3cyf Citations

Cysteine pKa depression by a protonated glutamic acid in human DJ-1.

Biochemistry 47 7430-40 (2008)
Related entries: 2or3, 3cy6, 3cz9, 3cza

Cited: 69 times
EuropePMC logo PMID: 18570440

Abstract

Human DJ-1, a disease-associated protein that protects cells from oxidative stress, contains an oxidation-sensitive cysteine (C106) that is essential for its cytoprotective activity. The origin of C106 reactivity is obscure, due in part to the absence of an experimentally determined p K a value for this residue. We have used atomic-resolution X-ray crystallography and UV spectroscopy to show that C106 has a depressed p K a of 5.4 +/- 0.1 and that the C106 thiolate accepts a hydrogen bond from a protonated glutamic acid side chain (E18). X-ray crystal structures and cysteine p K a analysis of several site-directed substitutions at residue 18 demonstrate that the protonated carboxylic acid side chain of E18 is required for the maximal stabilization of the C106 thiolate. A nearby arginine residue (R48) participates in a guanidinium stacking interaction with R28 from the other monomer in the DJ-1 dimer and elevates the p K a of C106 by binding an anion that electrostatically suppresses thiol ionization. Our results show that the ionizable residues (E18, R48, and R28) surrounding C106 affect its p K a in a way that is contrary to expectations based on the typical ionization behavior of glutamic acid and arginine. Lastly, a search of the Protein Data Bank (PDB) produces several candidate hydrogen-bonded aspartic/glutamic acid-cysteine interactions, which we propose are particularly common in the DJ-1 superfamily.

Articles - 3cyf mentioned but not cited (1)

  1. Cysteine pKa depression by a protonated glutamic acid in human DJ-1. Witt AC, Lakshminarasimhan M, Remington BC, Hasim S, Pozharski E, Wilson MA. Biochemistry 47 7430-7440 (2008)


Reviews citing this publication (16)

  1. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Paulsen CE, Carroll KS. Chem Rev 113 4633-4679 (2013)
  2. DJ-1 and prevention of oxidative stress in Parkinson's disease and other age-related disorders. Kahle PJ, Waak J, Gasser T. Free Radic Biol Med 47 1354-1361 (2009)
  3. The role of cysteine oxidation in DJ-1 function and dysfunction. Wilson MA. Antioxid Redox Signal 15 111-122 (2011)
  4. Sulfenic acid chemistry, detection and cellular lifetime. Gupta V, Carroll KS. Biochim Biophys Acta 1840 847-875 (2014)
  5. The redox biochemistry of protein sulfenylation and sulfinylation. Lo Conte M, Carroll KS. J Biol Chem 288 26480-26488 (2013)
  6. Cysteine oxidative posttranslational modifications: emerging regulation in the cardiovascular system. Chung HS, Wang SB, Venkatraman V, Murray CI, Van Eyk JE. Circ Res 112 382-392 (2013)
  7. Protein sulfenic acid formation: from cellular damage to redox regulation. Roos G, Messens J. Free Radic Biol Med 51 314-326 (2011)
  8. Understanding the pK(a) of redox cysteines: the key role of hydrogen bonding. Roos G, Foloppe N, Messens J. Antioxid Redox Signal 18 94-127 (2013)
  9. Redox Signaling by Reactive Electrophiles and Oxidants. Parvez S, Long MJC, Poganik JR, Aye Y. Chem Rev 118 8798-8888 (2018)
  10. Cysteine-mediated redox signalling in the mitochondria. Bak DW, Weerapana E. Mol Biosyst 11 678-697 (2015)
  11. Oxidized DJ-1 as a possible biomarker of Parkinson's disease. Saito Y. J Clin Biochem Nutr 54 138-144 (2014)
  12. Aging--RNA in development and disease. Cookson MR. Wiley Interdiscip Rev RNA 3 133-143 (2012)
  13. Redox regulation of cysteine-dependent enzymes. Guttmann RP. J Anim Sci 88 1297-1306 (2010)
  14. DJ-1: A promising therapeutic candidate for ischemia-reperfusion injury. De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. Redox Biol 41 101884 (2021)
  15. Catalytic activity regulation through post-translational modification: the expanding universe of protein diversity. Kokkinidis M, Glykos NM, Fadouloglou VE. Adv Protein Chem Struct Biol 122 97-125 (2020)
  16. Cysteine Oxidation in Proteins: Structure, Biophysics, and Simulation. Garrido Ruiz D, Sandoval-Perez A, Rangarajan AV, Gunderson EL, Jacobson MP. Biochemistry 61 2165-2176 (2022)

Articles citing this publication (52)

  1. Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA. J Biol Chem 284 6476-6485 (2009)
  2. Site-specific mapping and quantification of protein S-sulphenylation in cells. Yang J, Gupta V, Carroll KS, Liebler DC. Nat Commun 5 4776 (2014)
  3. Oxidizable residues mediating protein stability and cytoprotective interaction of DJ-1 with apoptosis signal-regulating kinase 1. Waak J, Weber SS, Görner K, Schall C, Ichijo H, Stehle T, Kahle PJ. J Biol Chem 284 14245-14257 (2009)
  4. Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Trempe JF, Fon EA. Front Neurol 4 38 (2013)
  5. A glutathione-independent glyoxalase of the DJ-1 superfamily plays an important role in managing metabolically generated methylglyoxal in Candida albicans. Hasim S, Hussin NA, Alomar F, Bidasee KR, Nickerson KW, Wilson MA. J Biol Chem 289 1662-1674 (2014)
  6. DJ-1 is a copper chaperone acting on SOD1 activation. Girotto S, Cendron L, Bisaglia M, Tessari I, Mammi S, Zanotti G, Bubacco L. J Biol Chem 289 10887-10899 (2014)
  7. Chemical genetic strategy for targeting protein kinases based on covalent complementarity. Garske AL, Peters U, Cortesi AT, Perez JL, Shokat KM. Proc Natl Acad Sci U S A 108 15046-15052 (2011)
  8. SufB intein of Mycobacterium tuberculosis as a sensor for oxidative and nitrosative stresses. Topilina NI, Green CM, Jayachandran P, Kelley DS, Stanger MJ, Piazza CL, Nayak S, Belfort M. Proc Natl Acad Sci U S A 112 10348-10353 (2015)
  9. Proteome-wide detection of S-nitrosylation targets and motifs using bioorthogonal cleavable-linker-based enrichment and switch technique. Mnatsakanyan R, Markoutsa S, Walbrunn K, Roos A, Verhelst SHL, Zahedi RP. Nat Commun 10 2195 (2019)
  10. Dopamine-derived quinones affect the structure of the redox sensor DJ-1 through modifications at Cys-106 and Cys-53. Girotto S, Sturlese M, Bellanda M, Tessari I, Cappellini R, Bisaglia M, Bubacco L, Mammi S. J Biol Chem 287 18738-18749 (2012)
  11. Monomer DJ-1 and its N-terminal sequence are necessary for mitochondrial localization of DJ-1 mutants. Maita C, Maita H, Iguchi-Ariga SM, Ariga H. PLoS One 8 e54087 (2013)
  12. pK(a) coupling at the intein active site: implications for the coordination mechanism of protein splicing with a conserved aspartate. Du Z, Zheng Y, Patterson M, Liu Y, Wang C. J Am Chem Soc 133 10275-10282 (2011)
  13. Oxidant-induced Interprotein Disulfide Formation in Cardiac Protein DJ-1 Occurs via an Interaction with Peroxiredoxin 2. Fernandez-Caggiano M, Schröder E, Cho HJ, Burgoyne J, Barallobre-Barreiro J, Mayr M, Eaton P. J Biol Chem 291 10399-10410 (2016)
  14. Stereospecific mechanism of DJ-1 glyoxalases inferred from their hemithioacetal-containing crystal structures. Choi D, Kim J, Ha S, Kwon K, Kim EH, Lee HY, Ryu KS, Park C. FEBS J 281 5447-5462 (2014)
  15. Evolution of new enzymatic function by structural modulation of cysteine reactivity in Pseudomonas fluorescens isocyanide hydratase. Lakshminarasimhan M, Madzelan P, Nan R, Milkovic NM, Wilson MA. J Biol Chem 285 29651-29661 (2010)
  16. A low pKa cysteine at the active site of mouse methionine sulfoxide reductase A. Lim JC, Gruschus JM, Kim G, Berlett BS, Tjandra N, Levine RL. J Biol Chem 287 25596-25601 (2012)
  17. Oxidation and interaction of DJ-1 with 20S proteasome in the erythrocytes of early stage Parkinson's disease patients. Saito Y, Akazawa-Ogawa Y, Matsumura A, Saigoh K, Itoh S, Sutou K, Kobayashi M, Mita Y, Shichiri M, Hisahara S, Hara Y, Fujimura H, Takamatsu H, Hagihara Y, Yoshida Y, Hamakubo T, Kusunoki S, Shimohama S, Noguchi N. Sci Rep 6 30793 (2016)
  18. Substrate-mediated fidelity mechanism ensures accurate decoding of proline codons. So BR, An S, Kumar S, Das M, Turner DA, Hadad CM, Musier-Forsyth K. J Biol Chem 286 31810-31820 (2011)
  19. Short Carboxylic Acid-Carboxylate Hydrogen Bonds Can Have Fully Localized Protons. Lin J, Pozharski E, Wilson MA. Biochemistry 56 391-402 (2017)
  20. Influence of peptide dipoles and hydrogen bonds on reactive cysteine pKa values in fission yeast DJ-1. Madzelan P, Labunska T, Wilson MA. FEBS J 279 4111-4120 (2012)
  21. Conservation of oxidative protein stabilization in an insect homologue of parkinsonism-associated protein DJ-1. Lin J, Prahlad J, Wilson MA. Biochemistry 51 3799-3807 (2012)
  22. Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. Tashiro S, Caaveiro JMM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, Matsuda N, Liu D, Hoang QQ, Tsumoto K. ACS Chem Biol 13 2783-2793 (2018)
  23. Intracellular metal binding and redox behavior of human DJ-1. Barbieri L, Luchinat E, Banci L. J Biol Inorg Chem 23 61-69 (2018)
  24. The effect of cysteine oxidation on DJ-1 cytoprotective function in human alveolar type II cells. Bahmed K, Boukhenouna S, Karim L, Andrews T, Lin J, Powers R, Wilson MA, Lin CR, Messier E, Reisdorph N, Powell RL, Tang HY, Mason RJ, Criner GJ, Kosmider B. Cell Death Dis 10 638 (2019)
  25. Distribution of oxidized DJ-1 in Parkinson's disease-related sites in the brain and in the peripheral tissues: effects of aging and a neurotoxin. Mita Y, Kataoka Y, Saito Y, Kashi T, Hayashi K, Iwasaki A, Imanishi T, Miyasaka T, Noguchi N. Sci Rep 8 12056 (2018)
  26. Neutrophils recruited to the myocardium after acute experimental myocardial infarct generate hypochlorous acid that oxidizes cardiac myoglobin. Wang XS, Kim HB, Szuchman-Sapir A, McMahon A, Dennis JM, Witting PK. Arch Biochem Biophys 612 103-114 (2016)
  27. Predicting Reactive Cysteines with Implicit-Solvent-Based Continuous Constant pH Molecular Dynamics in Amber. Harris RC, Liu R, Shen J. J Chem Theory Comput 16 3689-3698 (2020)
  28. Effect of single amino acid substitution on oxidative modifications of the Parkinson's disease-related protein, DJ-1. Madian AG, Hindupur J, Hulleman JD, Diaz-Maldonado N, Mishra VR, Guigard E, Kay CM, Rochet JC, Regnier FE. Mol Cell Proteomics 11 M111.010892 (2012)
  29. Human Frataxin Folds Via an Intermediate State. Role of the C-Terminal Region. Faraj SE, González-Lebrero RM, Roman EA, Santos J. Sci Rep 6 20782 (2016)
  30. Novel Redox-Dependent Esterase Activity (EC 3.1.1.2) for DJ-1: Implications for Parkinson's Disease. Vázquez-Mayorga E, Díaz-Sánchez ÁG, Dagda RK, Domínguez-Solís CA, Dagda RY, Coronado-Ramírez CK, Martínez-Martínez A. Int J Mol Sci 17 E1346 (2016)
  31. Protein DJ-1 and its anti-oxidative stress function play an important role in renal cell mediated response to profibrotic agents. Eltoweissy M, Dihazi GH, Müller GA, Asif AR, Dihazi H. Mol Biosyst 12 1842-1859 (2016)
  32. Identification of an artificial peptide motif that binds and stabilizes reduced human DJ-1. Premkumar L, Dobaczewska MK, Riedl SJ. J Struct Biol 176 414-418 (2011)
  33. Partially oxidized DJ-1 inhibits α-synuclein nucleation and remodels mature α-synuclein fibrils in vitro. Kumar R, Kumar S, Hanpude P, Singh AK, Johari T, Majumder S, Maiti TK. Commun Biol 2 395 (2019)
  34. Use of cysteine-reactive cross-linkers to probe conformational flexibility of human DJ-1 demonstrates that Glu18 mutations are dimers. Prahlad J, Hauser DN, Milkovic NM, Cookson MR, Wilson MA. J Neurochem 130 839-853 (2014)
  35. DJ-1 is not a deglycase and makes a modest contribution to cellular defense against methylglyoxal damage in neurons. Mazza MC, Shuck SC, Lin J, Moxley MA, Termini J, Cookson MR, Wilson MA. J Neurochem 162 245-261 (2022)
  36. Toxoplasma DJ-1 Regulates Organelle Secretion by a Direct Interaction with Calcium-Dependent Protein Kinase 1. Child MA, Garland M, Foe I, Madzelan P, Treeck M, van der Linden WA, Oresic Bender K, Weerapana E, Wilson MA, Boothroyd JC, Reese ML, Bogyo M. mBio 8 e02189-16 (2017)
  37. Dissection of the dimerization modes in the DJ-1 superfamily. Jung HJ, Kim S, Kim YJ, Kim MK, Kang SG, Lee JH, Kim W, Cha SS. Mol Cells 33 163-171 (2012)
  38. Engineered disulfide bonds restore chaperone-like function of DJ-1 mutants linked to familial Parkinson's disease. Logan T, Clark L, Ray SS. Biochemistry 49 5624-5633 (2010)
  39. Tuning of thioredoxin redox properties by intramolecular hydrogen bonds. Røhr ÅK, Hammerstad M, Andersson KK. PLoS One 8 e69411 (2013)
  40. Shining light on cysteine modification: connecting protein conformational dynamics to catalysis and regulation. van den Bedem H, Wilson MA. J Synchrotron Radiat 26 958-966 (2019)
  41. Deciphering the role of histidine 252 in mycobacterial adenosine 5'-phosphosulfate (APS) reductase catalysis. Hong JA, Carroll KS. J Biol Chem 286 28567-28573 (2011)
  42. Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation. Pignataro M, Di Rocco G, Lancellotti L, Bernini F, Subramanian K, Castellini E, Bortolotti CA, Malferrari D, Moro D, Valdrè G, Borsari M, Del Monte F. Redox Biol 37 101691 (2020)
  43. The unique functional role of the C-HS hydrogen bond in the substrate specificity and enzyme catalysis of type 1 methionine aminopeptidase. Reddi R, Singarapu KK, Pal D, Addlagatta A. Mol Biosyst 12 2408-2416 (2016)
  44. Stepwise oxidations play key roles in the structural and functional regulations of DJ-1. Song IK, Kim MS, Ferrell JE, Shin DH, Lee KJ. Biochem J 478 3505-3525 (2021)
  45. Insights into Ubiquitin Product Release in Hydrolysis Catalyzed by the Bacterial Deubiquitinase SdeA. Sheedlo MJ, Kenny S, Podkorytov IS, Brown K, Ma J, Iyer S, Hewitt CS, Arbough T, Mikhailovskii O, Flaherty DP, Wilson MA, Skrynnikov NR, Das C. Biochemistry 60 584-596 (2021)
  46. Kinetic evidence in favor of glyoxalase III and against deglycase activity of DJ-1. Choi J, Tak S, Jung HM, Cha S, Hwang E, Lee D, Lee JH, Ryu KS, Park C. Protein Sci 32 e4641 (2023)
  47. Understanding Cysteine Chemistry Using Conventional and Serial X-Ray Protein Crystallography. Smith N, Wilson MA. Crystals (Basel) 12 1671 (2022)
  48. A novel splicing variant of DJ-1 in Parkinson's disease induces mitochondrial dysfunction. Cho N, Joo J, Choi S, Kang BG, Lee AJ, Youn SY, Park SH, Kim EM, Masliah E, Ko Y, Cha SS, Jung I, Kim KK. Heliyon 9 e14039 (2023)
  49. Effects of Environmental and Electric Perturbations on the pKa of Thioredoxin Cysteine 35: A Computational Study. D'Annibale V, Fracassi D, Marracino P, D'Inzeo G, D'Abramo M. Molecules 27 6454 (2022)
  50. Improved resolution in the acidic and basic region of 2-DE of insect antennae proteins using hydroxyethyl disulfide. Acín P, Rayó J, Guerrero A, Quero C. Electrophoresis 30 2613-2616 (2009)
  51. Persulfidation of DJ-1: Mechanism and Consequences. Galardon E, Mathas N, Padovani D, Le Corre L, Poncet G, Dairou J. Biomolecules 13 27 (2022)
  52. Polymerization of Oxidized DJ-1 via Noncovalent and Covalent Binding: Significance of Disulfide Bond Formation. Kobayashi M, Muramatsu K, Haruyama T, Uesugi H, Kikuchi A, Konno H, Noguchi N, Saito Y. ACS Omega 4 9603-9614 (2019)