3d0n Citations

Crystal structure of human carbonic anhydrase XIII and its complex with the inhibitor acetazolamide.

Abstract

The cytosolic isoform XIII is a recently discovered member of the human carbonic anhydrase (hCA, EC 4.2.1.1) family. It is selectively expressed among other tissues in the reproductive organs, where it may control pH and ion balance regulation, ensuring thus proper fertilization conditions. The authors report here the X-ray crystallographic structure of this isozyme in the unbound state and in complex with a classical sulfonamide inhibitor, namely acetazolamide. A detailed comparison of the obtained structural data with those already reported for other CA isozymes provides novel insights into the catalytic properties of the members of this protein family. On the basis of the inhibitory properties of acetazolamide against various cytosolic/transmembrane isoforms and the structural differences detected within the active site of the various CA isoforms, further prospects for the design of isozyme-specific CA inhibitors are here proposed.

Reviews - 3d0n mentioned but not cited (1)

  1. Crystallography and Its Impact on Carbonic Anhydrase Research. Lomelino CL, Andring JT, McKenna R. Int J Med Chem 2018 9419521 (2018)

Articles - 3d0n mentioned but not cited (2)

  1. Insights towards sulfonamide drug specificity in α-carbonic anhydrases. Aggarwal M, Kondeti B, McKenna R. Bioorg Med Chem 21 1526-1533 (2013)
  2. Exploration of the residues modulating the catalytic features of human carbonic anhydrase XIII by a site-specific mutagenesis approach. De Simone G, Di Fiore A, Truppo E, Langella E, Vullo D, Supuran CT, Monti SM. J Enzyme Inhib Med Chem 34 1506-1510 (2019)


Reviews citing this publication (12)

  1. Structure-based drug discovery of carbonic anhydrase inhibitors. Supuran CT. J Enzyme Inhib Med Chem 27 759-772 (2012)
  2. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? Capasso C, Supuran CT. J Enzyme Inhib Med Chem 30 325-332 (2015)
  3. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Capasso C, Supuran CT. Expert Opin Ther Targets 19 1689-1704 (2015)
  4. Exploiting the hydrophobic and hydrophilic binding sites for designing carbonic anhydrase inhibitors. De Simone G, Alterio V, Supuran CT. Expert Opin Drug Discov 8 793-810 (2013)
  5. Structure, function and applications of carbonic anhydrase isozymes. Imtaiyaz Hassan M, Shajee B, Waheed A, Ahmad F, Sly WS. Bioorg Med Chem 21 1570-1582 (2013)
  6. Structural annotation of human carbonic anhydrases. Aggarwal M, Boone CD, Kondeti B, McKenna R. J Enzyme Inhib Med Chem 28 267-277 (2013)
  7. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. J Enzyme Inhib Med Chem 36 561-580 (2021)
  8. Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment. Angeli A, Carta F, Nocentini A, Winum JY, Zalubovskis R, Akdemir A, Onnis V, Eldehna WM, Capasso C, Simone G, Monti SM, Carradori S, Donald WA, Dedhar S, Supuran CT. Metabolites 10 E412 (2020)
  9. Carbonic anhydrase inhibitors: a review on the progress of patent literature (2011-2016). Lomelino C, McKenna R. Expert Opin Ther Pat 26 947-956 (2016)
  10. Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. Monti DM, De Simone G, Langella E, Supuran CT, Di Fiore A, Monti SM. J Enzyme Inhib Med Chem 32 5-12 (2017)
  11. Carbonic anhydrases as disease markers. Zamanova S, Shabana AM, Mondal UK, Ilies MA. Expert Opin Ther Pat 29 509-533 (2019)
  12. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Linkuvienė V, Zubrienė A, Manakova E, Petrauskas V, Baranauskienė L, Zakšauskas A, Smirnov A, Gražulis S, Ladbury JE, Matulis D. Q Rev Biophys 51 e10 (2018)

Articles citing this publication (36)

  1. Crystal structure of the catalytic domain of the tumor-associated human carbonic anhydrase IX. Alterio V, Hilvo M, Di Fiore A, Supuran CT, Pan P, Parkkila S, Scaloni A, Pastorek J, Pastorekova S, Pedone C, Scozzafava A, Monti SM, De Simone G. Proc Natl Acad Sci U S A 106 16233-16238 (2009)
  2. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Carta F, Aggarwal M, Maresca A, Scozzafava A, McKenna R, Supuran CT. Chem Commun (Camb) 48 1868-1870 (2012)
  3. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. De Simone G, Monti SM, Alterio V, Buonanno M, De Luca V, Rossi M, Carginale V, Supuran CT, Capasso C, Di Fiore A. Bioorg Med Chem Lett 25 2002-2006 (2015)
  4. Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant Enterococcus. Kaur J, Cao X, Abutaleb NS, Elkashif A, Graboski AL, Krabill AD, AbdelKhalek AH, An W, Bhardwaj A, Seleem MN, Flaherty DP. J Med Chem 63 9540-9562 (2020)
  5. Conformational variability of different sulfonamide inhibitors with thienyl-acetamido moieties attributes to differential binding in the active site of cytosolic human carbonic anhydrase isoforms. Biswas S, Aggarwal M, Güzel Ö, Scozzafava A, McKenna R, Supuran CT. Bioorg Med Chem 19 3732-3738 (2011)
  6. Protonography, a technique applicable for the analysis of η-carbonic anhydrase activity. Del Prete S, De Luca V, Supuran CT, Capasso C. J Enzyme Inhib Med Chem 30 920-924 (2015)
  7. 5- and 6-membered (thio)lactones are prodrug type carbonic anhydrase inhibitors. Carta F, Maresca A, Scozzafava A, Supuran CT. Bioorg Med Chem Lett 22 267-270 (2012)
  8. Structure-Activity Relationship Studies of Acetazolamide-Based Carbonic Anhydrase Inhibitors with Activity against Neisseria gonorrhoeae. Hewitt CS, Abutaleb NS, Elhassanny AEM, Nocentini A, Cao X, Amos DP, Youse MS, Holly KJ, Marapaka AK, An W, Kaur J, Krabill AD, Elkashif A, Elgammal Y, Graboski AL, Supuran CT, Seleem MN, Flaherty DP. ACS Infect Dis 7 1969-1984 (2021)
  9. Structural studies of β-carbonic anhydrase from the green alga Coccomyxa: inhibitor complexes with anions and acetazolamide. Huang S, Hainzl T, Grundström C, Forsman C, Samuelsson G, Sauer-Eriksson AE. PLoS One 6 e28458 (2011)
  10. A substituted sulfonamide and its Co (II), Cu (II), and Zn (II) complexes as potential antifungal agents. Diaz JR, Fernández Baldo M, Echeverría G, Baldoni H, Vullo D, Soria DB, Supuran CT, Camí GE. J Enzyme Inhib Med Chem 31 51-62 (2016)
  11. Carbonic anhydrase inhibitors: two-prong versus mono-prong inhibitors of isoforms I, II, IX, and XII exemplified by photochromic cis-1,2-alpha-dithienylethene derivatives. Vomasta D, Innocenti A, König B, Supuran CT. Bioorg Med Chem Lett 19 1283-1286 (2009)
  12. Carbonic anhydrase II-induced selection of inhibitors from a dynamic combinatorial library of Schiff's bases. Nasr G, Petit E, Supuran CT, Winum JY, Barboiu M. Bioorg Med Chem Lett 19 6014-6017 (2009)
  13. Carbonic anhydrase inhibitors. Aromatic/heterocyclic sulfonamides incorporating phenacetyl, pyridylacetyl and thienylacetyl tails act as potent inhibitors of human mitochondrial isoforms VA and VB. Güzel O, Innocenti A, Scozzafava A, Salman A, Supuran CT. Bioorg Med Chem 17 4894-4899 (2009)
  14. Analysis of a shortened form of human carbonic anhydrase VII expressed in vitro compared to the full-length enzyme. Bootorabi F, Jänis J, Smith E, Waheed A, Kukkurainen S, Hytönen V, Valjakka J, Supuran CT, Vullo D, Sly WS, Parkkila S. Biochimie 92 1072-1080 (2010)
  15. Carbonic anhydrase inhibitors. Inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with branched aliphatic/aromatic carboxylates and their derivatives. Carta F, Innocenti A, Hall RA, Mühlschlegel FA, Scozzafava A, Supuran CT. Bioorg Med Chem Lett 21 2521-2526 (2011)
  16. Intrinsic thermodynamics of ethoxzolamide inhibitor binding to human carbonic anhydrase XIII. Baranauskienė L, Matulis D. BMC Biophys 5 12 (2012)
  17. A class of sulfonamides as carbonic anhydrase I and II inhibitors. Gokcen T, Gulcin I, Ozturk T, Goren AC. J Enzyme Inhib Med Chem 31 180-188 (2016)
  18. New superacid synthesized (fluorinated) tertiary benzenesulfonamides acting as selective hCA IX inhibitors: toward a new mode of carbonic anhydrase inhibition by sulfonamides. Métayer B, Mingot A, Vullo D, Supuran CT, Thibaudeau S. Chem Commun (Camb) 49 6015-6017 (2013)
  19. X-ray crystallographic and kinetic investigations of 6-sulfamoyl-saccharin as a carbonic anhydrase inhibitor. Alterio V, Tanc M, Ivanova J, Zalubovskis R, Vozny I, Monti SM, Di Fiore A, De Simone G, Supuran CT. Org Biomol Chem 13 4064-4069 (2015)
  20. Cloning, characterization and anion inhibition studies of a new γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. De Luca V, Vullo D, Del Prete S, Carginale V, Scozzafava A, Osman SM, AlOthman Z, Supuran CT, Capasso C. Bioorg Med Chem 23 4405-4409 (2015)
  21. The first example of a significant active site conformational rearrangement in a carbonic anhydrase-inhibitor adduct: the carbonic anhydrase I-topiramate complex. Alterio V, Monti SM, Truppo E, Pedone C, Supuran CT, De Simone G. Org Biomol Chem 8 3528-3533 (2010)
  22. Carbonic anhydrase inhibitors. Phenacetyl-, pyridylacetyl- and thienylacetyl-substituted aromatic sulfonamides act as potent and selective isoform VII inhibitors. Güzel O, Innocenti A, Scozzafava A, Salman A, Supuran CT. Bioorg Med Chem Lett 19 3170-3173 (2009)
  23. In Vivo Evaluation of Selective Carbonic Anhydrase Inhibitors as Potential Anticonvulsant Agents. Bruno E, Buemi MR, De Luca L, Ferro S, Monforte AM, Supuran CT, Vullo D, De Sarro G, Russo E, Gitto R. ChemMedChem 11 1812-1818 (2016)
  24. Expression profile of carbonic anhydrases in articular cartilage. Schultz M, Jin W, Waheed A, Moed BR, Sly W, Zhang Z. Histochem Cell Biol 136 145-151 (2011)
  25. Superacid synthesized tertiary benzenesulfonamides and benzofuzed sultams act as selective hCA IX inhibitors: toward understanding a new mode of inhibition by tertiary sulfonamides. Métayer B, Martin-Mingot A, Vullo D, Supuran CT, Thibaudeau S. Org Biomol Chem 11 7540-7549 (2013)
  26. Inhibition studies of new ureido-substituted sulfonamides incorporating a GABA moiety against human carbonic anhydrase isoforms I-XIV. Ceruso M, Antel S, Vullo D, Scozzafava A, Supuran CT. Bioorg Med Chem 22 6768-6775 (2014)
  27. Evolution and diversity of alpha-carbonic anhydrases in the mantle of the Mediterranean mussel (Mytilus galloprovincialis). Cardoso JCR, Ferreira V, Zhang X, Anjos L, Félix RC, Batista FM, Power DM. Sci Rep 9 10400 (2019)
  28. A failed tentative to design a super carbonic anhydrase having the biochemical properties of the most thermostable CA (SspCA) and the fastest (SazCA) enzymes. De Luca V, Del Prete S, Carginale V, Vullo D, Supuran CT, Capasso C. J Enzyme Inhib Med Chem 30 989-994 (2015)
  29. Synthesis and biological profile of new 1,2,3,4-tetrahydroisoquinolines as selective carbonic anhydrase inhibitors. Gitto R, Damiano FM, De Luca L, Ferro S, Vullo D, Supuran CT, Chimirri A. Bioorg Med Chem 19 7003-7007 (2011)
  30. A new probe for detecting zinc-bound carbonic anhydrase in cell lysates and cells. Mehta R, Qureshi MH, Purchal MK, Greer SM, Gong S, Ngo C, Que EL. Chem Commun (Camb) 54 5442-5445 (2018)
  31. Estrogen and progesterone differentially regulate carbonic anhydrase II, III, IX, XII, and XIII in ovariectomized rat uteri. Karim K, Giribabu N, Muniandy S, Salleh N. Syst Biol Reprod Med 62 57-68 (2016)
  32. Novel insights on saccharin- and acesulfame-based carbonic anhydrase inhibitors: design, synthesis, modelling investigations and biological activity evaluation. Guglielmi P, Guglielmi P, Rotondi G, Secci D, Angeli A, Chimenti P, Nocentini A, Bonardi A, Gratteri P, Carradori S, Supuran CT. J Enzyme Inhib Med Chem 35 1891-1905 (2020)
  33. Salts of 5-amino-2-sulfonamide-1,3,4-thiadiazole, a structural and analog of acetazolamide, show interesting carbonic anhydrase inhibitory properties, diuretic, and anticonvulsant action. Diaz JR, Camí GE, Liu-González M, Vega DR, Vullo D, Juárez A, Pedregosa JC, Supuran CT. J Enzyme Inhib Med Chem 31 1102-1110 (2016)
  34. Acipimox inhibits human carbonic anhydrases. Mori M, Supuran CT. J Enzyme Inhib Med Chem 37 672-679 (2022)
  35. Role of Non-Covalent Interactions in Carbonic Anhydrase I-Topiramate Complex Based on QM/MM Approach. Wojtkowiak K, Jezierska A. Pharmaceuticals (Basel) 16 479 (2023)
  36. Synthesis of Sulfonamides Incorporating Piperidinyl-Hydrazidoureido and Piperidinyl-Hydrazidothioureido Moieties and Their Carbonic Anhydrase I, II, IX and XII Inhibitory Activity. Moi D, Deplano A, Angeli A, Balboni G, Supuran CT, Onnis V. Molecules 27 5370 (2022)


Related citations provided by authors (1)

  1. Refined structure of human carbonic anhydrase II at 2.0 A resolution.. Eriksson AE, Jones TA, Liljas A Proteins 4 274-282 (1988)