3cmm Citations

Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes.

Cell 134 268-78 (2008)
Cited: 93 times
EuropePMC logo PMID: 18662542


Ubiquitin (Ub) and ubiquitin-like proteins (Ubls) are conjugated to their targets by specific cascades involving three classes of enzymes, E1, E2, and E3. Each E1 adenylates the C terminus of its cognate Ubl, forms a E1 approximately Ubl thioester intermediate, and ultimately generates a thioester-linked E2 approximately Ubl product. We have determined the crystal structure of yeast Uba1, revealing a modular architecture with individual domains primarily mediating these specific activities. The negatively charged C-terminal ubiquitin-fold domain (UFD) is primed for binding of E2s and recognizes their positively charged first alpha helix via electrostatic interactions. In addition, a mobile loop from the domain harboring the E1 catalytic cysteine contributes to E2 binding. Significant, experimentally observed motions in the UFD around a hinge in the linker connecting this domain to the rest of the enzyme suggest a conformation-dependent mechanism for the transthioesterification function of Uba1; however, this mechanism clearly differs from that of other E1 enzymes.

Articles - 3cmm mentioned but not cited (5)

  1. An acidic loop and cognate phosphorylation sites define a molecular switch that modulates ubiquitin charging activity in Cdc34-like enzymes. Papaleo E, Ranzani V, Tripodi F, Vitriolo A, Cirulli C, Fantucci P, Alberghina L, Vanoni M, De Gioia L, Coccetti P. PLoS Comput. Biol. 7 e1002056 (2011)
  2. Loop 7 of E2 enzymes: an ancestral conserved functional motif involved in the E2-mediated steps of the ubiquitination cascade. Papaleo E, Casiraghi N, Arrigoni A, Vanoni M, Coccetti P, De Gioia L. PLoS ONE 7 e40786 (2012)
  3. Homology Modelling of Human E1 Ubiquitin Activating Enzyme. Brahemi G, Burger AM, Westwell AD, Brancale A. Lett Drug Des Discov 7 57-62 (2010)
  4. Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics. Chung WJ, Goeckeler-Fried JL, Havasi V, Chiang A, Rowe SM, Plyler ZE, Hong JS, Mazur M, Piazza GA, Keeton AB, White EL, Rasmussen L, Weissman AM, Denny RA, Brodsky JL, Sorscher EJ. PLoS ONE 11 e0163615 (2016)
  5. Label-Free and Real-Time Detection of Protein Ubiquitination with a Biological Nanopore. Wloka C, Van Meervelt V, van Gelder D, Danda N, Jager N, Williams CP, Maglia G. ACS Nano 11 4387-4394 (2017)

Reviews citing this publication (21)

  1. Specificity and disease in the ubiquitin system. Chaugule VK, Walden H. Biochem. Soc. Trans. 44 212-227 (2016)
  2. Systematic approaches to identify E3 ligase substrates. Iconomou M, Saunders DN. Biochem. J. 473 4083-4101 (2016)
  3. Ubiquitylation of nuclear receptors: new linkages and therapeutic implications. Helzer KT, Hooper C, Miyamoto S, Alarid ET. J. Mol. Endocrinol. 54 R151-67 (2015)
  4. Trial Watch: Proteasomal inhibitors for anticancer therapy. Obrist F, Manic G, Kroemer G, Vitale I, Galluzzi L. Mol Cell Oncol 2 e974463 (2015)
  5. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Groen EJ, Gillingwater TH. Trends Mol Med 21 622-632 (2015)
  6. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Sasaki K, Iwai K. Immunol. Rev. 266 175-189 (2015)
  7. Applied techniques for mining natural proteasome inhibitors. Stein ML, Groll M. Biochim. Biophys. Acta 1843 26-38 (2014)
  8. Structural and functional insights to ubiquitin-like protein conjugation. Streich FC, Lima CD. Annu Rev Biophys 43 357-379 (2014)
  9. Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Klionsky DJ, Schulman BA. Nat. Struct. Mol. Biol. 21 336-345 (2014)
  10. Perilous journey: a tour of the ubiquitin-proteasome system. Kleiger G, Mayor T. Trends Cell Biol. 24 352-359 (2014)
  11. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Alonso V, Friedman PA. Mol. Endocrinol. 27 558-572 (2013)
  12. Macromolecular juggling by ubiquitylation enzymes. Lorenz S, Cantor AJ, Rape M, Kuriyan J. BMC Biol. 11 65 (2013)
  13. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Bendotti C, Marino M, Cheroni C, Fontana E, Crippa V, Poletti A, De Biasi S. Prog. Neurobiol. 97 101-126 (2012)
  14. Post-translational modifications of host proteins by Legionella pneumophila: a sophisticated survival strategy. Rolando M, Buchrieser C. Future Microbiol 7 369-381 (2012)
  15. Twists and turns in ubiquitin-like protein conjugation cascades. Schulman BA. Protein Sci. 20 1941-1954 (2011)
  16. Origin and function of ubiquitin-like proteins. Hochstrasser M. Nature 458 422-429 (2009)
  17. Building ubiquitin chains: E2 enzymes at work. Ye Y, Rape M. Nat. Rev. Mol. Cell Biol. 10 755-764 (2009)
  18. Molybdenum cofactors, enzymes and pathways. Schwarz G, Mendel RR, Ribbe MW. Nature 460 839-847 (2009)
  19. Conformational dynamics in the Acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. Gulick AM. ACS Chem. Biol. 4 811-827 (2009)
  20. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Schulman BA, Harper JW. Nat. Rev. Mol. Cell Biol. 10 319-331 (2009)
  21. Function and regulation of protein neddylation. 'Protein modifications: beyond the usual suspects' review series. Rabut G, Peter M. EMBO Rep. 9 969-976 (2008)

Articles citing this publication (67)

  1. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ. Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, Bump NJ, Soucy TA, Milhollen MA, Yang X, Burkhardt AL, Ma J, Loke HK, Lingaraj T, Wu D, Hamman KB, Spelman JJ, Cullis CA, Langston SP, Vyskocil S, Sells TB, Mallender WD, Visiers I, Li P, Claiborne CF, Rolfe M, Bolen JB, Dick LR. Mol. Cell 37 102-111 (2010)
  2. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, Kazama H, Chee GJ, Hattori M, Kanai A, Atomi H, Takai K, Takami H. Nucleic Acids Res. 39 3204-3223 (2011)
  3. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MF, Schulman BA. Mol. Cell 33 483-495 (2009)
  4. Site-specific analysis of protein S-acylation by resin-assisted capture. Forrester MT, Hess DT, Thompson JW, Hultman R, Moseley MA, Stamler JS, Casey PJ. J. Lipid Res. 52 393-398 (2011)
  5. Active site remodelling accompanies thioester bond formation in the SUMO E1. Olsen SK, Capili AD, Lu X, Tan DS, Lima CD. Nature 463 906-912 (2010)
  6. Analyses of the effects of all ubiquitin point mutants on yeast growth rate. Roscoe BP, Thayer KM, Zeldovich KB, Fushman D, Bolon DN. J. Mol. Biol. 425 1363-1377 (2013)
  7. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, Nakatogawa H, Ohsumi Y, Inagaki F. Mol. Cell 44 462-475 (2011)
  8. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, Nourse A, Hammel M, Kurinov I, Rock CO, Green DR, Schulman BA. Mol. Cell 44 451-461 (2011)
  9. Structure of a ubiquitin E1-E2 complex: insights to E1-E2 thioester transfer. Olsen SK, Lima CD. Mol. Cell 49 884-896 (2013)
  10. Biochemical and structural studies of a HECT-like ubiquitin ligase from Escherichia coli O157:H7. Lin DY, Diao J, Zhou D, Chen J. J. Biol. Chem. 286 441-449 (2011)
  11. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, Kim J, Song HK. Nat. Struct. Mol. Biol. 18 1323-1330 (2011)
  12. Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Kaiser SE, Mao K, Taherbhoy AM, Yu S, Olszewski JL, Duda DM, Kurinov I, Deng A, Fenn TD, Klionsky DJ, Schulman BA. Nat. Struct. Mol. Biol. 19 1242-1249 (2012)
  13. How the MccB bacterial ancestor of ubiquitin E1 initiates biosynthesis of the microcin C7 antibiotic. Regni CA, Roush RF, Miller DJ, Nourse A, Walsh CT, Schulman BA. EMBO J. 28 1953-1964 (2009)
  14. Mechanistic studies of substrate-assisted inhibition of ubiquitin-activating enzyme by adenosine sulfamate analogues. Chen JJ, Tsu CA, Gavin JM, Milhollen MA, Bruzzese FJ, Mallender WD, Sintchak MD, Bump NJ, Yang X, Ma J, Loke HK, Xu Q, Li P, Bence NF, Brownell JE, Dick LR. J. Biol. Chem. 286 40867-40877 (2011)
  15. A gatekeeper residue for NEDD8-activating enzyme inhibition by MLN4924. Toth JI, Yang L, Dahl R, Petroski MD. Cell Rep 1 309-316 (2012)
  16. Crystal structure of the human ubiquitin-activating enzyme 5 (UBA5) bound to ATP: mechanistic insights into a minimalistic E1 enzyme. Bacik JP, Walker JR, Ali M, Schimmer AD, Dhe-Paganon S. J. Biol. Chem. 285 20273-20280 (2010)
  17. Conformational transition associated with E1-E2 interaction in small ubiquitin-like modifications. Wang J, Lee B, Cai S, Fukui L, Hu W, Chen Y. J. Biol. Chem. 284 20340-20348 (2009)
  18. Structural mechanism of ubiquitin and NEDD8 deamidation catalyzed by bacterial effectors that induce macrophage-specific apoptosis. Yao Q, Cui J, Wang J, Li T, Wan X, Luo T, Gong YN, Xu Y, Huang N, Shao F. Proc. Natl. Acad. Sci. U.S.A. 109 20395-20400 (2012)
  19. Comparative Genomics and Evolution of Molybdenum Utilization. Zhang Y, Rump S, Gladyshev VN. Coord Chem Rev 255 1206-1217 (2011)
  20. Crystal structure of UBA2(ufd)-Ubc9: insights into E1-E2 interactions in Sumo pathways. Wang J, Taherbhoy AM, Hunt HW, Seyedin SN, Miller DW, Miller DJ, Huang DT, Schulman BA. PLoS ONE 5 e15805 (2010)
  21. Mechanistic studies on activation of ubiquitin and di-ubiquitin-like protein, FAT10, by ubiquitin-like modifier activating enzyme 6, Uba6. Gavin JM, Chen JJ, Liao H, Rollins N, Yang X, Xu Q, Ma J, Loke HK, Lingaraj T, Brownell JE, Mallender WD, Gould AE, Amidon BS, Dick LR. J. Biol. Chem. 287 15512-15522 (2012)
  22. Specificity of the E1-E2-E3 enzymatic cascade for ubiquitin C-terminal sequences identified by phage display. Zhao B, Bhuripanyo K, Schneider J, Zhang K, Schindelin H, Boone D, Yin J. ACS Chem. Biol. 7 2027-2035 (2012)
  23. Phosphoribosylation of Ubiquitin Promotes Serine Ubiquitination and Impairs Conventional Ubiquitination. Bhogaraju S, Kalayil S, Liu Y, Bonn F, Colby T, Matic I, Dikic I. Cell 167 1636-1649.e13 (2016)
  24. Mechanism of E1-E2 interaction for the inhibition of Ubl adenylation. Wang J, Cai S, Chen Y. J. Biol. Chem. 285 33457-33462 (2010)
  25. Arabidopsis membrane-anchored ubiquitin-fold (MUB) proteins localize a specific subset of ubiquitin-conjugating (E2) enzymes to the plasma membrane. Dowil RT, Lu X, Saracco SA, Vierstra RD, Downes BP. J. Biol. Chem. 286 14913-14921 (2011)
  26. Systematic exploration of ubiquitin sequence, E1 activation efficiency, and experimental fitness in yeast. Roscoe BP, Bolon DN. J. Mol. Biol. 426 2854-2870 (2014)
  27. Two mutations impair the stability and function of ubiquitin-activating enzyme (E1). Lao T, Chen S, Sang N. J. Cell. Physiol. 227 1561-1568 (2012)
  28. Electrophilic adduction of ubiquitin activating enzyme E1 by N,N-diethyldithiocarbamate inhibits ubiquitin activation and is accompanied by striatal injury in the rat. Viquez OM, Caito SW, McDonald WH, Friedman DB, Valentine WM. Chem. Res. Toxicol. 25 2310-2321 (2012)
  29. Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. Ungermannova D, Parker SJ, Nasveschuk CG, Chapnick DA, Phillips AJ, Kuchta RD, Liu X. J Biomol Screen 17 421-434 (2012)
  30. Role of the Zn(2+) motif of E1 in SUMO adenylation. Wang J, Chen Y. J. Biol. Chem. 285 23732-23738 (2010)
  31. The neddylation-cullin 2-RBX1 E3 ligase axis targets tumor suppressor RhoB for degradation in liver cancer. Xu J, Li L, Yu G, Ying W, Gao Q, Zhang W, Li X, Ding C, Jiang Y, Wei D, Duan S, Lei Q, Li P, Shi T, Qian X, Qin J, Jia L. Mol. Cell Proteomics 14 499-509 (2015)
  32. Structure of the ubiquitin-activating enzyme loaded with two ubiquitin molecules. Schäfer A, Kuhn M, Schindelin H. Acta Crystallogr. D Biol. Crystallogr. 70 1311-1320 (2014)
  33. Orthogonal ubiquitin transfer through engineered E1-E2 cascades for protein ubiquitination. Zhao B, Bhuripanyo K, Zhang K, Kiyokawa H, Schindelin H, Yin J. Chem. Biol. 19 1265-1277 (2012)
  34. Structural determinants of ubiquitin conjugation in Entamoeba histolytica. Bosch DE, Siderovski DP. J. Biol. Chem. 288 2290-2302 (2013)
  35. The molecular determinants of NEDD8 specific recognition by human SENP8. Shin YC, Tang SJ, Chen JH, Liao PH, Chang SC. PLoS ONE 6 e27742 (2011)
  36. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation. Castaño-Miquel L, Seguí J, Manrique S, Teixeira I, Carretero-Paulet L, Atencio F, Lois LM. Mol Plant 6 1646-1660 (2013)
  37. Expression, purification and characterization of human ubiquitin-activating enzyme, UBE1. Zheng M, Liu J, Yang Z, Gu X, Li F, Lou T, Ji C, Mao Y. Mol. Biol. Rep. 37 1413-1419 (2010)
  38. The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin. Grasso G, Lanza V, Malgieri G, Fattorusso R, Pietropaolo A, Rizzarelli E, Milardi D. Chem. Commun. (Camb.) 51 15724-15727 (2015)
  39. Conjugation of the ubiquitin activating enzyme UBE1 with the ubiquitin-like modifier FAT10 targets it for proteasomal degradation. Bialas J, Groettrup M, Aichem A. PLoS ONE 10 e0120329 (2015)
  40. The ubiquitin-associated domain of cellular inhibitor of apoptosis proteins facilitates ubiquitylation. Budhidarmo R, Day CL. J. Biol. Chem. 289 25721-25736 (2014)
  41. Phage display to identify Nedd8-mimicking peptides as inhibitors of the Nedd8 transfer cascade. Zhao B, Zhang K, Villhauer EB, Bhuripanyo K, Kiyokawa H, Schindelin H, Yin J. Chembiochem 14 1323-1330 (2013)
  42. Inhibiting the protein ubiquitination cascade by ubiquitin-mimicking short peptides. Zhao B, Choi CH, Bhuripanyo K, Villhauer EB, Zhang K, Schindelin H, Yin J. Org. Lett. 14 5760-5763 (2012)
  43. The ubiquitin-activating enzyme (E1) of the early-branching eukaryote Giardia intestinalis shows unusual proteolytic modifications and play important roles during encystation. Niño CA, Prucca CG, Chaparro J, Luján HD, Wasserman M. Acta Trop. 123 39-46 (2012)
  44. The unique Morgue ubiquitination protein is conserved in a diverse but restricted set of invertebrates. Zhou Y, Carpenter ZW, Brennan G, Nambu JR. Mol. Biol. Evol. 26 2245-2259 (2009)
  45. Different Enzymatic Processing of γ-Phosphoramidate and γ-Phosphoester-Modified ATP Analogues. Ermert S, Hacker SM, Buntru A, Scheffner M, Hauck CR, Marx A. Chembiochem 18 378-381 (2017)
  46. Trans-Binding Mechanism of Ubiquitin-like Protein Activation Revealed by a UBA5-UFM1 Complex. Oweis W, Padala P, Hassouna F, Cohen-Kfir E, Gibbs DR, Todd EA, Berndsen CE, Wiener R. Cell Rep 16 3113-3120 (2016)
  47. Characterization and Structural Insights into Selective E1-E2 Interactions in the Human and Plasmodium falciparum SUMO Conjugation Systems. Reiter KH, Ramachandran A, Xia X, Boucher LE, Bosch J, Matunis MJ. J. Biol. Chem. 291 3860-3870 (2016)
  48. Mechanistic study of Uba5 enzyme and the Ufm1 conjugation pathway. Gavin JM, Hoar K, Xu Q, Ma J, Lin Y, Chen J, Chen W, Bruzzese FJ, Harrison S, Mallender WD, Bump NJ, Sintchak MD, Bence NF, Li P, Dick LR, Gould AE, Chen JJ. J. Biol. Chem. 289 22648-22658 (2014)
  49. NMR structural studies of the first catalytic half-domain of ubiquitin activating enzyme. Jaremko M, Jaremko Ł, Nowakowski M, Wojciechowski M, Szczepanowski RH, Panecka R, Zhukov I, Bochtler M, Ejchart A. J. Struct. Biol. 185 69-78 (2014)
  50. In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. Amara F, Colombo R, Cazzaniga P, Pescini D, Csikász-Nagy A, Falconi MM, Besozzi D, Plevani P. BMC Syst Biol 7 24 (2013)
  51. NMR assignments of ubiquitin fold domain (UFD) in SUMO-activating enzyme subunit 2 from rice. Suzuki R, Tsuchiya W, Shindo H, Yamazaki T. Biomol NMR Assign 5 245-248 (2011)
  52. All change: protein conformation and the ubiquitination reaction cascade. Riedinger C, Endicott JA. F1000 Biol Rep 1 19 (2009)
  53. And yet it moves: active site remodeling in the SUMO E1. Völler D, Schindelin H. Structure 18 419-421 (2010)
  54. Comment Structural biology: Transformative encounters. Schulman BA, Haas AL. Nature 463 889-890 (2010)
  55. E2-binding surface on Uba3 β-grasp domain undergoes a conformational transition. Elgin ES, Sökmen N, Peterson FC, Volkman BF, Dağ C, Haas AL. Proteins 80 2482-2487 (2012)
  56. Profiling the cross reactivity of ubiquitin with the Nedd8 activating enzyme by phage display. Zhao B, Zhang K, Bhuripanyo K, Choi CH, Villhauer EB, Li H, Zheng N, Kiyokawa H, Schindelin H, Yin J. PLoS ONE 8 e70312 (2013)
  57. E1-catalyzed ubiquitin C-terminal amidation for the facile synthesis of deubiquitinase substrates. Wang XA, Kurra Y, Huang Y, Lee YJ, Liu WR. Chembiochem 15 37-41 (2014)
  58. A ubiquitin shuttle DC-UbP/UBTD2 reconciles protein ubiquitination and deubiquitination via linking UbE1 and USP5 enzymes. Song AX, Yang H, Gao YG, Zhou CJ, Zhang YH, Hu HY. PLoS ONE 9 e107509 (2014)
  59. Expression, purification, and crystal structure of N-terminal domains of human ubiquitin-activating enzyme (E1). Xie ST. Biosci. Biotechnol. Biochem. 78 1542-1549 (2014)
  60. Structural model of the hUbA1-UbcH10 quaternary complex: in silico and experimental analysis of the protein-protein interactions between E1, E2 and ubiquitin. Correale S, de Paola I, Morgillo CM, Federico A, Zaccaro L, Pallante P, Galeone A, Fusco A, Pedone E, Luque FJ, Catalanotti B. PLoS ONE 9 e112082 (2014)
  61. Phage selection assisted by Sfp phosphopantetheinyl transferase-catalyzed site-specific protein labeling. Zhao B, Zhang K, Bhuripanyo K, Wang Y, Zhou H, Zhang M, Yin J. Methods Mol. Biol. 1266 161-170 (2015)
  62. Spatio-temporal coordination among functional residues in protein. Dutta S, Ghosh M, Chakrabarti J. Sci Rep 7 40439 (2017)
  63. Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Liu X, Zhao B, Sun L, Bhuripanyo K, Wang Y, Bi Y, Davuluri RV, Duong DM, Nanavati D, Yin J, Kiyokawa H. Nat Commun 8 14286 (2017)
  64. S. pombe Uba1-Ubc15 Structure Reveals a Novel Regulatory Mechanism of Ubiquitin E2 Activity. Lv Z, Rickman KA, Yuan L, Williams K, Selvam SP, Woosley AN, Howe PH, Ogretmen B, Smogorzewska A, Olsen SK. Mol. Cell 65 699-714.e6 (2017)
  65. Structural analysis and evolution of specificity of the SUMO UFD E1-E2 interactions. Liu B, Lois LM, Reverter D. Sci Rep 7 41998 (2017)
  66. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens. Castaño-Miquel L, Mas A, Teixeira I, Seguí J, Perearnau A, Thampi BN, Schapire AL, Rodrigo N, La Verde G, Manrique S, Coca M, Lois LM. Mol Plant 10 709-720 (2017)
  67. Novel insights into the interaction of UBA5 with UFM1 via a UFM1-interacting sequence. Padala P, Oweis W, Mashahreh B, Soudah N, Cohen-Kfir E, Todd EA, Berndsen CE, Wiener R. Sci Rep 7 508 (2017)