 (2009)
  258. PIK3CA mutation sensitizes breast cancer cells to synergistic therapy of PI3K inhibition and AMPK activation. Liu S, Tang Y, Yan M, Jiang W. Invest New Drugs 36 763-772 (2018)
  259. Pictilisib Enhances the Antitumor Effect of Doxorubicin and Prevents Tumor-Mediated Bone Destruction by Blockade of PI3K/AKT Pathway. Liang C, Yu X, Xiong N, Zhang Z, Sun Z, Dong Y. Front Oncol 10 615146 (2020)
  260. Quantitative phosphoproteomic analysis of the PI3K-regulated signaling network. Gnad F, Wallin J, Edgar K, Doll S, Arnott D, Robillard L, Kirkpatrick DS, Stokes MP, Vijapurkar U, Hatzivassiliou G, Friedman LS, Belvin M. Proteomics 16 1992-1997 (2016)
  261. Small molecule H89 renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors. Melick CH, Jewell JL. Biochem J 477 1847-1863 (2020)
  262. An electrochemical synthesis of functionalized arylpyrimidines from 4-amino-6-chloropyrimidines and aryl halides. Sengmany S, Le Gall E, Léonel E. Molecules 16 5550-5560 (2011)
  263. Biological characterization of ETP-46321 a selective and efficacious inhibitor of phosphoinositide-3-kinases. Granda TG, Cebrián D, Martínez S, Anguita PV, López EC, Link W, Merino T, Pastor J, Serelde BG, Peregrina S, Palacios I, Albarran MI, Cebriá A, Lorenzo M, Alonso P, Fominaya J, López AR, Bischoff JR. Invest New Drugs 31 66-76 (2013)
  264. Cardiac Safety of Kinase Inhibitors - Improving Understanding and Prediction of Liabilities in Drug Discovery Using Human Stem Cell-Derived Models. Ziegler R, Häusermann F, Kirchner S, Polonchuk L. Front Cardiovasc Med 8 639824 (2021)
  265. Characterization and phase I study of CLR457, an orally bioavailable pan-class I PI3-kinase inhibitor. Harding JJ, Bauer TM, Tan DSW, Bedard PL, Rodon J, Doi T, Schnell C, Iyer V, Baffert F, Radhakrishnan R, Fabre C, Juric D. Invest New Drugs 37 271-281 (2019)
  266. Design, Synthesis, and Antitumor Activity of Olmutinib Derivatives Containing Acrylamide Moiety. Hu X, Tang S, Yang F, Zheng P, Xu S, Pan Q, Zhu W. Molecules 26 3041 (2021)
  267. FGFR1 is a potential therapeutic target in neuroblastoma. Cimmino F, Montella A, Tirelli M, Avitabile M, Lasorsa VA, Visconte F, Cantalupo S, Maiorino T, De Angelis B, Morini M, Castellano A, Locatelli F, Capasso M, Iolascon A. Cancer Cell Int 22 174 (2022)
  268. Genetic determinants of ammonia-induced acute lung injury in mice. Bein K, Ganguly K, Martin TM, Concel VJ, Brant KA, Di YPP, Upadhyay S, Fabisiak JP, Vuga LJ, Kaminski N, Kostem E, Eskin E, Prows DR, Jang AS, Leikauf GD. Am J Physiol Lung Cell Mol Physiol 320 L41-L62 (2021)
  269. In vitro benchmarking of NF-κB inhibitors. Harrold AP, Cleary MM, Bharathy N, Lathara M, Berlow NE, Foreman NK, Donson AM, Amani V, Zuercher WJ, Keller C. Eur J Pharmacol 873 172981 (2020)
  270. Novel 4-Acrylamido-Quinoline Derivatives as Potent PI3K/mTOR Dual Inhibitors: The Design, Synthesis, and in vitro and in vivo Biological Evaluation. Ma X, Shen L, Zhang J, Liu G, Zhan S, Ding B, Lv X. Front Chem 7 236 (2019)
  271. SWAP70 undergoes dynamic conformational regulation at the leading edge of migrating cells. Kriplani N, Duncan RR, Leslie NR. FEBS Lett 593 395-405 (2019)
  272. Simple approach to thieno[3,2-d]pyrimidines as new scaffolds of antimicrobial activities. Hafez HN, El-Gazzar AR, Zaki ME. Acta Pharm 66 331-351 (2016)
  273. Strong inhibition of neutrophil-sperm interaction in cattle by selective phosphatidylinositol 3-kinase inhibitors. Hong J, Dicker BL, Jayasinghe SN, De Gregorio F, Tian H, Han DY, Hudson KR. Biol Reprod 97 671-687 (2017)
  274. Synthesis of thiophene and N-substituted thieno[3,2-d] pyrimidine derivatives as potent antitumor and antibacterial agents. Hafez HN, Alsalamah SA, El-Gazzar ABA. Acta Pharm 67 275-292 (2017)
  275. Targeting Aberrant p70S6K Activation for Estrogen Receptor-Negative Breast Cancer Prevention. Wang X, Yao J, Wang J, Zhang Q, Brady SW, Arun B, Seewaldt VL, Yu D. Cancer Prev Res (Phila) 10 641-650 (2017)
  276. The p110α and p110β isoforms of class I phosphatidylinositol 3-kinase are involved in toll-like receptor 5 signaling in epithelial cells. Ivison SM, Khan MA, Graham NR, Shobab LA, Yao Y, Kifayet A, Sly LM, Steiner TS. Mediators Inflamm 2010 652098 (2010)
  277. A direct fluorometric activity assay for lipid kinases and phosphatases. Sun J, Singaram I, Soflaee MH, Cho W. J Lipid Res 61 945-952 (2020)
  278. Biological characterization of SN32976, a selective inhibitor of PI3K and mTOR with preferential activity to PI3Kα, in comparison to established pan PI3K inhibitors. Rewcastle GW, Kolekar S, Buchanan CM, Gamage SA, Giddens AC, Tsang KY, Kendall JD, Singh R, Lee WJ, Smith GC, Han W, Matthews DJ, Denny WA, Shepherd PR, Jamieson SMF. Oncotarget 8 47725-47740 (2017)
  279. Design, Synthesis and Anti-Proliferative Activities of 2,6-Substituted Thieno[3,2-d]pyrimidine Derivatives Containing Electrophilic Warheads. Zhang Q, Hu Z, Shen Q, Chen Y, Lu W. Molecules 22 E788 (2017)
  280. Design, Synthesis, and Development of Pyrazolo[1,5-a]pyrimidine Derivatives as a Novel Series of Selective PI3Kδ Inhibitors: Part II-Benzimidazole Derivatives. Stypik M, Michałek S, Orłowska N, Zagozda M, Dziachan M, Banach M, Turowski P, Gunerka P, Zdżalik-Bielecka D, Stańczak A, Kędzierska U, Mulewski K, Smuga D, Maruszak W, Gurba-Bryśkiewicz L, Leniak A, Pietruś W, Ochal Z, Mach M, Zygmunt B, Pieczykolan J, Dubiel K, Wieczorek M. Pharmaceuticals (Basel) 15 927 (2022)
  281. Design, Synthesis, and Development of pyrazolo[1,5-a]pyrimidine Derivatives as a Novel Series of Selective PI3Kδ Inhibitors: Part I-Indole Derivatives. Stypik M, Zagozda M, Michałek S, Dymek B, Zdżalik-Bielecka D, Dziachan M, Orłowska N, Gunerka P, Turowski P, Hucz-Kalitowska J, Stańczak A, Stańczak P, Mulewski K, Smuga D, Stefaniak F, Gurba-Bryśkiewicz L, Leniak A, Ochal Z, Mach M, Dzwonek K, Lamparska-Przybysz M, Dubiel K, Wieczorek M. Pharmaceuticals (Basel) 15 949 (2022)
  282. Generation of tricyclic imidazo[1,2-a]pyrazines as novel PI3K inhibitors by application of a conformational restriction strategy. Martínez González S, Rodríguez-Arístegui S, Hernández AI, Varela C, González Cantalapiedra E, Álvarez RM, Rodríguez Hergueta A, Bischoff JR, Albarrán MI, Cebriá A, Cendón E, Cebrián D, Alfonso P, Pastor J. Bioorg Med Chem Lett 27 2536-2543 (2017)
  283. Identification of novel piperazinylquinoxaline derivatives as potent phosphoinositide 3-kinase (PI3K) inhibitors. Wu P, Su Y, Guan X, Liu X, Zhang J, Dong X, Huang W, Hu Y. PLoS One 7 e43171 (2012)
  284. Induction of senescence upon loss of the Ash2l core subunit of H3K4 methyltransferase complexes. Bochyńska A, Stenzel AT, Sayadi Boroujeni R, Kuo CC, Barsoum M, Liang W, Bussmann P, Costa IG, Lüscher-Firzlaff J, Lüscher B. Nucleic Acids Res 50 7889-7905 (2022)
  285. P-TEFb promotes cell survival upon p53 activation by suppressing intrinsic apoptosis pathway. Wang Z, Mačáková M, Bugai A, Kuznetsov SG, Hassinen A, Lenasi T, Potdar S, Friedel CC, Barborič M. Nucleic Acids Res 51 1687-1706 (2023)
  286. Pyrazolopyrimide library screening in glioma cells discovers highly potent antiproliferative leads that target the PI3K/mTOR pathway. Valero T, Baillache DJ, Fraser C, Myers SH, Unciti-Broceta A. Bioorg Med Chem 28 115215 (2020)
  287. Quantitative MRI establishes the efficacy of PI3K inhibitor (GDC-0941) multi-treatments in PTEN-deficient mice lymphoma. Wullschleger S, García-Martínez JM, Duce SL. Anticancer Res 32 415-420 (2012)
  288. A practical drug discovery project at the undergraduate level. Fray MJ, Macdonald SJ, Baldwin IR, Barton N, Brown J, Campbell IB, Churcher I, Coe DM, Cooper AW, Craven AP, Fisher G, Inglis GG, Kelly HA, Liddle J, Maxwell AC, Patel VK, Swanson S, Wellaway N. Drug Discov Today 18 1158-1172 (2013)
  289. Codrug Approach for the Potential Treatment of EML4-ALK Positive Lung Cancer. Garces AE, Al-Hayali M, Lee JB, Li J, Gershkovich P, Bradshaw TD, Stocks MJ. ACS Med Chem Lett 11 316-321 (2020)
  290. Combination effects of sorafenib with PI3K inhibitors under hypoxia in colorectal cancer. Bhatia DR, Thiagarajan P. Hypoxia (Auckl) 4 163-174 (2016)
  291. Copper-mediated N-Arylation of Methyl 2-Aminothiophene-3-carboxylate with Organoboron Reagents. Rizwan K, Karakaya I, Karakaya I, Heitz D, Zubair M, Rasool N, Molander GA. Tetrahedron Lett 56 6839-6842 (2015)
  292. Design, synthesis and evaluation of 2, 6, 8-substituted Imidazopyridine derivatives as potent PI3Kα inhibitors. Chen R, Wang Z, Sima L, Cheng H, Luo B, Wang J, Guo B, Mao S, Zhou Z, Peng J, Tang L, Liu X, Liao W. J Enzyme Inhib Med Chem 38 2155638 (2023)
  293. Discovering and developing PI3 kinase inhibitors for cancer: rapid progress through academic-biotech-pharma interactions. Raynaud FI, Workman P. Mol Cancer Ther 10 2017-2018 (2011)
  294. Imidazo[1,2-a]pyrazine inhibitors of phosphoinositide 3-kinase alpha (PI3Kα): 3D-QSAR analysis utilizing the Hybrid Monte Carlo algorithm to refine receptor-ligand complexes for molecular alignment. Chadha N, Jasuja H, Kaur M, Singh Bahia M, Silakari O. SAR QSAR Environ Res 25 221-247 (2014)
  295. Phosphoinositide species and filamentous actin formation mediate engulfment by senescent tumor cells. Frey WD, Anderson AY, Lee H, Nguyen JB, Cowles EL, Lu H, Jackson JG. PLoS Biol 20 e3001858 (2022)
  296. Structure guided optimization of a fragment hit to imidazopyridine inhibitors of PI3K. Pecchi S, Ni ZJ, Han W, Smith A, Lan J, Burger M, Merritt H, Wiesmann M, Chan J, Kaufman S, Knapp MS, Janssen J, Huh K, Voliva CF. Bioorg Med Chem Lett 23 4652-4656 (2013)
  297. Synthesis and Biological Evaluation of Novel 8-Morpholinoimidazo[1,2-a]pyrazine Derivatives Bearing Phenylpyridine/Phenylpyrimidine-Carboxamides. Xu S, Sun C, Chen C, Zheng P, Zhou Y, Zhou H, Zhu W. Molecules 22 E310 (2017)
  298. A LETM2-Regulated PI3K-Akt Signaling Axis Reveals a Prognostic and Therapeutic Target in Pancreatic Cancer. Zhou S, Zhong Z, Lu Y, Li Y, Yao H, Zhao Y, Guo T, Yang K, Li Y, Chen S, Huang K, Lian G. Cancers (Basel) 14 4722 (2022)
  299. A cell-based high-throughput screen identifies tyrphostin AG 879 as an inhibitor of animal cell phospholipid and fatty acid biosynthesis. Zoeller RA, Geoghegan-Barek K. Biochem Biophys Rep 18 100621 (2019)
  300. AUM302, a novel triple kinase PIM/PI3K/mTOR inhibitor, is a potent in vitro pancreatic cancer growth inhibitor. Ingle K, LaComb JF, Graves LM, Baines AT, Bialkowska AB. PLoS One 18 e0294065 (2023)
  301. Architecture of androgen receptor pathways amplifying glucagon-like peptide-1 insulinotropic action in male pancreatic β cells. Xu W, Qadir MMF, Nasteska D, Mota de Sa P, Gorvin CM, Blandino-Rosano M, Evans CR, Ho T, Potapenko E, Veluthakal R, Ashford FB, Bitsi S, Fan J, Bhondeley M, Song K, Sure VN, Sakamuri SSVP, Schiffer L, Beatty W, Wyatt R, Frigo DE, Liu X, Katakam PV, Arlt W, Buck J, Levin LR, Hu T, Kolls J, Burant CF, Tomas A, Merrins MJ, Thurmond DC, Bernal-Mizrachi E, Hodson DJ, Mauvais-Jarvis F. Cell Rep 42 112529 (2023)
  302. CRISPR Screening Identifies Mechanisms of Resistance to KRASG12C and SHP2 Inhibitor Combinations in Non-Small Cell Lung Cancer. Prahallad A, Weiss A, Voshol H, Kerr G, Sprouffske K, Yuan T, Ruddy D, Meistertzheim M, Kazic-Legueux M, Kottarathil T, Piquet M, Cao Y, Martinuzzi-Duboc L, Buhles A, Adler F, Mannino S, Tordella L, Sansregret L, Maira SM, Graus Porta D, Fedele C, Brachmann SM. Cancer Res 83 4130-4141 (2023)
  303. Differential Susceptibility of Ex Vivo Primary Glioblastoma Tumors to Oncolytic Effect of Modified Zika Virus. Garcia G, Chakravarty N, Paiola S, Urena E, Gyani P, Tse C, French SW, Danielpour M, Breunig JJ, Nathanson DA, Arumugaswami V. Cells 12 2384 (2023)
  304. Macrophage's role in solid tumors: two edges of a sword. Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Cancer Cell Int 23 150 (2023)
  305. Mutant PIK3CA as a negative predictive biomarker for treatment with a highly selective PIM1 inhibitor in human colon cancer. Park YS, Kim J, Ryu YS, Moon JH, Shin YJ, Kim JH, Hong SW, Jung SA, Lee S, Kim SM, Lee DH, Kim DY, Yun H, You JE, Yoon DI, Kim CH, Koh DI, Jin DH. Cancer Biol Ther 24 2246208 (2023)
  306. The CRTC-CREB axis functions as a transcriptional sensor to protect against proteotoxic stress in Drosophila. Yin Y, Ma P, Wang S, Zhang Y, Han R, Huo C, Wu M, Deng H. Cell Death Dis 13 688 (2022)
  307. The myocardium utilizes a platelet-derived growth factor receptor alpha (Pdgfra)-phosphoinositide 3-kinase (PI3K) signaling cascade to steer toward the midline during zebrafish heart tube formation. Shrestha R, McCann T, Saravanan H, Lieberth J, Koirala P, Bloomekatz J. Elife 12 e85930 (2023)
  308. Virtual docking screening and QSAR studies to explore AKT and mTOR inhibitors acting on PI3K in cancers. Kandoussi I, Benherrif O, Lakhlili W, Taoufik J, Ibrahimi A. Contemp Oncol (Pozn) 24 5-12 (2020)