3cna Citations

Structure of concanavalin A at 2.4-A resolution.

Biochemistry 11 4910-9 (1972)
Cited: 195 times
EuropePMC logo PMID: 4638345

Reviews - 3cna mentioned but not cited (2)

  1. Glycosylated gold nanoparticles in point of care diagnostics: from aggregation to lateral flow. Baker AN, Hawker-Bond GW, Georgiou PG, Dedola S, Field RA, Gibson MI. Chem Soc Rev 51 7238-7259 (2022)
  2. Overview of the Structure⁻Function Relationships of Mannose-Specific Lectins from Plants, Algae and Fungi. Barre A, Bourne Y, Van Damme EJM, Rougé P. Int J Mol Sci 20 (2019)

Articles - 3cna mentioned but not cited (17)

  1. Identification of microRNA-regulated autophagic pathways in plant lectin-induced cancer cell death. Fu LL, Zhao X, Xu HL, Wen X, Wang SY, Liu B, Bao JK, Wei YQ. Cell Prolif 45 477-485 (2012)
  2. Relating destabilizing regions to known functional sites in proteins. Dessailly BH, Lensink MF, Wodak SJ. BMC Bioinformatics 8 141 (2007)
  3. Circular permutation in proteins. Bliven S, Prlić A. PLoS Comput. Biol. 8 e1002445 (2012)
  4. Carbohydrate force fields. Foley BL, Tessier MB, Woods RJ. Wiley Interdiscip Rev Comput Mol Sci 2 652-697 (2012)
  5. Computational Insights into Compaction of Gas-Phase Protein and Protein Complex Ions in Native Ion Mobility-Mass Spectrometry. Rolland AD, Prell JS. Trends Analyt Chem 116 282-291 (2019)
  6. Glycoprofiling as a novel tool in serological assays of systemic sclerosis: a comparative study with three bioanalytical methods. Klukova L, Bertok T, Petrikova M, Sediva A, Mislovicova D, Katrlik J, Vikartovska A, Filip J, Kasak P, Andicsová-Eckstein A, Mosnáček J, Lukáč J, Rovenský J, Imrich R, Tkac J. Anal. Chim. Acta 853 555-562 (2015)
  7. Computing infrared spectra of proteins using the exciton model. Husseini FS, Robinson D, Hunt NT, Parker AW, Hirst JD. J Comput Chem 38 1362-1375 (2017)
  8. A score of the ability of a three-dimensional protein model to retrieve its own sequence as a quantitative measure of its quality and appropriateness. Martínez-Castilla LP, Rodríguez-Sotres R. PLoS ONE 5 e12483 (2010)
  9. Comparative Study of the Binding of Concanavalin A to Self-Assembled Monolayers Containing a Thiolated α-Mannoside on Flat Gold and on Nanoporous Gold. Pandey B, Tan YH, Fujikawa K, Demchenko AV, Stine KJ. J Carbohydr Chem 31 466-503 (2012)
  10. Electrochemical synthesis of nanostructured gold film for the study of carbohydrate-lectin interactions using localized surface plasmon resonance spectroscopy. Bhattarai JK, Sharma A, Fujikawa K, Demchenko AV, Stine KJ. Carbohydr. Res. 405 55-65 (2015)
  11. High Resolution Prediction of Calcium-Binding Sites in 3D Protein Structures Using FEATURE. Zhou W, Tang GW, Altman RB. J Chem Inf Model 55 1663-1672 (2015)
  12. Selective capture of glycoproteins using lectin-modified nanoporous gold monolith. Alla AJ, D' Andrea FB, Bhattarai JK, Cooper JA, Tan YH, Demchenko AV, Stine KJ. J Chromatogr A 1423 19-30 (2015)
  13. 3-Trifluoromethyl-3-aryldiazirine photolabels with enhanced ambient light stability. Kumar AB, Tipton JD, Manetsch R. Chem Commun (Camb) 52 2729-2732 (2016)
  14. Lectin-carbohydrate interactions on nanoporous gold monoliths. Tan YH, Fujikawa K, Pornsuriyasak P, Alla AJ, Ganesh NV, Demchenko AV, Stine KJ. New J Chem 37 2150-2165 (2013)
  15. Protein aggregation and lyophilization: Protein structural descriptors as predictors of aggregation propensity. Roughton BC, Iyer LK, Bertelsen E, Topp EM, Camarda KV. Comput Chem Eng 58 369-377 (2013)
  16. Crystal structure of the legume lectin-like domain of an ERGIC-53-like protein from Entamoeba histolytica. Khan F, Suguna K. Acta Crystallogr F Struct Biol Commun 75 197-204 (2019)
  17. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)


Reviews citing this publication (20)

  1. Lectins. Vijayan M, Chandra N. Curr. Opin. Struct. Biol. 9 707-714 (1999)
  2. Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Barre A, Bourne Y, Van Damme EJ, Peumans WJ, Rougé P. Biochimie 83 645-651 (2001)
  3. Protein folds in the all-beta and all-alpha classes. Chothia C, Hubbard T, Brenner S, Barns H, Murzin A. Annu Rev Biophys Biomol Struct 26 597-627 (1997)
  4. Proteins that bind high-mannose sugars of the HIV envelope. Botos I, Wlodawer A. Prog. Biophys. Mol. Biol. 88 233-282 (2005)
  5. Concanavalin A for in vivo glucose sensing: a biotoxicity review. Ballerstadt R, Evans C, McNichols R, Gowda A. Biosens Bioelectron 22 275-284 (2006)
  6. Lectins: a primer for histochemists and cell biologists. Manning JC, Romero A, Habermann FA, García Caballero G, Kaltner H, Gabius HJ. Histochem. Cell Biol. 147 199-222 (2017)
  7. The structure of spherical viruses. Liljas L. Prog. Biophys. Mol. Biol. 48 1-36 (1986)
  8. Combating pathogenic microorganisms using plant-derived antimicrobials: a minireview of the mechanistic basis. Upadhyay A, Upadhyaya I, Kollanoor-Johny A, Venkitanarayanan K. Biomed Res Int 2014 761741 (2014)
  9. Parallel beta-domains: a new fold in protein structures. Jurnak F, Yoder MD, Pickersgill R, Jenkins J. Curr. Opin. Struct. Biol. 4 802-806 (1994)
  10. Effects of metal binding on protein structure. Friedberg F. Q. Rev. Biophys. 7 1-33 (1974)
  11. Man-Specific, GalNAc/T/Tn-Specific and Neu5Ac-Specific Seaweed Lectins as Glycan Probes for the SARS-CoV-2 (COVID-19) Coronavirus. Barre A, Damme EJMV, Simplicien M, Benoist H, Rougé P. Mar Drugs 18 E543 (2020)
  12. Antiviral lectins: Selective inhibitors of viral entry. Mitchell CA, Ramessar K, O'Keefe BR. Antiviral Res. 142 37-54 (2017)
  13. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. Morriswood B. Cells 4 726-747 (2015)
  14. NMR of plant proteins. Kaas Q, Craik DJ. Prog Nucl Magn Reson Spectrosc 71 1-34 (2013)
  15. 130 years of Plant Lectin Research. Tsaneva M, Van Damme EJM. Glycoconj J 37 533-551 (2020)
  16. ConA-Like Lectins: High Similarity Proteins as Models to Study Structure/Biological Activities Relationships. Cavada BS, Pinto-Junior VR, Osterne VJS, Nascimento KS. Int J Mol Sci 20 (2018)
  17. Legume Lectins with Different Specificities as Potential Glycan Probes for Pathogenic Enveloped Viruses. Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, Benoist H, Rougé P. Cells 11 339 (2022)
  18. Mannose-Specific Lectins from Marine Algae: Diverse Structural Scaffolds Associated to Common Virucidal and Anti-Cancer Properties. Barre A, Simplicien M, Benoist H, Van Damme EJM, Rougé P. Mar Drugs 17 (2019)
  19. Research advances and prospects of legume lectins. Katoch R, Tripathi A. J Biosci 46 104 (2021)
  20. What is the Sugar Code? Gabius HJ, Cudic M, Diercks T, Kaltner H, Kopitz J, Mayo KH, Murphy PV, Oscarson S, Roy R, Schedlbauer A, Toegel S, Romero A. Chembiochem (2021)

Articles citing this publication (156)

  1. Structural patterns in globular proteins. Levitt M, Chothia C. Nature 261 552-558 (1976)
  2. A simplified representation of protein conformations for rapid simulation of protein folding. Levitt M. J. Mol. Biol. 104 59-107 (1976)
  3. Improvements in protein secondary structure prediction by an enhanced neural network. Kneller DG, Cohen FE, Langridge R. J. Mol. Biol. 214 171-182 (1990)
  4. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. Brahms S, Brahms J. J. Mol. Biol. 138 149-178 (1980)
  5. Gene duplications in the structural evolution of chymotrypsin. McLachlan AD. J. Mol. Biol. 128 49-79 (1979)
  6. Structure of pentameric human serum amyloid P component. Emsley J, White HE, O'Hara BP, Oliva G, Srinivasan N, Tickle IJ, Blundell TL, Pepys MB, Wood SP. Nature 367 338-345 (1994)
  7. A sequence motif in many polymerases. Argos P. Nucleic Acids Res. 16 9909-9916 (1988)
  8. Automatic identification of secondary structure in globular proteins. Levitt M, Greer J. J. Mol. Biol. 114 181-239 (1977)
  9. Packing of alpha-helices: geometrical constraints and contact areas. Richmond TJ, Richards FM. J. Mol. Biol. 119 537-555 (1978)
  10. Structural evidence for gene duplication in the evolution of the acid proteases. Tang J, James MN, Hsu IN, Jenkins JA, Blundell TL. Nature 271 618-621 (1978)
  11. Where metal ions bind in proteins. Yamashita MM, Wesson L, Eisenman G, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 87 5648-5652 (1990)
  12. Dipoles of the alpha-helix and beta-sheet: their role in protein folding. Hol WG, Halie LM, Sander C. Nature 294 532-536 (1981)
  13. The structure of the saccharide-binding site of concanavalin A. Derewenda Z, Yariv J, Helliwell JR, Kalb AJ, Dodson EJ, Papiz MZ, Wan T, Campbell J. EMBO J. 8 2189-2193 (1989)
  14. Strjcture of human plasma prealbumin at 2-5 A resolution. A preliminary report on the polypeptide chain conformation, quaternary structure and thyroxine binding. Blake CC, Geisow MJ, Swan ID, Rerat C, Rerat B. J. Mol. Biol. 88 1-12 (1974)
  15. Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. Buehner M, Ford GC, Olsen KW, Moras D, Rossman MG. J. Mol. Biol. 90 25-49 (1974)
  16. On the conformation of proteins: the handedness of the beta-strand-alpha-helix-beta-strand unit. Sternberg MJ, Thornton JM. J. Mol. Biol. 105 367-382 (1976)
  17. Analyses of carbohydrate recognition by legume lectins: size of the combining site loops and their primary specificity. Sharma V, Surolia A. J. Mol. Biol. 267 433-445 (1997)
  18. The crystal structure of the catalytic core domain of endoglucanase I from Trichoderma reesei at 3.6 A resolution, and a comparison with related enzymes. Kleywegt GJ, Zou JY, Divne C, Davies GJ, Sinning I, Stâhlberg J, Reinikainen T, Srisodsuk M, Teeri TT, Jones TA. J. Mol. Biol. 272 383-397 (1997)
  19. Structural and functional similarities within the coenzyme binding domains of dehydrogenases. Ohlsson I, Nordström B, Brändén CI. J. Mol. Biol. 89 339-354 (1974)
  20. Structure of human beta-glucuronidase reveals candidate lysosomal targeting and active-site motifs. Jain S, Drendel WB, Chen ZW, Mathews FS, Sly WS, Grubb JH. Nat. Struct. Biol. 3 375-381 (1996)
  21. Unusual structural features in the parallel beta-helix in pectate lyases. Yoder MD, Lietzke SE, Jurnak F. Structure 1 241-251 (1993)
  22. Structure of satellite tobacco necrosis virus at 3.0 A resolution. Liljas L, Unge T, Jones TA, Fridborg K, Lövgren S, Skoglund U, Strandberg B. J. Mol. Biol. 159 93-108 (1982)
  23. Native electrospray and electron-capture dissociation FTICR mass spectrometry for top-down studies of protein assemblies. Zhang H, Cui W, Wen J, Blankenship RE, Gross ML. Anal. Chem. 83 5598-5606 (2011)
  24. Structure of liver alcohol dehydrogenase at 2.9-angstrom resolution. Brändén CI, Eklund H, Nordström B, Boiwe T, Söderlund G, Zeppezauer E, Ohlsson I, Akeson A. Proc. Natl. Acad. Sci. U.S.A. 70 2439-2442 (1973)
  25. An unusual carbohydrate binding site revealed by the structures of two Maackia amurensis lectins complexed with sialic acid-containing oligosaccharides. Imberty A, Gautier C, Lescar J, Pérez S, Wyns L, Loris R. J. Biol. Chem. 275 17541-17548 (2000)
  26. Crystal structure of human sex hormone-binding globulin: steroid transport by a laminin G-like domain. Grishkovskaya I, Avvakumov GV, Sklenar G, Dales D, Hammond GL, Muller YA. EMBO J. 19 504-512 (2000)
  27. Favin versus concanavalin A: Circularly permuted amino acid sequences. Cunningham BA, Hemperly JJ, Hopp TP, Edelman GM. Proc. Natl. Acad. Sci. U.S.A. 76 3218-3222 (1979)
  28. Fluorescence studies of saccharide binding to wheat-germ agglutinin (lectin). Privat JP, Delmotte F, Mialonier G, Bouchard P, Monsigny M. Eur. J. Biochem. 47 5-14 (1974)
  29. Prediction of the conformation of the histones. Fasman GD, Chou PY, Adler AJ. Biophys. J. 16 1201-1238 (1976)
  30. Structures of the Erythrina corallodendron lectin and of its complexes with mono- and disaccharides. Elgavish S, Shaanan B. J. Mol. Biol. 277 917-932 (1998)
  31. Crystal structure of peanut lectin, a protein with an unusual quaternary structure. Banerjee R, Mande SC, Ganesh V, Das K, Dhanaraj V, Mahanta SK, Suguna K, Surolia A, Vijayan M. Proc. Natl. Acad. Sci. U.S.A. 91 227-231 (1994)
  32. Analysis of sequence variation among legume lectins. A ring of hypervariable residues forms the perimeter of the carbohydrate-binding site. Young NM, Oomen RP. J. Mol. Biol. 228 924-934 (1992)
  33. New evidence on the location of the saccharide-binding site of concanavalin A. Becker JW, Reeke GN, Cunningham BA, Edelman GM. Nature 259 406-409 (1976)
  34. Interaction of concanavalin A with model substrates. Goldstein IJ, Reichert CM, Misaki A. Ann. N. Y. Acad. Sci. 234 283-296 (1974)
  35. Manganese and calcium binding sites of concanavalin A. Hardman KD, Agarwal RC, Freiser MJ. J. Mol. Biol. 157 69-86 (1982)
  36. Transfer of a beta-turn structure to a new protein context. Hynes TR, Kautz RA, Goodman MA, Gill JF, Fox RO. Nature 339 73-76 (1989)
  37. Thermodynamic and structural consequences of flexible loop deletion by circular permutation in the streptavidin-biotin system. Chu V, Freitag S, Le Trong I, Stenkamp RE, Stayton PS. Protein Sci. 7 848-859 (1998)
  38. Structure of the lamprey yolk lipid-protein complex lipovitellin-phosvitin at 2.8 A resolution. Raag R, Appelt K, Xuong NH, Banaszak L. J. Mol. Biol. 200 553-569 (1988)
  39. Conformational prediction and circular dichroism studies on the lac repressor. Chou PY, Adler AJ, Fasman GD. J. Mol. Biol. 96 29-45 (1975)
  40. The highly conserved amino acid sequence motif Tyr-Gly-Asp-Thr-Asp-Ser in alpha-like DNA polymerases is required by phage phi 29 DNA polymerase for protein-primed initiation and polymerization. Bernad A, Lázaro JM, Salas M, Blanco L. Proc. Natl. Acad. Sci. U.S.A. 87 4610-4614 (1990)
  41. Comparative analyses of pentraxins: implications for protomer assembly and ligand binding. Srinivasan N, White HE, Emsley J, Wood SP, Pepys MB, Blundell TL. Structure 2 1017-1027 (1994)
  42. Conformational and geometrical properties of beta-sheets in proteins. II. Antiparallel and mixed beta-sheets. Salemme FR, Weatherford DW. J. Mol. Biol. 146 119-141 (1981)
  43. XPS and SPR analysis of glycoarray surface density. Dhayal M, Ratner DM. Langmuir 25 2181-2187 (2009)
  44. Electronic detection of lectins using carbohydrate-functionalized nanostructures: graphene versus carbon nanotubes. Chen Y, Vedala H, Kotchey GP, Audfray A, Cecioni S, Imberty A, Vidal S, Star A. ACS Nano 6 760-770 (2012)
  45. Studies on the molecular recognition of synthetic methyl beta-lactoside analogs by ricin, a cytotoxic plant lectin. Rivera-Sagredo A, Solis D, Diaz-Mauriño T, Jiménez-Barbero J, Martín-Lomas M. Eur. J. Biochem. 197 217-228 (1991)
  46. Coiling of beta-pleated sheets. Chothia C. J. Mol. Biol. 163 107-117 (1983)
  47. Glucose- and pH-responsive controlled release of cargo from protein-gated carbohydrate-functionalized mesoporous silica nanocontainers. Wu S, Huang X, Du X. Angew. Chem. Int. Ed. Engl. 52 5580-5584 (2013)
  48. Structural similarity and functional diversity in proteins containing the legume lectin fold. Chandra NR, Prabu MM, Suguna K, Vijayan M. Protein Eng. 14 857-866 (2001)
  49. The fine specificity of mannose-binding and galactose-binding lectins revealed using outlier motif analysis of glycan array data. Maupin KA, Liden D, Haab BB. Glycobiology 22 160-169 (2012)
  50. Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes. Tsai LC, Shyur LF, Lee SH, Lin SS, Yuan HS. J. Mol. Biol. 330 607-620 (2003)
  51. Relationships between the structure and activities of concanavalin A. Reeke GN, Becker JW, Cunningham BA, Gunther GR, Wang JL, Edelman GM. Ann. N. Y. Acad. Sci. 234 369-382 (1974)
  52. Unfolding studies on soybean agglutinin and concanavalin a tetramers: a comparative account. Sinha S, Mitra N, Kumar G, Bajaj K, Surolia A. Biophys. J. 88 1300-1310 (2005)
  53. Carbohydrate specificity and quaternary association in basic winged bean lectin: X-ray analysis of the lectin at 2.5 A resolution. Prabu MM, Sankaranarayanan R, Puri KD, Sharma V, Surolia A, Vijayan M, Suguna K. J. Mol. Biol. 276 787-796 (1998)
  54. Structural rules for globular proteins. Schulz GE. Angew. Chem. Int. Ed. Engl. 16 23-32 (1977)
  55. Logical analysis of the mechanism of protein folding II. The nucleation process. Nagano K. J. Mol. Biol. 84 337-372 (1974)
  56. Computation of the dipole moments of proteins. Antosiewicz J. Biophys. J. 69 1344-1354 (1995)
  57. Crystallographic structure of metal-free concanavalin A at 2.5 A resolution. Bouckaert J, Loris R, Poortmans F, Wyns L. Proteins 23 510-524 (1995)
  58. Impact of charge state on gas-phase behaviors of noncovalent protein complexes in collision induced dissociation and surface induced dissociation. Zhou M, Dagan S, Wysocki VH. Analyst 138 1353-1362 (2013)
  59. Structure-based identification and clustering of protein families and superfamilies. Rufino SD, Blundell TL. J. Comput. Aided Mol. Des. 8 5-27 (1994)
  60. The 2.2 A resolution structure of the O(H) blood-group-specific lectin I from Ulex europaeus. Audette GF, Vandonselaar M, Delbaere LT. J. Mol. Biol. 304 423-433 (2000)
  61. Variability in quaternary association of proteins with the same tertiary fold: a case study and rationalization involving legume lectins. Prabu MM, Suguna K, Vijayan M. Proteins 35 58-69 (1999)
  62. The Refined Three-Dimensional Structure of Pectate Lyase E from Erwinia chrysanthemi at 2.2 A Resolution. Lietzke SE, Scavetta RD, Yoder MD, Jurnak F. Plant Physiol. 111 73-92 (1996)
  63. Theoretical determination of the CD of proteins containing closely packed antiparallel beta-sheets. Manning MC, Woody RW. Biopolymers 26 1731-1752 (1987)
  64. Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein-lectin interactions. Ali M, Ramirez P, Tahir MN, Mafe S, Siwy Z, Neumann R, Tremel W, Ensinger W. Nanoscale 3 1894-1903 (2011)
  65. Changes in the three-dimensional structure of concanavalin A upon demetallization. Reeke GN, Becker JW, Edelman GM. Proc. Natl. Acad. Sci. U.S.A. 75 2286-2290 (1978)
  66. A structural comparison of concanavalin A and tomato bushy stunt virus protein. Argos P, Tsukihara T, Rossmann MG. J. Mol. Evol. 15 169-179 (1980)
  67. On-chip detection of protein glycosylation based on energy transfer between nanoparticles. Kim YP, Park S, Oh E, Oh YH, Kim HS. Biosens Bioelectron 24 1189-1194 (2009)
  68. The 1.2 A resolution structure of the Con A-dimannose complex. Sanders DA, Moothoo DN, Raftery J, Howard AJ, Helliwell JR, Naismith JH. J. Mol. Biol. 310 875-884 (2001)
  69. An e.x.a.f.s. study of the manganese O2-evolving complex in purified Photosystem II membrane fractions. The S1 and S2 states. MacLachlan DJ, Hallahan BJ, Ruffle SV, Nugent JH, Evans MC, Strange RW, Hasnain SS. Biochem. J. 285 ( Pt 2) 569-576 (1992)
  70. Crystal structure of demetallized concanavalin A: the metal-binding region. Shoham M, Yonath A, Sussman JL, Moult J, Traub W, Kalb AJ. J. Mol. Biol. 131 137-155 (1979)
  71. Nanoscale analysis of the effects of antibiotics and CX1 on a Pseudomonas aeruginosa multidrug-resistant strain. Formosa C, Grare M, Jauvert E, Coutable A, Regnouf-de-Vains JB, Mourer M, Duval RE, Dague E. Sci Rep 2 575 (2012)
  72. Structural basis for both pro- and anti-inflammatory response induced by mannose-specific legume lectin from Cymbosema roseum. Rocha BA, Delatorre P, Oliveira TM, Benevides RG, Pires AF, Sousa AA, Souza LA, Assreuy AM, Debray H, de Azevedo WF, Sampaio AH, Cavada BS. Biochimie 93 806-816 (2011)
  73. Photogenerated carbohydrate microarrays to study carbohydrate-protein interactions using surface plasmon resonance imaging. Tyagi A, Wang X, Deng L, Ramström O, Yan M. Biosens Bioelectron 26 344-350 (2010)
  74. Application of a directed conformational search for generating 3-D coordinates for protein structures from alpha-carbon coordinates. Bassolino-Klimas D, Bruccoleri RE. Proteins 14 465-474 (1992)
  75. Signature of quaternary structure in the sequences of legume lectins. Manoj N, Suguna K. Protein Eng. 14 735-745 (2001)
  76. The influence of nearest-neighbor amino acids on the conformation of the middle amino acid in proteins: comparison of predicted and experimental determination of -sheets in concanavalin A. Kabat EA, Wu TT. Proc. Natl. Acad. Sci. U.S.A. 70 1473-1477 (1973)
  77. A model for the mechanism of chloride activation of oxygen evolution in photosystem II. Coleman WJ, Govindjee. Photosyn. Res. 13 199-223 (1987)
  78. Carbohydrate specificity and salt-bridge mediated conformational change in acidic winged bean agglutinin. Manoj N, Srinivas VR, Surolia A, Vijayan M, Suguna K. J. Mol. Biol. 302 1129-1137 (2000)
  79. Molecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds. Grangeiro TB, Schriefer A, Calvete JJ, Raida M, Urbanke C, Barral-Netto M, Cavada BS. Eur. J. Biochem. 248 43-48 (1997)
  80. Monovalent derivatives of concanavalin A. Fraser AR, Hemperly JJ, Wang JL, Edelman GM. Proc. Natl. Acad. Sci. U.S.A. 73 790-794 (1976)
  81. Spectral changes accompanying the interaction between metal ligands and concanavalin A. Doyle RJ, Thomasson DL, Gray RD. FEBS Lett. 52 185-187 (1975)
  82. Preparation and analysis of glycan microarrays. Heimburg-Molinaro J, Song X, Smith DF, Cummings RD. Curr Protoc Protein Sci Chapter 12 Unit12.10 (2011)
  83. The use of 13C spin lattice relaxation times to study the interaction of alpha-methyl-D-glucopyranoside with concanavalin A. Villafranca JJ, Viola RE. Arch. Biochem. Biophys. 160 465-468 (1974)
  84. Cooperative lectin recognition of periodical glycoclusters along DNA duplexes: alternate hybridization and full hybridization. Yamada Y, Matsuura K, Kobayashi K. Bioorg. Med. Chem. 13 1913-1922 (2005)
  85. Crystal structures of Cratylia floribunda seed lectin at acidic and basic pHs. Insights into the structural basis of the pH-dependent dimer-tetramer transition. Del Sol FG, Cavada BS, Calvete JJ. J. Struct. Biol. 158 1-9 (2007)
  86. High-resolution macromolecular structure determination using CCD detectors and synchrotron radiation. Walter RL, Thiel DJ, Barna SL, Tate MW, Wall ME, Eikenberry EF, Gruner SM, Ealick SE. Structure 3 835-844 (1995)
  87. Oligosaccharide specificity of a family 7 endoglucanase: insertion of potential sugar-binding subsites. Davies GJ, Ducros V, Lewis RJ, Borchert TV, Schülein M. J. Biotechnol. 57 91-100 (1997)
  88. Structure of Dioclea virgata lectin: Relations between carbohydrate binding site and nitric oxide production. Batista da Nóbrega R, Rocha BA, Gadelha CA, Santi-Gadelha T, Pires AF, Assreuy AM, Nascimento KS, Nagano CS, Sampaio AH, Cavada BS, Delatorre P. Biochimie 94 900-906 (2012)
  89. ConBr, a lectin from Canavalia brasiliensis seeds, protects against quinolinic acid-induced seizures in mice. Russi MA, Vandresen-Filho S, Rieger DK, Costa AP, Lopes MW, Cunha RM, Teixeira EH, Nascimento KS, Cavada BS, Tasca CI, Leal RB. Neurochem. Res. 37 288-297 (2012)
  90. Formation of an infinite beta-sheet arrangement dominates the crystallization behavior of lambda-type antibody light chains. Schiffer M, Chang CH, Stevens FJ. J. Mol. Biol. 186 475-478 (1985)
  91. Glycan-functionalized fluorescent chitin nanocrystals for biorecognition applications. Zhou J, Butchosa N, Jayawardena HS, Zhou Q, Yan M, Ramström O. Bioconjug. Chem. 25 640-643 (2014)
  92. Phytohemagglutinin from Phaseolus vulgaris (PHA-E) displays a novel glycan recognition mode using a common legume lectin fold. Nagae M, Soga K, Morita-Matsumoto K, Hanashima S, Ikeda A, Yamamoto K, Yamaguchi Y. Glycobiology 24 368-378 (2014)
  93. The estimation of protein secondary structure by laser Raman. Spectroscopy from the amide III' intensity distribution. Williams RW, Cutrera T, Dunker AK, Peticolas WL. FEBS Lett. 115 306-308 (1980)
  94. A MORN Repeat Protein Facilitates Protein Entry into the Flagellar Pocket of Trypanosoma brucei. Morriswood B, Schmidt K. Eukaryotic Cell 14 1081-1093 (2015)
  95. A preliminary crystallographic study of wheat germ agglutinin. Wright CS, Keith C, Langridge R, Nagata Y, Burger MM. J. Mol. Biol. 87 843-846 (1974)
  96. Plasticity in protein-peptide recognition: crystal structures of two different peptides bound to concanavalin A. Jain D, Kaur KJ, Salunke DM. Biophys. J. 80 2912-2921 (2001)
  97. Templating carbohydrate-functionalised polymer-scaffolded dynamic combinatorial libraries with lectins. Mahon CS, Fascione MA, Sakonsinsiri C, McAllister TE, Turnbull WB, Fulton DA. Org. Biomol. Chem. 13 2756-2761 (2015)
  98. Kinetics of the disordered chain-to-beta transformation of poly(L-tyrosine) in aqueous solution. Auer HE, Patton E. Biophys. Chem. 4 15-21 (1976)
  99. Structural basis for the recognition of complex-type biantennary oligosaccharides by Pterocarpus angolensis lectin. Buts L, Garcia-Pino A, Imberty A, Amiot N, Boons GJ, Beeckmans S, Versées W, Wyns L, Loris R. FEBS J. 273 2407-2420 (2006)
  100. Conformational flexibility of avidin: the influence of biotin binding. Celej MS, Montich GG, Fidelio GD. Biochem. Biophys. Res. Commun. 325 922-927 (2004)
  101. Enhanced binding of trigonal DNA-carbohydrate conjugates to lectin. Matsui M, Ebara Y. Bioorg. Med. Chem. Lett. 22 6139-6143 (2012)
  102. Identification of a new quaternary association for legume lectins. Moreno FB, de Oliveira TM, Martil DE, Viçoti MM, Bezerra GA, Abrego JR, Cavada BS, Filgueira de Azevedo W. J. Struct. Biol. 161 133-143 (2008)
  103. Non-crystallographic symmetry in the crystal dimer of wheat germ agglutinin. Wright CS. J. Mol. Biol. 87 835-841 (1974)
  104. Quaternary association and reactivation of dimeric concanavalin A. Chatterjee A, Mandal DK. Int. J. Biol. Macromol. 35 103-109 (2005)
  105. The carbohydrate-binding specificity and molecular modelling of Canavalia maritima and Dioclea grandiflora lectins. Ramos MV, Moreira Rde A, Oliveira JT, Cavada BS, Rougé P. Mem. Inst. Oswaldo Cruz 91 761-766 (1996)
  106. Biochemical and electrophysiological characterization of N-glycans on NMDA receptor subunits. Kaniakova M, Lichnerova K, Skrenkova K, Vyklicky L, Horak M. J. Neurochem. 138 546-556 (2016)
  107. Carbohydrate-induced conformational change in concanavalin A. Doyle RJ, Nicholson SK, Gray RD. Carbohydr. Res. 29 265-270 (1973)
  108. Crystal structure of the complex of concanavalin A and tripeptide. Zhang Z, Qian M, Huang Q, Jia Y, Tang Y, Wang K, Cui D, Li M. J Protein Chem 20 59-65 (2001)
  109. Electromagnetophoretic force measurement of a single binding interaction between lectin and yeast cell surfaces. Iiguni Y, Watarai H. Anal Sci 23 121-126 (2007)
  110. Hofmeister salts recover a misfolded multiprotein complex for subsequent structural measurements in the gas phase. Han L, Ruotolo BT. Angew. Chem. Int. Ed. Engl. 52 8329-8332 (2013)
  111. Lectin-gated, mesoporous, photofunctionalized glyconanoparticles for glutathione-responsive drug delivery. Zhou J, Hao N, De Zoyza T, Yan M, Ramström O. Chem. Commun. (Camb.) 51 9833-9836 (2015)
  112. A computergraphical method of describing the shapes of subunit interfaces of oligomers. Analysis of the quaternary structure of concanavalin A and of prealbumin. Milner-White EJ. Biochem. J. 205 353-359 (1982)
  113. Brain effects of the lectin from Canavalia ensiformis in adult rats previously suckled in favorable and unfavorable conditions: A spreading depression and microglia immunolabeling study. Soares Gde S, Lima CB, Cavalcanti LC, Villacampa N, Castellano B, Guedes RC. Nutr Neurosci 18 307-315 (2015)
  114. Mechanistic insight into pertussis toxin and lectin signaling using T cells engineered to express a CD8α/CD3ζ chimeric receptor. Schneider OD, Millen SH, Weiss AA, Miller WE. Biochemistry 51 4126-4137 (2012)
  115. PEGylation of concanavalin A to improve its stability for an in vivo glucose sensing assay. Locke AK, Cummins BM, Abraham AA, Coté GL. Anal. Chem. 86 9091-9097 (2014)
  116. Structural intermediates of acid unfolded Con-A in different co-solvents: fluoroalcohols and polyethylene glycols. Naseem F, Khan RH. Int. J. Biol. Macromol. 42 158-165 (2008)
  117. 2,2,2-Trifluoroethanol-Induced structural change of peanut agglutinin at different pH: A comparative account. Dev S, Khan RH, Surolia A. IUBMB Life 58 473-479 (2006)
  118. Community-based network study of protein-carbohydrate interactions in plant lectins using glycan array data. Malik A, Lee J, Lee J. PLoS ONE 9 e95480 (2014)
  119. Crystal structure of the complex of concanavalin A and hexapeptide. Zhang Z, Qian M, Huang Q, Jia Y, Tang Y, Wang K, Cui D, Li M. J Protein Chem 20 423-429 (2001)
  120. Denaturation of concanavalin A by urea at acid pH. Auer HE, Schilz T. Int J Pept Protein Res 24 569-579 (1984)
  121. Dynamic electromagnetophoretic force analysis of a single binding interaction between lectin and mannan polysaccharide on yeast cell surface. Iiguni Y, Watarai H. Analyst 135 1426-1432 (2010)
  122. Heterophile receptors of erythrocytes and leukocytes. Pardoe GI. Ann. N. Y. Acad. Sci. 234 239-259 (1974)
  123. Identification and characterization of pufflectin from the grass pufferfish Takifugu niphobles and comparison of its expression with that of Takifugu rubripes. Tasumi S, Yamaguchi A, Matsunaga R, Fukushi K, Suzuki Y, Nakamura O, Kikuchi K, Tsutsui S. Dev. Comp. Immunol. 59 48-56 (2016)
  124. Localization and environment of tryptophans in different structural states of concanavalin A. Mandal P, Mandal DK. J Fluoresc 21 2123-2132 (2011)
  125. Magnetic resonance studies of concanavalin A: location of the binding site of alpha-methyl-D-mannopyranoside. Fuhr BJ, Barber BH, Carver JP. Proc. Natl. Acad. Sci. U.S.A. 73 322-326 (1976)
  126. Modes of binding of alpha (1-2) linked manno-oligosaccharides to concanavalin A. Reddy VS, Rao VS. Int. J. Biol. Macromol. 14 185-192 (1992)
  127. Molecular Recognition-Mediated Transformation of Single-Chain Polymer Nanoparticles into Crosslinked Polymer Films. Mahon CS, McGurk CJ, Watson SMD, Fascione MA, Sakonsinsiri C, Turnbull WB, Fulton DA. Angew. Chem. Int. Ed. Engl. 56 12913-12918 (2017)
  128. Properties of a new crystal form of the complex of concanavalin A with methyl alpha-D-glucopyranoside. Yariv J, Kalb AJ, Papiz MZ, Helliwell JR, Andrews SJ, Habash J. J. Mol. Biol. 195 759-760 (1987)
  129. A molecular model for singlet/singlet energy transfer of monovalent ligand/receptor interactions. Meadows DL, Schultz JS. Biotechnol. Bioeng. 37 1066-1075 (1991)
  130. Circular dichroism studies on conformational transitions of phytohemagglutinins effected by some alcohols. Jirgensons B, Ross DL. Int J Pept Protein Res 20 110-114 (1982)
  131. Decoding vibrational states of Concanavalin A amyloid fibrils. Piccirilli F, Schirò G, Vetri V, Lupi S, Perucchi A, Militello V. Biophys. Chem. 199 17-24 (2015)
  132. Exploring the effect of sialic acid orientation on ligand-receptor interactions. Yadav R, Kikkeri R. Chem. Commun. (Camb.) 48 7265-7267 (2012)
  133. In situ characterization of the adsorbed Concanavalin A on germanium surface at various pH. Dong J, Mielczarski JA, Mielczarski E, Xu Z. Biotechnol. Prog. 24 972-980 (2008)
  134. Proton nuclear magnetic resonance studies of the manganese (II) binding site of concanavalin A. Effect of saccharides on the solvent relaxation rates. Villafranca JJ, Viola RE. Arch. Biochem. Biophys. 165 51-59 (1974)
  135. Self-Assembling Brush Polymers Bearing Multisaccharides. Lee J, Kim JC, Lee H, Song S, Kim H, Ree M. Macromol Rapid Commun 38 (2017)
  136. Solution thermochemistry of concanavalin A tetramer conformers measured by variable-temperature ESI-IMS-MS. El-Baba TJ, Clemmer DE. Int J Mass Spectrom 443 93-100 (2019)
  137. Structural analysis and unique molecular recognition properties of a Bauhinia forficata lectin that inhibits cancer cell growth. Lubkowski J, Durbin SV, Silva MC, Farnsworth D, Gildersleeve JC, Oliva ML, Wlodawer A. FEBS J. 284 429-450 (2017)
  138. Structural comparisons of the aggregates of tobacco mosaic virus protein. Stubbs G, Warren S, Mandelkow E. J. Supramol. Struct. 12 177-183 (1979)
  139. Study of the structure of the transition metal-binding site of concanavalin A by extended x-ray absorption fine-structure spectroscopy. Kalb AJ, Stern EA, Heald SM. J. Mol. Biol. 135 501-506 (1979)
  140. Antibiotic sensitivity reveals that wall teichoic acids mediate DNA binding during competence in Bacillus subtilis. Mirouze N, Ferret C, Cornilleau C, Carballido-López R. Nat Commun 9 5072 (2018)
  141. Antigenic and calcium binding properties of a Peptide containing the essential cysteine in lima bean lectin. Maliarik MJ, Roberts DD, Goldstein IJ. Plant Physiol. 95 286-290 (1991)
  142. Binding of lanthanum and gadolinium ions to concanavalin A studied calorimetrically at 25 degrees C. Barone G, Castronuovo G, Del Vecchio P, Elia V, Guarrata P. J. Mol. Recognit. 2 147-151 (1989)
  143. Bis(β-lactosyl)-[60]fullerene as novel class of glycolipids useful for the detection and the decontamination of biological toxins of the Ricinus communis family. Dohi H, Kanazawa T, Saito A, Sato K, Uzawa H, Seto Y, Nishida Y. Beilstein J Org Chem 10 1504-1512 (2014)
  144. Description of the quaternary structure of tetrameric proteins. Forms that show either right-handed or left-handed symmetry at the subunit level. Milner-White EJ. Biochem. J. 187 297-302 (1980)
  145. Europium II as a replacement for calcium II in concanavalin A. A precipitation assay and magnetic circular dichroism study. Homer RB, Mortimer BD. FEBS Lett. 87 69-72 (1978)
  146. Feed-forward neural networks for secondary structure prediction. Barlow TW. J Mol Graph 13 175-183 (1995)
  147. Hydrodynamic changes accompanying the loss of metal ions from concanavalin A. Sawyer HW, Dabscheck R, Nott PR, Selinger BK, Kuntz ID. Biochem. J. 147 613-615 (1975)
  148. Molecular-mass heterogeneity of Griffonia simplicifolia lectin IV subunits. Differences in the oligosaccharide moieties in the N-terminal region. Nikrad PV, Pearlstone JR, Carpenter MR, Lemieux RU, Smillie LB. Biochem. J. 272 343-350 (1990)
  149. The thermodynamic parameters of the interaction of concanavalin A with glycosyl-free liposomes: a microcalorimetric study. Lüscher-Mattli M. Biopolymers 26 1509-1526 (1987)
  150. UV cross-linked dextran methacrylate--concanavalin A methacrylamide gel materials for self-regulated insulin delivery. Taylor MJ, Tanna S, Sahota TS. Drug Dev Ind Pharm 34 73-82 (2008)
  151. A lectin-coupled porous silicon-based biosensor: label-free optical detection of bacteria in a real-time mode. Yaghoubi M, Rahimi F, Negahdari B, Rezayan AH, Shafiekhani A. Sci Rep 10 16017 (2020)
  152. Additional applications of the hexagonal conformation to calcitonin, myoglobin and other proteins of known sequence. Warner DT. J. Theor. Biol. 46 329-351 (1974)
  153. Genome-wide identification and functional exploration of the legume lectin genes in Brassica napus and their roles in Sclerotinia disease resistance. Zuo R, Xie M, Gao F, Liu J, Tang M, Cheng X, Liu Y, Bai Z, Liu S. Front Plant Sci 13 963263 (2022)
  154. Iterative screen optimization maximizes the efficiency of macromolecular crystallization. Jones HG, Wrapp D, Gilman MSA, Battles MB, Wang N, Sacerdote S, Chuang GY, Kwong PD, McLellan JS. Acta Crystallogr F Struct Biol Commun 75 123-131 (2019)
  155. Pseudoenantiomeric glycoclusters: synthesis and testing of heterobivalency in carbohydrate-protein interactions. Brekalo J, Despras G, Lindhorst TK. Org Biomol Chem 17 5929-5942 (2019)
  156. The effect of carbohydrate structures on the hydrogelation ability and morphology of self-assembled structures of peptide-carbohydrate conjugates in water. Tsuzuki T, Kabumoto M, Arakawa H, Ikeda M. Org. Biomol. Chem. 15 4595-4600 (2017)


Related citations provided by authors (3)

  1. Structure of the Concanavalin A-Methyl-Alpha-D-Mannopyranoside Complex at 6.0 Angstroms Resolution. Hardman KD, Ainsworth CF Biochemistry 15 1120- (1976)
  2. Binding of Nonpolar Molecules by Crystalline Concanavalin A. Hardman KD, Ainsworth CF Biochemistry 12 4442- (1973)
  3. Crystallography of a Metal-Containing Protein, Concanavalin A. Hardman KD Adv. Exp. Med. Biol. 40 103- (1973)