3ctn Citations

Structure of cardiac muscle troponin C unexpectedly reveals a closed regulatory domain.

J Biol Chem 272 18216-21 (1997)
Related entries: 1aj4, 2ctn

Cited: 109 times
EuropePMC logo PMID: 9218458

Abstract

The regulation of cardiac muscle contraction must differ from that of skeletal muscles to effect different physiological and contractile properties. Cardiac troponin C (TnC), the key regulator of cardiac muscle contraction, possesses different functional and Ca2+-binding properties compared with skeletal TnC and features a Ca2+-binding site I, which is naturally inactive. The structure of cardiac TnC in the Ca2+-saturated state has been determined by nuclear magnetic resonance spectroscopy. The regulatory domain exists in a "closed" conformation even in the Ca2+-bound (the "on") state, in contrast to all predicted models and differing significantly from the calcium-induced structure observed in skeletal TnC. This structure in the Ca2+-bound state, and its subsequent interaction with troponin I (TnI), are crucial in determining the specific regulatory mechanism for cardiac muscle contraction. Further, it will allow for an understanding of the action of calcium-sensitizing drugs, which bind to cardiac TnC and are known to enhance the ability of cardiac TnC to activate cardiac muscle contraction.

Articles - 3ctn mentioned but not cited (5)

  1. Solution structure of human cardiac troponin C in complex with the green tea polyphenol, (-)-epigallocatechin 3-gallate. Robertson IM, Li MX, Sykes BD. J Biol Chem 284 23012-23023 (2009)
  2. Structure of trans-resveratrol in complex with the cardiac regulatory protein troponin C. Pineda-Sanabria SE, Robertson IM, Sykes BD. Biochemistry 50 1309-1320 (2011)
  3. Predicting the disruption by UO2(2+) of a protein-ligand interaction. Pible O, Vidaud C, Plantevin S, Pellequer JL, Quéméneur E. Protein Sci 19 2219-2230 (2010)
  4. Nuclear magnetic resonance structure of calcium-binding protein 1 in a Ca(2+) -bound closed state: implications for target recognition. Park S, Li C, Ames JB. Protein Sci 20 1356-1366 (2011)
  5. Minding the gaps: assessing and addressing clinical research core competencies across a network of Canadian cancer centres. Sundquist S, Kato D, Chowdhury R, Samara C, Dancey JE. Front Pharmacol 14 1294335 (2023)


Reviews citing this publication (20)

  1. Regulation of contraction in striated muscle. Gordon AM, Homsher E, Regnier M. Physiol Rev 80 853-924 (2000)
  2. Calcium, thin filaments, and the integrative biology of cardiac contractility. Kobayashi T, Solaro RJ. Annu Rev Physiol 67 39-67 (2005)
  3. Structural basis for diversity of the EF-hand calcium-binding proteins. Grabarek Z. J Mol Biol 359 509-525 (2006)
  4. Target selectivity in EF-hand calcium binding proteins. Bhattacharya S, Bunick CG, Chazin WJ. Biochim Biophys Acta 1742 69-79 (2004)
  5. Why Calcium? How Calcium Became the Best Communicator. Carafoli E, Krebs J. J Biol Chem 291 20849-20857 (2016)
  6. Structural based insights into the role of troponin in cardiac muscle pathophysiology. Li MX, Wang X, Sykes BD. J Muscle Res Cell Motil 25 559-579 (2004)
  7. The contractile apparatus as a target for drugs against heart failure: interaction of levosimendan, a calcium sensitiser, with cardiac troponin c. Sorsa T, Pollesello P, Solaro RJ. Mol Cell Biochem 266 87-107 (2004)
  8. Ca(2+) exchange with troponin C and cardiac muscle dynamics. Davis JP, Tikunova SB. Cardiovasc Res 77 619-626 (2008)
  9. Targeting the sarcomere to correct muscle function. Hwang PM, Sykes BD. Nat Rev Drug Discov 14 313-328 (2015)
  10. Structure-function relationships in Ca(2+) cycling proteins. MacLennan DH, Abu-Abed M, Kang C. J Mol Cell Cardiol 34 897-918 (2002)
  11. Cardiac myofilaments: mechanics and regulation. de Tombe PP. J Biomech 36 721-730 (2003)
  12. Structure and function of cardiac troponin C (TNNC1): Implications for heart failure, cardiomyopathies, and troponin modulating drugs. Li MX, Hwang PM. Gene 571 153-166 (2015)
  13. The molecular basis of the steep force-calcium relation in heart muscle. Sun YB, Irving M. J Mol Cell Cardiol 48 859-865 (2010)
  14. Functional and evolutionary relationships of troponin C. Gillis TE, Marshall CR, Tibbits GF. Physiol Genomics 32 16-27 (2007)
  15. Interaction of cardiac troponin with cardiotonic drugs: a structural perspective. Li MX, Robertson IM, Sykes BD. Biochem Biophys Res Commun 369 88-99 (2008)
  16. Cardiac troponin structure-function and the influence of hypertrophic cardiomyopathy associated mutations on modulation of contractility. Cheng Y, Regnier M. Arch Biochem Biophys 601 11-21 (2016)
  17. Through thick and thin: dual regulation of insect flight muscle and cardiac muscle compared. Bullard B, Pastore A. J Muscle Res Cell Motil 40 99-110 (2019)
  18. Constructing a structural model of troponin using site-directed spin labeling: EPR and PRE-NMR. Kachooei E, Cordina NM, Brown LJ. Biophys Rev 11 621-639 (2019)
  19. Invited review: probing the structures of muscle regulatory proteins using small-angle solution scattering. Lu Y, Jeffries CM, Trewhella J. Biopolymers 95 505-516 (2011)
  20. The missing links within troponin. Marques MA, Parvatiyar MS, Yang W, de Oliveira GAP, Pinto JR. Arch Biochem Biophys 663 95-100 (2019)

Articles citing this publication (84)

  1. Ca(2+)-regulated structural changes in troponin. Vinogradova MV, Stone DB, Malanina GG, Karatzaferi C, Cooke R, Mendelson RA, Fletterick RJ. Proc Natl Acad Sci U S A 102 5038-5043 (2005)
  2. Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. Sun YB, Lou F, Irving M. J Physiol 587 155-163 (2009)
  3. Cross-bridge versus thin filament contributions to the level and rate of force development in cardiac muscle. Regnier M, Martin H, Barsotti RJ, Rivera AJ, Martyn DA, Clemmens E. Biophys J 87 1815-1824 (2004)
  4. NMR analysis of cardiac troponin C-troponin I complexes: effects of phosphorylation. Finley N, Abbott MB, Abusamhadneh E, Gaponenko V, Dong W, Gasmi-Seabrook G, Howarth JW, Rance M, Solaro RJ, Cheung HC, Rosevear PR. FEBS Lett 453 107-112 (1999)
  5. The N-terminal region of troponin T is essential for the maximal activation of rat cardiac myofilaments. Chandra M, Montgomery DE, Kim JJ, Solaro RJ. J Mol Cell Cardiol 31 867-880 (1999)
  6. Designing calcium-sensitizing mutations in the regulatory domain of cardiac troponin C. Tikunova SB, Davis JP. J Biol Chem 279 35341-35352 (2004)
  7. A troponin switch that regulates muscle contraction by stretch instead of calcium. Agianian B, Krzic U, Qiu F, Linke WA, Leonard K, Bullard B. EMBO J 23 772-779 (2004)
  8. Structure of the regulatory N-domain of human cardiac troponin C in complex with human cardiac troponin I147-163 and bepridil. Wang X, Li MX, Sykes BD. J Biol Chem 277 31124-31133 (2002)
  9. A model of calcium activation of the cardiac thin filament. Manning EP, Tardiff JC, Schwartz SD. Biochemistry 50 7405-7413 (2011)
  10. Cardiac troponin C-L29Q, related to hypertrophic cardiomyopathy, hinders the transduction of the protein kinase A dependent phosphorylation signal from cardiac troponin I to C. Schmidtmann A, Lindow C, Villard S, Heuser A, Mügge A, Gessner R, Granier C, Jaquet K. FEBS J 272 6087-6097 (2005)
  11. Bepridil opens the regulatory N-terminal lobe of cardiac troponin C. Li Y, Love ML, Putkey JA, Cohen C. Proc Natl Acad Sci U S A 97 5140-5145 (2000)
  12. Further evidence for the cardiac troponin C mediated calcium sensitization by levosimendan: structure-response and binding analysis with analogs of levosimendan. Levijoki J, Pollesello P, Kaivola J, Tilgmann C, Sorsa T, Annila A, Kilpeläinen I, Haikala H. J Mol Cell Cardiol 32 479-491 (2000)
  13. Internal pH indicators for biomolecular NMR. Baryshnikova OK, Williams TC, Sykes BD. J Biomol NMR 41 5-7 (2008)
  14. Familial hypertrophic cardiomyopathy-related cardiac troponin C mutation L29Q affects Ca2+ binding and myofilament contractility. Liang B, Chung F, Qu Y, Pavlov D, Gillis TE, Tikunova SB, Davis JP, Tibbits GF. Physiol Genomics 33 257-266 (2008)
  15. Modulation of cardiac troponin C function by the cardiac-specific N-terminus of troponin I: influence of PKA phosphorylation and involvement in cardiomyopathies. Baryshnikova OK, Li MX, Sykes BD. J Mol Biol 375 735-751 (2008)
  16. Stereoselective binding of levosimendan to cardiac troponin C causes Ca2+-sensitization. Sorsa T, Pollesello P, Rosevear PR, Drakenberg T, Kilpeläinen I. Eur J Pharmacol 486 1-8 (2004)
  17. Ca2+ - and cross-bridge-dependent changes in N- and C-terminal structure of troponin C in rat cardiac muscle. Martyn DA, Regnier M, Xu D, Gordon AM. Biophys J 80 360-370 (2001)
  18. Structure of the inhibitory region of troponin by site directed spin labeling electron paramagnetic resonance. Brown LJ, Sale KL, Hills R, Rouviere C, Song L, Zhang X, Fajer PG. Proc Natl Acad Sci U S A 99 12765-12770 (2002)
  19. Differential regulation of the actomyosin interaction by skeletal and cardiac troponin isoforms. Maytum R, Westerdorf B, Jaquet K, Geeves MA. J Biol Chem 278 6696-6701 (2003)
  20. Influence of length on force and activation-dependent changes in troponin c structure in skinned cardiac and fast skeletal muscle. Martyn DA, Gordon AM. Biophys J 80 2798-2808 (2001)
  21. Dynamics and calcium association to the N-terminal regulatory domain of human cardiac troponin C: a multiscale computational study. Lindert S, Kekenes-Huskey PM, Huber G, Pierce L, McCammon JA. J Phys Chem B 116 8449-8459 (2012)
  22. The cardiac-specific N-terminal region of troponin I positions the regulatory domain of troponin C. Hwang PM, Cai F, Pineda-Sanabria SE, Corson DC, Sykes BD. Proc Natl Acad Sci U S A 111 14412-14417 (2014)
  23. Cooperative cross-bridge activation of thin filaments contributes to the Frank-Starling mechanism in cardiac muscle. Smith L, Tainter C, Regnier M, Martyn DA. Biophys J 96 3692-3702 (2009)
  24. Structural and functional consequences of the cardiac troponin C L48Q Ca(2+)-sensitizing mutation. Wang D, Robertson IM, Li MX, McCully ME, Crane ML, Luo Z, Tu AY, Daggett V, Sykes BD, Regnier M. Biochemistry 51 4473-4487 (2012)
  25. Structure and dynamics of the C-domain of human cardiac troponin C in complex with the inhibitory region of human cardiac troponin I. Lindhout DA, Sykes BD. J Biol Chem 278 27024-27034 (2003)
  26. Long-timescale molecular dynamics simulations elucidate the dynamics and kinetics of exposure of the hydrophobic patch in troponin C. Lindert S, Kekenes-Huskey PM, McCammon JA. Biophys J 103 1784-1789 (2012)
  27. Hypertrophic cardiomyopathy-linked mutation D145E drastically alters calcium binding by the C-domain of cardiac troponin C. Swindle N, Tikunova SB. Biochemistry 49 4813-4820 (2010)
  28. Predicting cardiomyopathic phenotypes by altering Ca2+ affinity of cardiac troponin C. Parvatiyar MS, Pinto JR, Liang J, Potter JD. J Biol Chem 285 27785-27797 (2010)
  29. Troponin I Mutations R146G and R21C Alter Cardiac Troponin Function, Contractile Properties, and Modulation by Protein Kinase A (PKA)-mediated Phosphorylation. Cheng Y, Rao V, Tu AY, Lindert S, Wang D, Oxenford L, McCulloch AD, McCammon JA, Regnier M. J Biol Chem 290 27749-27766 (2015)
  30. Distinct contributions of the thin and thick filaments to length-dependent activation in heart muscle. Zhang X, Kampourakis T, Yan Z, Sevrieva I, Irving M, Sun YB. Elife 6 (2017)
  31. Sequence mutations in teleost cardiac troponin C that are permissive of high Ca2+ affinity of site II. Gillis TE, Moyes CD, Tibbits GF. Am J Physiol Cell Physiol 284 C1176-84 (2003)
  32. Structure and dynamics of Ca2+-binding domain 1 of the Na+/Ca2+ exchanger in the presence and in the absence of Ca2+. Johnson E, Bruschweiler-Li L, Showalter SA, Vuister GW, Zhang F, Brüschweiler R. J Mol Biol 377 945-955 (2008)
  33. News Pulling the calcium trigger. Sykes BD. Nat Struct Biol 10 588-589 (2003)
  34. Structural mapping of single cysteine mutants of cardiac troponin I. Dong WJ, Xing J, Chandra M, Solaro J, Cheung HC. Proteins 41 438-447 (2000)
  35. Defining the binding site of levosimendan and its analogues in a regulatory cardiac troponin C-troponin I complex. Robertson IM, Baryshnikova OK, Li MX, Sykes BD. Biochemistry 47 7485-7495 (2008)
  36. Amide hydrogens reveal a temperature-dependent structural transition that enhances site-II Ca2+-binding affinity in a C-domain mutant of cardiac troponin C. Veltri T, de Oliveira GAP, Bienkiewicz EA, Palhano FL, Marques MA, Moraes AH, Silva JL, Sorenson MM, Pinto JR. Sci Rep 7 691 (2017)
  37. Ca(2+)-regulatory function of the inhibitory peptide region of cardiac troponin I is aided by the C-terminus of cardiac troponin T: Effects of familial hypertrophic cardiomyopathy mutations cTnI R145G and cTnT R278C, alone and in combination, on filament sliding. Brunet NM, Chase PB, Mihajlović G, Schoffstall B. Arch Biochem Biophys 552-553 11-20 (2014)
  38. Calcium structural transition of human cardiac troponin C in reconstituted muscle fibres as studied by site-directed spin labelling. Nakamura M, Ueki S, Hara H, Arata T. J Mol Biol 348 127-137 (2005)
  39. Conformations of the regulatory domain of cardiac troponin C examined by residual dipolar couplings. Pääkkönen K, Sorsa T, Drakenberg T, Pollesello P, Tilgmann C, Permi P, Heikkinen S, Kilpeläinen I, Annila A. Eur J Biochem 267 6665-6672 (2000)
  40. Effect of hypertrophic cardiomyopathy-linked troponin C mutations on the response of reconstituted thin filaments to calcium upon troponin I phosphorylation. Albury AN, Swindle N, Swartz DR, Tikunova SB. Biochemistry 51 3614-3621 (2012)
  41. Regulatory domain of troponin moves dynamically during activation of cardiac muscle. Sevrieva I, Knowles AC, Kampourakis T, Sun YB. J Mol Cell Cardiol 75 181-187 (2014)
  42. An interdomain distance in cardiac troponin C determined by fluorescence spectroscopy. Dong WJ, Robinson JM, Xing J, Umeda PK, Cheung HC. Protein Sci 9 280-289 (2000)
  43. Cardiac troponin I inhibitory peptide: location of interaction sites on troponin C. Abbott MB, Dvoretsky A, Gaponenko V, Rosevear PR. FEBS Lett 469 168-172 (2000)
  44. Differential effects of bepridil on functional properties of troponin C in slow and fast skeletal muscles. Kischel P, Stevens L, Mounier Y. Br J Pharmacol 128 767-773 (1999)
  45. Fourier transform ion cyclotron resonance mass spectrometric detection of small Ca(2+)-induced conformational changes in the regulatory domain of human cardiac troponin C. Wang F, Li W, Emmett MR, Marshall AG, Corson D, Sykes BD. J Am Soc Mass Spectrom 10 703-710 (1999)
  46. Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study. Dewan S, McCabe KJ, Regnier M, McCulloch AD, Lindert S. J Phys Chem B 120 8264-8275 (2016)
  47. Mutations in the N- and D-helices of the N-domain of troponin C affect the C-domain and regulatory function. Smith L, Greenfield NJ, Hitchcock-DeGregori SE. Biophys J 76 400-408 (1999)
  48. Effects of Phe-to-Trp mutation and fluorotryptophan incorporation on the solution structure of cardiac troponin C, and analysis of its suitability as a potential probe for in situ NMR studies. Wang X, Mercier P, Letourneau PJ, Sykes BD. Protein Sci 14 2447-2460 (2005)
  49. Interaction of bepridil with the cardiac troponin C/troponin I complex. Abusamhadneh E, Abbott MB, Dvoretsky A, Finley N, Sasi S, Rosevear PR. FEBS Lett 506 51-54 (2001)
  50. Solution structures of yeast Saccharomyces cerevisiae calmodulin in calcium- and target peptide-bound states reveal similarities and differences to vertebrate calmodulin. Ogura K, Kumeta H, Takahasi K, Kobashigawa Y, Yoshida R, Itoh H, Yazawa M, Inagaki F. Genes Cells 17 159-172 (2012)
  51. Structural and functional impact of troponin C-mediated Ca2+ sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle. Gonzalez-Martinez D, Johnston JR, Landim-Vieira M, Ma W, Antipova O, Awan O, Irving TC, Bryant Chase P, Pinto JR. J Mol Cell Cardiol 123 26-37 (2018)
  52. The structure of Lethocerus troponin C: insights into the mechanism of stretch activation in muscles. De Nicola G, Burkart C, Qiu F, Agianian B, Labeit S, Martin S, Bullard B, Pastore A. Structure 15 813-824 (2007)
  53. Molecular Dynamics and Umbrella Sampling Simulations Elucidate Differences in Troponin C Isoform and Mutant Hydrophobic Patch Exposure. Bowman JD, Lindert S. J Phys Chem B 122 7874-7883 (2018)
  54. Elucidation of isoform-dependent pH sensitivity of troponin i by NMR spectroscopy. Robertson IM, Holmes PC, Li MX, Pineda-Sanabria SE, Baryshnikova OK, Sykes BD. J Biol Chem 287 4996-5007 (2012)
  55. Fluorescent Protein-Based Ca2+ Sensor Reveals Global, Divalent Cation-Dependent Conformational Changes in Cardiac Troponin C. Badr MA, Pinto JR, Davidson MW, Chase PB. PLoS One 11 e0164222 (2016)
  56. Interdomain orientation of cardiac troponin C characterized by paramagnetic relaxation enhancement NMR reveals a compact state. Cordina NM, Liew CK, Gell DA, Fajer PG, Mackay JP, Brown LJ. Protein Sci 21 1376-1387 (2012)
  57. The role of the Ca(2+) regulatory sites of skeletal troponin C in modulating muscle fibre reactivity to the Ca(2+) sensitizer bepridil. Kischel P, Bastide B, Potter JD, Mounier Y. Br J Pharmacol 131 1496-1502 (2000)
  58. Visualizing the principal component of ¹H, ¹⁵N-HSQC NMR spectral changes that reflect protein structural or functional properties: application to troponin C. Robertson IM, Boyko RF, Sykes BD. J Biomol NMR 51 115-122 (2011)
  59. Calcium induced regulation of skeletal troponin--computational insights from molecular dynamics simulations. Genchev GZ, Kobayashi T, Lu H. PLoS One 8 e58313 (2013)
  60. The interaction of the bisphosphorylated N-terminal arm of cardiac troponin I-A 31P-NMR study. Schmidtmann A, Lohmann K, Jaquet K. FEBS Lett 513 289-293 (2002)
  61. The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. Robertson IM, Sevrieva I, Li MX, Irving M, Sun YB, Sykes BD. J Mol Cell Cardiol 87 257-269 (2015)
  62. A computational exploration of the interactions of the green tea polyphenol (-)-Epigallocatechin 3-Gallate with cardiac muscle troponin C. Botten D, Fugallo G, Fraternali F, Molteni C. PLoS One 8 e70556 (2013)
  63. A model for the function of the bisphosphorylated heart-specific troponin-I N-terminus. Jaquet K, Lohmann K, Czisch M, Holak T, Gulati J, Jaquet R. J Muscle Res Cell Motil 19 647-659 (1998)
  64. Calcium affinity of regulatory sites in skeletal troponin-C is attenuated by N-cap mutations of helix C. Leblanc L, Bennet A, Borgford T. Arch Biochem Biophys 384 296-304 (2000)
  65. Coarse-Grained Modeling of Peptide Docking Associated with Large Conformation Transitions of the Binding Protein: Troponin I Fragment-Troponin C System. Wabik J, Kurcinski M, Kolinski A. Molecules 20 10763-10780 (2015)
  66. Solution structure of the Apo C-terminal domain of the Lethocerus F1 troponin C isoform. De Nicola GF, Martin S, Bullard B, Pastore A. Biochemistry 49 1719-1726 (2010)
  67. A comprehensive guide to genetic variants and post-translational modifications of cardiac troponin C. Reinoso TR, Landim-Vieira M, Shi Y, Johnston JR, Chase PB, Parvatiyar MS, Landstrom AP, Pinto JR, Tadros HJ. J Muscle Res Cell Motil 42 323-342 (2021)
  68. Parallel measurement of Ca2+ binding and fluorescence emission upon Ca2+ titration of recombinant skeletal muscle troponin C. Measurement of sequential calcium binding to the regulatory sites. Valencia FF, Paulucci AA, Quaggio RB, Da Silva AC, Farah CS, Reinach FC. J Biol Chem 278 11007-11014 (2003)
  69. 3-Chlorodiphenylamine activates cardiac troponin by a mechanism distinct from bepridil or TFP. Tikunova SB, Cuesta A, Price M, Li MX, Belevych N, Biesiadecki BJ, Reiser PJ, Hwang PM, Davis JP. J Gen Physiol 151 9-17 (2019)
  70. Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers. Huckaby JT, Jacobs TM, Li Z, Perna RJ, Wang A, Nicely NI, Lai SK. Commun Chem 3 124 (2020)
  71. Conformation of the critical pH sensitive region of troponin depends upon a single residue in troponin I. Robertson IM, Pineda-Sanabria SE, Holmes PC, Sykes BD. Arch Biochem Biophys 552-553 40-49 (2014)
  72. Using lanthanide ions to align troponin complexes in solution: order of lanthanide occupancy in cardiac troponin C. Gay GL, Lindhout DA, Sykes BD. Protein Sci 13 640-651 (2004)
  73. Complexation and Calcium-Induced Conformational Changes in the Cardiac Troponin Complex Monitored by Hydrogen/Deuterium Exchange and FT-ICR Mass Spectrometry. Bou-Assaf GM, Chamoun JE, Emmett MR, Fajer PG, Marshall AG. Int J Mass Spectrom 302 116-124 (2011)
  74. Sarcomere integrated biosensor detects myofilament-activating ligands in real time during twitch contractions in live cardiac muscle. Vetter AD, Martin AA, Thompson BR, Thomas DD, Metzger JM. J Mol Cell Cardiol 147 49-61 (2020)
  75. Comment Shooting blanks: Ca2+-free signaling. Sykes BD. Structure 15 753-754 (2007)
  76. Targeting Troponin C with Small Molecules Containing Diphenyl Moieties: Calcium Sensitivity Effects on Striated Muscles and Structure-Activity Relationship. Hantz ER, Tikunova SB, Belevych N, Davis JP, Reiser PJ, Lindert S. J Chem Inf Model 63 3462-3473 (2023)
  77. The calcium-saturated cTnI/cTnC complex: structure of the inhibitory region of cTnI. Sheldahl C, Xing J, Dong WJ, Harvey SC, Cheung HC. Biophys J 84 1057-1064 (2003)
  78. Binding of calcium and magnesium to human cardiac troponin C. Rayani K, Seffernick J, Li AY, Davis JP, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. J Biol Chem 296 100350 (2021)
  79. Small Molecule RPI-194 Stabilizes Activated Troponin to Increase the Calcium Sensitivity of Striated Muscle Contraction. Mahmud Z, Tikunova S, Belevych N, Wagg CS, Zhabyeyev P, Liu PB, Rasicci DV, Yengo CM, Oudit GY, Lopaschuk GD, Reiser PJ, Davis JP, Hwang PM. Front Physiol 13 892979 (2022)
  80. Spectrofluorometric analysis of length-dependent conformational changes in cardiac troponin C. Liou YM, Tseng YC, Cheng JC. J Muscle Res Cell Motil 23 309-315 (2002)
  81. The effect of Mg2+ on Ca2+ binding to cardiac troponin C in hypertrophic cardiomyopathy associated TNNC1 variants. Rayani K, Hantz ER, Haji-Ghassemi O, Li AY, Spuches AM, Van Petegem F, Solaro RJ, Lindert S, Tibbits GF. FEBS J 289 7446-7465 (2022)
  82. Adaptative Steered Molecular Dynamics Study of Mutagenesis Effects on Calcium Affinity in the Regulatory Domain of Cardiac Troponin C. Hantz ER, Lindert S. J Chem Inf Model 61 3052-3057 (2021)
  83. An EF-handed Ca(2+)-binding protein of Chinese liver fluke Clonorchis sinensis. Chung EJ, Kim TY, Hong SJ, Yong TS. Parasitol Res 112 4121-4128 (2013)
  84. Molecular dynamics provides new insights into the mechanism of calcium signal transduction and interdomain interactions in cardiac troponin. Genchev GZ, Kobayashi M, Kobayashi T, Lu H. FEBS Open Bio 11 1841-1853 (2021)