3dab Citations

Structure of the human Mdmx protein bound to the p53 tumor suppressor transactivation domain.

Cell Cycle 7 2441-3 (2008)
Cited: 127 times
EuropePMC logo PMID: 18677113

Abstract

The Mdmx oncoprotein has only recently emerged as a critical-independent to Mdm2-regulator of p53 activation. We have determined the crystal structure of the N-terminal domain of human Mdmx bound to a 15-residue transactivation domain peptide of human p53. The structure shows why antagonists of the Mdm2 binding to p53 are ineffective in the Mdmx-p53 interaction.

Reviews - 3dab mentioned but not cited (7)

  1. The tumor suppressor p53: from structures to drug discovery. Joerger AC, Fersht AR. Cold Spring Harb Perspect Biol 2 a000919 (2010)
  2. How To Design a Successful p53-MDM2/X Interaction Inhibitor: A Thorough Overview Based on Crystal Structures. Estrada-Ortiz N, Neochoritis CG, Dömling A. ChemMedChem 11 757-772 (2016)
  3. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspectives. Fang Y, Liao G, Yu B. Acta Pharm Sin B 10 1253-1278 (2020)
  4. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Shin WH, Christoffer CW, Kihara D. Methods 131 22-32 (2017)
  5. Molecular dynamic simulation insights into the normal state and restoration of p53 function. Fu T, Min H, Xu Y, Chen J, Li G. Int J Mol Sci 13 9709-9740 (2012)
  6. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Perez JJ, Perez RA, Perez A. Front Mol Biosci 8 681617 (2021)
  7. Targeting oncogenic protein-protein interactions by diversity oriented synthesis and combinatorial chemistry approaches. Tzakos AG, Fokas D, Johannes C, Moussis V, Hatzimichael E, Briasoulis E. Molecules 16 4408-4427 (2011)

Articles - 3dab mentioned but not cited (32)

  1. Structure-based design of high affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. Phan J, Li Z, Kasprzak A, Li B, Sebti S, Guida W, Schönbrunn E, Chen J. J Biol Chem 285 2174-2183 (2010)
  2. Small-molecule inhibitor starting points learned from protein-protein interaction inhibitor structure. Koes DR, Camacho CJ. Bioinformatics 28 784-791 (2012)
  3. Crystal Structures of Human MdmX (HdmX) in Complex with p53 Peptide Analogues Reveal Surprising Conformational Changes. Kallen J, Goepfert A, Blechschmidt A, Izaac A, Geiser M, Tavares G, Ramage P, Furet P, Masuya K, Lisztwan J. J Biol Chem 284 8812-8821 (2009)
  4. Lithocholic acid is an endogenous inhibitor of MDM4 and MDM2. Vogel SM, Bauer MR, Joerger AC, Wilcken R, Brandt T, Veprintsev DB, Rutherford TJ, Fersht AR, Boeckler FM. Proc Natl Acad Sci U S A 109 16906-16910 (2012)
  5. On the interaction mechanisms of a p53 peptide and nutlin with the MDM2 and MDMX proteins: a Brownian dynamics study. ElSawy KM, Verma CS, Joseph TL, Lane DP, Twarock R, Caves LS. Cell Cycle 12 394-404 (2013)
  6. 2P2Idb v2: update of a structural database dedicated to orthosteric modulation of protein-protein interactions. Basse MJ, Betzi S, Morelli X, Roche P. Database (Oxford) 2016 baw007 (2016)
  7. The p53-MDM2/MDMX axis - A chemotype perspective. Khoury K, Popowicz GM, Holak TA, Dömling A. Medchemcomm 2 246-260 (2011)
  8. Application of binding free energy calculations to prediction of binding modes and affinities of MDM2 and MDMX inhibitors. Lee HS, Jo S, Lim HS, Im W. J Chem Inf Model 52 1821-1832 (2012)
  9. Ligand binding mode prediction by docking: mdm2/mdmx inhibitors as a case study. Bharatham N, Bharatham K, Shelat AA, Bashford D. J Chem Inf Model 54 648-659 (2014)
  10. Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows. Goncearenco A, Li M, Simonetti FL, Shoemaker BA, Panchenko AR. Methods Mol Biol 1647 221-236 (2017)
  11. N-acylpolyamine inhibitors of HDM2 and HDMX binding to p53. Hayashi R, Wang D, Hara T, Iera JA, Durell SR, Appella DH. Bioorg Med Chem 17 7884-7893 (2009)
  12. Highly precise protein-protein interaction prediction based on consensus between template-based and de novo docking methods. Ohue M, Matsuzaki Y, Shimoda T, Ishida T, Akiyama Y. BMC Proc 7 S6 (2013)
  13. Monitoring Ligand-Induced Protein Ordering in Drug Discovery. Grace CR, Ban D, Min J, Mayasundari A, Min L, Finch KE, Griffiths L, Bharatham N, Bashford D, Kiplin Guy R, Dyer MA, Kriwacki RW. J Mol Biol 428 1290-1303 (2016)
  14. Optimal Affinity Enhancement by a Conserved Flexible Linker Controls p53 Mimicry in MdmX. Borcherds W, Becker A, Chen L, Chen J, Chemes LB, Daughdrill GW. Biophys J 112 2038-2042 (2017)
  15. Competition NMR for Detection of Hit/Lead Inhibitors of Protein-Protein Interactions. Musielak B, Janczyk W, Rodriguez I, Plewka J, Sala D, Magiera-Mularz K, Holak T. Molecules 25 E3017 (2020)
  16. Tumor-Suppressor p53TAD1-60 Forms a Fuzzy Complex with Metastasis-Associated S100A4: Structural Insights and Dynamics by an NMR/MD Approach. Dudás EF, Pálfy G, Menyhárd DK, Sebák F, Ecsédi P, Nyitray L, Bodor A. Chembiochem 21 3087-3095 (2020)
  17. Fragment-based library generation for the discovery of a peptidomimetic p53-Mdm4 inhibitor. Boltjes A, Huang Y, van de Velde R, Rijkee L, Wolf S, Gaugler J, Lesniak K, Guzik K, Holak TA, Dömling A. ACS Comb Sci 16 393-396 (2014)
  18. Selective Restoration of Pomc Expression in Glutamatergic POMC Neurons: Evidence for a Dynamic Hypothalamic Neurotransmitter Network. Jones GL, Wittmann G, Yokosawa EB, Yu H, Mercer AJ, Lechan RM, Low MJ. eNeuro 6 ENEURO.0400-18.2019 (2019)
  19. Functional profiling of p53-binding sites in Hdm2 and Hdmx using a genetic selection system. Datta S, Bucks ME, Koley D, Lim PX, Savinov SN. Bioorg Med Chem 18 6099-6108 (2010)
  20. Insight Into the Binding Mechanism of p53/pDIQ-MDMX/MDM2 With the Interaction Entropy Method. Li M, Cong Y, Li Y, Zhong S, Wang R, Li H, Duan L. Front Chem 7 33 (2019)
  21. Role of the N-terminal lid in regulating the interaction of phosphorylated MDMX with p53. Chan JV, Ping Koh DX, Liu Y, Joseph TL, Lane DP, Verma CS, Tan YS. Oncotarget 8 112825-112840 (2017)
  22. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking. Zhu W, Li Y, Zhao J, Wang Y, Li Y, Wang Y. Ann Med 54 541-552 (2022)
  23. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets. Ashford P, Moss DS, Alex A, Yeap SK, Povia A, Nobeli I, Williams MA. BMC Bioinformatics 13 39 (2012)
  24. PepPro: A Nonredundant Structure Data Set for Benchmarking Peptide-Protein Computational Docking. Xu X, Zou X. J Comput Chem 41 362-369 (2020)
  25. Structure-based designing efficient peptides based on p53 binding site residues to disrupt p53-MDM2/X interaction. Rasafar N, Barzegar A, Mehdizadeh Aghdam E. Sci Rep 10 11449 (2020)
  26. Leveraging the multivalent p53 peptide-MdmX interaction to guide the improvement of small molecule inhibitors. Cheng X, Chen R, Zhou T, Zhang B, Li Z, Gao M, Huang Y, Liu H, Su Z. Nat Commun 13 1087 (2022)
  27. Identification of Secondary Binding Sites on Protein Surfaces for Rational Elaboration of Synthetic Protein Mimics. Torner JM, Yang Y, Rooklin D, Zhang Y, Arora PS. ACS Chem Biol 16 1179-1183 (2021)
  28. Rigorous Computational and Experimental Investigations on MDM2/MDMX-Targeted Linear and Macrocyclic Peptides. Diller DJ, Swanson J, Bayden AS, Brown CJ, Thean D, Lane DP, Partridge AW, Sawyer TK, Audie J. Molecules 24 E4586 (2019)
  29. The MDMX Acidic Domain Uses Allovalency to Bind Both p53 and MDMX. Fenton M, Borcherds W, Chen L, Anbanandam A, Levy R, Chen J, Daughdrill G. J Mol Biol 434 167844 (2022)
  30. Application of In Silico Filtering and Isothermal Titration Calorimetry for the Discovery of Small Molecule Inhibitors of MDM2. Alali H, Bloch I, Rapaport I, Rodrigues L, Sher I, Ansbacher T, Gal M. Pharmaceuticals (Basel) 15 752 (2022)
  31. Synthesis of Amino Acids Bearing Halodifluoromethyl Moieties and Their Application to p53-Derived Peptides Binding to Mdm2/Mdm4. Vaas S, Zimmermann MO, Klett T, Boeckler FM. Drug Des Devel Ther 17 1247-1274 (2023)
  32. Traceless solid-phase synthesis and β-turn propensity of 1,3-thiazole-based peptidomimetics. Abdildinova A, Gong YD. RSC Adv 11 1050-1056 (2020)


Reviews citing this publication (31)

  1. The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches. Joerger AC, Fersht AR. Annu Rev Biochem 85 375-404 (2016)
  2. Translating p53 into the clinic. Cheok CF, Verma CS, Baselga J, Lane DP. Nat Rev Clin Oncol 8 25-37 (2011)
  3. Pathological unfoldomics of uncontrolled chaos: intrinsically disordered proteins and human diseases. Uversky VN, Davé V, Iakoucheva LM, Malaney P, Metallo SJ, Pathak RR, Joerger AC. Chem Rev 114 6844-6879 (2014)
  4. The Roles of MDM2 and MDMX in Cancer. Karni-Schmidt O, Lokshin M, Prives C. Annu Rev Pathol 11 617-644 (2016)
  5. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. Tisato V, Voltan R, Gonelli A, Secchiero P, Zauli G. J Hematol Oncol 10 133 (2017)
  6. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Wade M, Wahl GM. Mol Cancer Res 7 1-11 (2009)
  7. Functional advantages of dynamic protein disorder. Berlow RB, Dyson HJ, Wright PE. FEBS Lett 589 2433-2440 (2015)
  8. p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure-Function Continuum Concept. Uversky VN. Int J Mol Sci 17 E1874 (2016)
  9. Fine-tuning multiprotein complexes using small molecules. Thompson AD, Dugan A, Gestwicki JE, Mapp AK. ACS Chem Biol 7 1311-1320 (2012)
  10. p53 N-terminal phosphorylation: a defining layer of complex regulation. Jenkins LM, Durell SR, Mazur SJ, Appella E. Carcinogenesis 33 1441-1449 (2012)
  11. The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. Popowicz GM, Dömling A, Holak TA. Angew Chem Int Ed Engl 50 2680-2688 (2011)
  12. The Transactivation Domains of the p53 Protein. Raj N, Attardi LD. Cold Spring Harb Perspect Med 7 a026047 (2017)
  13. Small-molecule inhibitors of MDM2 as new anticancer therapeutics. Dickens MP, Fitzgerald R, Fischer PM. Semin Cancer Biol 20 10-18 (2010)
  14. Alterations of p63 and p73 in human cancers. Inoue K, Fry EA. Subcell Biochem 85 17-40 (2014)
  15. Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011-present). Zak K, Pecak A, Rys B, Wladyka B, Dömling A, Weber L, Holak TA, Dubin G. Expert Opin Ther Pat 23 425-448 (2013)
  16. Targeting the ubiquitin-mediated proteasome degradation of p53 for cancer therapy. Devine T, Dai MS. Curr Pharm Des 19 3248-3262 (2013)
  17. The long and the short of it: the MDM4 tail so far. Haupt S, Mejía-Hernández JO, Vijayakumaran R, Keam SP, Haupt Y. J Mol Cell Biol 11 231-244 (2019)
  18. Mechanisms of environmental chemicals that enable the cancer hallmark of evasion of growth suppression. Nahta R, Al-Mulla F, Al-Temaimi R, Amedei A, Andrade-Vieira R, Bay SN, Brown DG, Calaf GM, Castellino RC, Cohen-Solal KA, Colacci A, Cruickshanks N, Dent P, Di Fiore R, Forte S, Goldberg GS, Hamid RA, Krishnan H, Laird DW, Lasfar A, Marignani PA, Memeo L, Mondello C, Naus CC, Ponce-Cusi R, Raju J, Roy D, Roy R, Ryan EP, Salem HK, Scovassi AI, Singh N, Vaccari M, Vento R, Vondráček J, Wade M, Woodrick J, Bisson WH. Carcinogenesis 36 Suppl 1 S2-18 (2015)
  19. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction. Lemos A, Leão M, Soares J, Palmeira A, Pinto M, Saraiva L, Sousa ME. Med Res Rev 36 789-844 (2016)
  20. Targeting the ubiquitin-proteasome system to activate wild-type p53 for cancer therapy. Allende-Vega N, Saville MK. Semin Cancer Biol 20 29-39 (2010)
  21. Patented inhibitors of p53-Mdm2 interaction (2006 - 2008). Weber L. Expert Opin Ther Pat 20 179-191 (2010)
  22. p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks. Lieberman HB, Panigrahi SK, Hopkins KM, Wang L, Broustas CG. Radiat Res 187 424-432 (2017)
  23. Targeting the Ubiquitin System in Glioblastoma. Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Front Oncol 10 574011 (2020)
  24. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them? Haronikova L, Bonczek O, Zatloukalova P, Kokas-Zavadil F, Kucerikova M, Coates PJ, Fahraeus R, Vojtesek B. Cell Mol Biol Lett 26 53 (2021)
  25. Targeting MDMX for Cancer Therapy: Rationale, Strategies, and Challenges. Yu DH, Xu ZY, Mo S, Yuan L, Cheng XD, Qin JJ. Front Oncol 10 1389 (2020)
  26. Targeting the MDM2-p53 pathway in dedifferentiated liposarcoma. Traweek RS, Cope BM, Roland CL, Keung EZ, Nassif EF, Erstad DJ. Front Oncol 12 1006959 (2022)
  27. Current strategies and progress for targeting the "undruggable" transcription factors. Zhuang JJ, Liu Q, Wu DL, Tie L. Acta Pharmacol Sin 43 2474-2481 (2022)
  28. MDM4 alternative splicing and implication in MDM4 targeted cancer therapies. Wu J, Lu G, Wang X. Am J Cancer Res 11 5864-5880 (2021)
  29. Therapeutic Strategies to Activate p53. Aguilar A, Wang S. Pharmaceuticals (Basel) 16 24 (2022)
  30. Peptide-based covalent inhibitors of protein-protein interactions. Paulussen FM, Grossmann TN. J Pept Sci 29 e3457 (2023)
  31. Dynamic structures of intrinsically disordered proteins related to the general transcription factor TFIIH, nucleosomes, and histone chaperones. Okuda M, Tsunaka Y, Nishimura Y. Biophys Rev 14 1449-1472 (2022)

Articles citing this publication (57)

  1. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. Biochim Biophys Acta 1804 996-1010 (2010)
  2. The MDM2-p53 pathway revisited. Nag S, Qin J, Srivenugopal KS, Wang M, Zhang R. J Biomed Res 27 254-271 (2013)
  3. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Pazgier M, Liu M, Liu M, Zou G, Yuan W, Li C, Li C, Li J, Monbo J, Zella D, Tarasov SG, Lu W. Proc Natl Acad Sci U S A 106 4665-4670 (2009)
  4. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Bernal F, Wade M, Godes M, Davis TN, Whitehead DG, Kung AL, Wahl GM, Walensky LD. Cancer Cell 18 411-422 (2010)
  5. Identification and characterization of the first small molecule inhibitor of MDMX. Reed D, Shen Y, Shelat AA, Arnold LA, Ferreira AM, Zhu F, Mills N, Smithson DC, Regni CA, Bashford D, Cicero SA, Schulman BA, Jochemsen AG, Guy RK, Dyer MA. J Biol Chem 285 10786-10796 (2010)
  6. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Graves B, Thompson T, Xia M, Janson C, Lukacs C, Deo D, Di Lello P, Fry D, Garvie C, Huang KS, Gao L, Tovar C, Lovey A, Wanner J, Vassilev LT. Proc Natl Acad Sci U S A 109 11788-11793 (2012)
  7. In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. Ji Y, Majumder S, Millard M, Borra R, Bi T, Elnagar AY, Neamati N, Shekhtman A, Camarero JA. J Am Chem Soc 135 11623-11633 (2013)
  8. Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation. Feng H, Jenkins LM, Durell SR, Hayashi R, Mazur SJ, Cherry S, Tropea JE, Miller M, Wlodawer A, Appella E, Bai Y. Structure 17 202-210 (2009)
  9. Systematic mutational analysis of peptide inhibition of the p53-MDM2/MDMX interactions. Li C, Pazgier M, Li C, Yuan W, Liu M, Liu M, Wei G, Lu WY, Lu W. J Mol Biol 398 200-213 (2010)
  10. Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists. Koes D, Khoury K, Huang Y, Wang W, Bista M, Bista M, Popowicz GM, Wolf S, Holak TA, Dömling A, Camacho CJ. PLoS One 7 e32839 (2012)
  11. Intrinsically disordered regions of p53 family are highly diversified in evolution. Xue B, Brown CJ, Dunker AK, Uversky VN. Biochim Biophys Acta 1834 725-738 (2013)
  12. Inhibitors of the p53/hdm2 protein-protein interaction-path to the clinic. Carry JC, Garcia-Echeverria C. Bioorg Med Chem Lett 23 2480-2485 (2013)
  13. Beta-peptides with improved affinity for hDM2 and hDMX. Harker EA, Daniels DS, Guarracino DA, Schepartz A. Bioorg Med Chem 17 2038-2046 (2009)
  14. Casein kinase 1α regulates an MDMX intramolecular interaction to stimulate p53 binding. Wu S, Chen L, Becker A, Schonbrunn E, Chen J. Mol Cell Biol 32 4821-4832 (2012)
  15. MDMX contains an autoinhibitory sequence element. Bista M, Petrovich M, Fersht AR. Proc Natl Acad Sci U S A 110 17814-17819 (2013)
  16. p53 transactivation and the impact of mutations, cofactors and small molecules using a simplified yeast-based screening system. Andreotti V, Ciribilli Y, Monti P, Bisio A, Lion M, Jordan J, Fronza G, Menichini P, Resnick MA, Inga A. PLoS One 6 e20643 (2011)
  17. Exhaustive fluorine scanning toward potent p53-Mdm2 antagonists. Huang Y, Wolf S, Koes D, Popowicz GM, Camacho CJ, Holak TA, Dömling A. ChemMedChem 7 49-52 (2012)
  18. Characterization of the p300 Taz2-p53 TAD2 complex and comparison with the p300 Taz2-p53 TAD1 complex. Miller Jenkins LM, Feng H, Durell SR, Tagad HD, Mazur SJ, Tropea JE, Bai Y, Appella E. Biochemistry 54 2001-2010 (2015)
  19. Transient protein states in designing inhibitors of the MDM2-p53 interaction. Bista M, Wolf S, Khoury K, Kowalska K, Huang Y, Wrona E, Arciniega M, Popowicz GM, Holak TA, Dömling A. Structure 21 2143-2151 (2013)
  20. MDM4 (MDMX) and its Transcript Variants. Mancini F, Di Conza G, Moretti F. Curr Genomics 10 42-50 (2009)
  21. Estrogen receptor alpha (ERα/ESR1) mediates the p53-independent overexpression of MDM4/MDMX and MDM2 in human breast cancer. Swetzig WM, Wang J, Das GM. Oncotarget 7 16049-16069 (2016)
  22. Anomalous Dense Liquid Condensates Host the Nucleation of Tumor Suppressor p53 Fibrils. Safari MS, Wang Z, Tailor K, Kolomeisky AB, Conrad JC, Vekilov PG. iScience 12 342-355 (2019)
  23. Functional Diversification after Gene Duplication: Paralog Specific Regions of Structural Disorder and Phosphorylation in p53, p63, and p73. Dos Santos HG, Nunez-Castilla J, Siltberg-Liberles J. PLoS One 11 e0151961 (2016)
  24. Probing Origin of Binding Difference of inhibitors to MDM2 and MDMX by Polarizable Molecular Dynamics Simulation and QM/MM-GBSA Calculation. Chen J, Wang J, Zhang Q, Chen K, Zhu W. Sci Rep 5 17421 (2015)
  25. Design of protein-protein interaction inhibitors based on protein epitope mimetics. Robinson JA. Chembiochem 10 971-973 (2009)
  26. Functional analysis and consequences of Mdm2 E3 ligase inhibition in human tumor cells. Wade M, Li YC, Matani AS, Braun SM, Milanesi F, Rodewald LW, Wahl GM. Oncogene 31 4789-4797 (2012)
  27. Designer macrocyclic organo-peptide hybrids inhibit the interaction between p53 and HDM2/X by accommodating a functional α-helix. Smith JM, Frost JR, Fasan R. Chem Commun (Camb) 50 5027-5030 (2014)
  28. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms. Brown CJ, Dastidar SG, Quah ST, Lim A, Chia B, Verma CS. PLoS One 6 e24122 (2011)
  29. Competitive binding between dynamic p53 transactivation subdomains to human MDM2 protein: implications for regulating the p53·MDM2/MDMX interaction. Shan B, Li DW, Brüschweiler-Li L, Brüschweiler R. J Biol Chem 287 30376-30384 (2012)
  30. p53 promotes its own polyubiquitination by enhancing the HDM2 and HDMX interaction. Medina-Medina I, Martínez-Sánchez M, Hernández-Monge J, Fahraeus R, Muller P, Olivares-Illana V. Protein Sci 27 976-986 (2018)
  31. Structure of human MDM4 N-terminal domain bound to a single-domain antibody. Yu GW, Vaysburd M, Allen MD, Settanni G, Fersht AR. J Mol Biol 385 1578-1589 (2009)
  32. 5-Deazaflavin derivatives as inhibitors of p53 ubiquitination by HDM2. Dickens MP, Roxburgh P, Hock A, Mezna M, Kellam B, Vousden KH, Fischer PM. Bioorg Med Chem 21 6868-6877 (2013)
  33. Intracellular displacement of p53 using transactivation domain (p53 TAD) specific nanobodies. Steels A, Verhelle A, Zwaenepoel O, Gettemans J. MAbs 10 1045-1059 (2018)
  34. Simulating molecular mechanisms of the MDM2-mediated regulatory interactions: a conformational selection model of the MDM2 lid dynamics. Verkhivker GM. PLoS One 7 e40897 (2012)
  35. Structural basis of how stress-induced MDMX phosphorylation activates p53. Chen X, Gohain N, Zhan C, Lu WY, Pazgier M, Lu W. Oncogene 35 1919-1925 (2016)
  36. Protein grafting of p53TAD onto a leucine zipper scaffold generates a potent HDM dual inhibitor. Lee JH, Kang E, Lee J, Kim J, Lee KH, Han J, Kang HY, Ahn S, Oh Y, Shin D, Hur K, Chae SY, Song PH, Kim YI, Park JC, Lee JI. Nat Commun 5 3814 (2014)
  37. Real-time and simultaneous monitoring of the phosphorylation and enhanced interaction of p53 and XPC acidic domains with the TFIIH p62 subunit. Okuda M, Nishimura Y. Oncogenesis 4 e150 (2015)
  38. Structure-activity studies of Mdm2/Mdm4-binding stapled peptides comprising non-natural amino acids. Chee SMQ, Wongsantichon J, Siau J, Thean D, Ferrer F, Robinson RC, Lane DP, Brown CJ, Ghadessy FJ. PLoS One 12 e0189379 (2017)
  39. Benzimidazole-2-one: a novel anchoring principle for antagonizing p53-Mdm2. Wang W, Cao H, Wolf S, Camacho-Horvitz MS, Holak TA, Dömling A. Bioorg Med Chem 21 3982-3995 (2013)
  40. Calculation of hot spots for protein-protein interaction in p53/PMI-MDM2/MDMX complexes. Huang D, Qi Y, Song J, Zhang JZH. J Comput Chem 40 1045-1056 (2019)
  41. Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx. Bharatham N, Finch KE, Min J, Mayasundari A, Dyer MA, Guy RK, Bashford D. J Mol Graph Model 74 54-60 (2017)
  42. The Increased Level of Serum p53 in Hepatitis B-Associated Liver Cirrhosis. Shahnazari P, Sayehmiri K, Minuchehr Z, Parhizkar A, Poustchi H, Montazeri G, Mohamadkhani A. Iran J Med Sci 39 446-451 (2014)
  43. Dynamics of the Extended String-Like Interaction of TFIIE with the p62 Subunit of TFIIH. Okuda M, Higo J, Komatsu T, Konuma T, Sugase K, Nishimura Y. Biophys J 111 950-962 (2016)
  44. Hitting on the move: Targeting intrinsically disordered protein states of the MDM2-p53 interaction. Neochoritis CG, Atmaj J, Twarda-Clapa A, Surmiak E, Skalniak L, Köhler LM, Muszak D, Kurpiewska K, Kalinowska-Tłuścik J, Beck B, Holak TA, Dömling A. Eur J Med Chem 182 111588 (2019)
  45. MDM2/MDMX inhibitor peptide: WO2008106507. Macchiarulo A, Pellicciari R. Expert Opin Ther Pat 19 721-726 (2009)
  46. Targeting the conformational transitions of MDM2 and MDMX: insights into key residues affecting p53 recognition. Carotti A, Macchiarulo A, Giacchè N, Pellicciari R. Proteins 77 524-535 (2009)
  47. A spatiotemporal characterization of the effect of p53 phosphorylation on its interaction with MDM2. ElSawy KM, Sim A, Lane DP, Verma CS, Caves LS. Cell Cycle 14 179-188 (2015)
  48. Searching for Dual Inhibitors of the MDM2-p53 and MDMX-p53 Protein-Protein Interaction by a Scaffold-Hopping Approach. Zaytsev A, Dodd B, Magnani M, Ghiron C, Golding BT, Griffin RJ, Liu J, Lu X, Micco I, Newell DR, Padova A, Robertson G, Lunec J, Hardcastle IR. Chem Biol Drug Des 86 180-189 (2015)
  49. Bridged Analogues for p53-Dependent Cancer Therapy Obtained by S-Alkylation. Micewicz ED, Sharma S, Waring AJ, Luong HT, McBride WH, Ruchala P. Int J Pept Res Ther 22 67-81 (2016)
  50. Designing dual inhibitors of Mdm2/MdmX: Unexpected coupling of water with gatekeeper Y100/99. Lee XA, Verma C, Sim AYL. Proteins 85 1493-1506 (2017)
  51. miR‑205 suppresses cell migration, invasion and EMT of colon cancer by targeting mouse double minute 4. Fan Y, Wang K. Mol Med Rep 22 633-642 (2020)
  52. Screening ubiquitin specific protease activities using chemically synthesized ubiquitin and ubiquitinated peptides. Bacchi M, Fould B, Jullian M, Kreiter A, Maurras A, Nosjean O, Coursindel T, Puget K, Ferry G, Boutin JA. Anal Biochem 519 57-70 (2017)
  53. Understanding the interaction of 14-3-3 proteins with hDMX and hDM2: a structural and biophysical study. Srdanović S, Wolter M, Trinh CH, Ottmann C, Warriner SL, Wilson AJ. FEBS J 289 5341-5358 (2022)
  54. Disorder for Dummies: Functional Mutagenesis of Transient Helical Segments in Disordered Proteins. Daughdrill GW. Methods Mol Biol 2141 3-20 (2020)
  55. Simultaneous measurement of p53:Mdm2 and p53:Mdm4 protein-protein interactions in whole cells using fluorescence labelled foci. Frosi Y, Inoue K, Ramlan SR, Lane DP, Watanabe T, Brown CJ. Sci Rep 9 17933 (2019)
  56. p53: balancing tumour suppression and implications for the clinic. Buganim Y, Rotter V. Eur J Cancer 45 Suppl 1 217-234 (2009)
  57. Identification of a Structural Determinant for Selective Targeting of HDMX. Ben-Nun Y, Seo HS, Harvey EP, Hauseman ZJ, Wales TE, Newman CE, Cathcart AM, Engen JR, Dhe-Paganon S, Walensky LD. Structure 28 847-857.e5 (2020)