3cla Citations

Refined crystal structure of type III chloramphenicol acetyltransferase at 1.75 A resolution.

J Mol Biol 213 167-86 (1990)
Cited: 83 times
EuropePMC logo PMID: 2187098

Abstract

High level bacterial resistance to chloramphenicol is generally due to O-acetylation of the antibiotic in a reaction catalysed by chloramphenicol acetyltransferase (CAT, EC 2.3.1.28) in which acetyl-coenzyme A is the acyl donor. The crystal structure of the type III enzyme from Escherichia coli with chloramphenicol bound has been determined and refined at 1.75 A resolution, using a restrained parameter reciprocal space least squares procedure. The refined model, which includes chloramphenicol, 204 solvent molecules and two cobalt ions has a crystallographic R-factor of 18.3% for 27,300 reflections between 6 and 1.75 A resolution. The root-mean-square deviation in bond lengths from ideal values is 0.02 A. The cobalt ions play a crucial role in stabilizing the packing of the molecule in the crystal lattice. CAT is a trimer of identical subunits (monomer Mr 25,000) and the trimeric structure is stabilized by a number of hydrogen bonds, some of which result in the extension of a beta-sheet across the subunit interface. Chloramphenicol binds in a deep pocket located at the boundary between adjacent subunits of the trimer, such that the majority of residues forming the binding pocket belong to one subunit while the catalytically essential histidine belongs to the adjacent subunit. His195 is appropriately positioned to act as a general base catalyst in the reaction, and the required tautomeric stabilization is provided by an unusual interaction with a main-chain carbonyl oxygen.

Articles - 3cla mentioned but not cited (19)

  1. A graph-theory algorithm for rapid protein side-chain prediction. Canutescu AA, Shelenkov AA, Dunbrack RL. Protein Sci. 12 2001-2014 (2003)
  2. LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation. Huang B, Schroeder M. BMC Struct Biol 6 19 (2006)
  3. A normalized root-mean-square distance for comparing protein three-dimensional structures. Carugo O, Pongor S. Protein Sci. 10 1470-1473 (2001)
  4. Development of quantitative structure-binding affinity relationship models based on novel geometrical chemical descriptors of the protein-ligand interfaces. Zhang S, Golbraikh A, Tropsha A. J Med Chem 49 2713-2724 (2006)
  5. Statistical potential for modeling and ranking of protein-ligand interactions. Fan H, Schneidman-Duhovny D, Irwin JJ, Dong G, Shoichet BK, Sali A. J Chem Inf Model 51 3078-3092 (2011)
  6. Predicting the accuracy of protein-ligand docking on homology models. Bordogna A, Pandini A, Bonati L. J Comput Chem 32 81-98 (2011)
  7. Guiding conformation space search with an all-atom energy potential. Brunette TJ, Brock O. Proteins 73 958-972 (2008)
  8. StoneHinge: hinge prediction by network analysis of individual protein structures. Keating KS, Flores SC, Gerstein MB, Kuhn LA. Protein Sci. 18 359-371 (2009)
  9. Synonymous codon substitutions perturb cotranslational protein folding in vivo and impair cell fitness. Walsh IM, Bowman MA, Soto Santarriaga IF, Rodriguez A, Clark PL. Proc Natl Acad Sci U S A 117 3528-3534 (2020)
  10. A synchronized substrate-gating mechanism revealed by cubic-core structure of the bovine branched-chain alpha-ketoacid dehydrogenase complex. Kato M, Wynn RM, Chuang JL, Brautigam CA, Custorio M, Chuang DT. EMBO J. 25 5983-5994 (2006)
  11. Structure of Arabidopsis thaliana At1g77540 protein, a minimal acetyltransferase from the COG2388 family. Tyler RC, Bitto E, Berndsen CE, Bingman CA, Singh S, Lee MS, Wesenberg GE, Denu JM, Phillips GN, Markley JL. Biochemistry 45 14325-14336 (2006)
  12. Rapid generation of hypomorphic mutations. Arthur LL, Chung JJ, Jankirama P, Keefer KM, Kolotilin I, Pavlovic-Djuranovic S, Chalker DL, Grbic V, Green R, Menassa R, True HL, Skeath JB, Djuranovic S. Nat Commun 8 14112 (2017)
  13. PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Hwang SB, Lee CJ, Lee S, Ma S, Kang YM, Cho KH, Kim SY, Kwon OY, Yoon CN, Kang YK, Yoon JH, Nam KY, Kim SG, In Y, Chai HH, Acree WE, Grant JA, Gibson KD, Jhon MS, Scheraga HA, No KT. J Phys Chem B 124 974-989 (2020)
  14. Quantitative Assessment of Chirality of Protein Secondary Structures and Phenylalanine Peptide Nanotubes. Sidorova A, Bystrov V, Lutsenko A, Shpigun D, Belova E, Likhachev I. Nanomaterials (Basel) 11 3299 (2021)
  15. Engineered ribosomes with tethered subunits for expanding biological function. Carlson ED, d'Aquino AE, Kim DS, Fulk EM, Hoang K, Szal T, Mankin AS, Jewett MC. Nat Commun 10 3920 (2019)
  16. Is Posttranslational Folding More Efficient Than Refolding from a Denatured State: A Computational Study. Vu QV, Nissley DA, Jiang Y, O'Brien EP, Li MS. J Phys Chem B 127 4761-4774 (2023)
  17. Newly identified lineages of porcine hemagglutinating encephalomyelitis virus exhibit respiratory phenotype. He WT, Li D, Baele G, Zhao J, Jiang Z, Ji X, Veit M, Suchard MA, Holmes EC, Lemey P, Boni MF, Su S. Virus Evol 9 vead051 (2023)
  18. Structures of chloramphenicol acetyltransferase III and Escherichia coli β-ketoacylsynthase III co-crystallized with partially hydrolysed acetyl-oxa(dethia)CoA. Benjamin AB, Stunkard LM, Ling J, Nice JN, Lohman JR. Acta Crystallogr F Struct Biol Commun 79 61-69 (2023)
  19. Towards accurate modeling of noncovalent interactions for protein rigidity analysis. Fox N, Streinu I. BMC Bioinformatics 14 Suppl 18 S3 (2013)


Reviews citing this publication (13)

  1. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. FEMS Microbiol. Rev. 28 519-542 (2004)
  2. Empirical potentials and functions for protein folding and binding. Vajda S, Sippl M, Novotny J. Curr. Opin. Struct. Biol. 7 222-228 (1997)
  3. O-Acetyltransferases for chloramphenicol and other natural products. Murray IA, Shaw WV. Antimicrob. Agents Chemother. 41 1-6 (1997)
  4. The genomic enzymology of antibiotic resistance. Morar M, Wright GD. Annu. Rev. Genet. 44 25-51 (2010)
  5. Acyltransferases in bacteria. Röttig A, Steinbüchel A. Microbiol. Mol. Biol. Rev. 77 277-321 (2013)
  6. Structure and noncanonical chemistry of nonribosomal peptide biosynthetic machinery. Condurso HL, Bruner SD. Nat Prod Rep 29 1099-1110 (2012)
  7. Structural biology in plant natural product biosynthesis--architecture of enzymes from monoterpenoid indole and tropane alkaloid biosynthesis. Stöckigt J, Panjikar S. Nat Prod Rep 24 1382-1400 (2007)
  8. Motifs involved in protein-protein interactions. Slingsby C, Bateman OA, Simpson A. Mol. Biol. Rep. 17 185-195 (1993)
  9. Crossroads of Antibiotic Resistance and Biosynthesis. Wencewicz TA. J Mol Biol 431 3370-3399 (2019)
  10. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Iacovelli R, Bovenberg RAL, Driessen AJM. J Ind Microbiol Biotechnol 48 kuab045 (2021)
  11. The many faces and important roles of protein-protein interactions during non-ribosomal peptide synthesis. Izoré T, Cryle MJ. Nat Prod Rep 35 1120-1139 (2018)
  12. Tetracycline-Inactivating Enzymes. Markley JL, Wencewicz TA. Front Microbiol 9 1058 (2018)
  13. Alcohol acyltransferases for the biosynthesis of esters. Liu G, Huang L, Lian J. Biotechnol Biofuels Bioprod 16 93 (2023)

Articles citing this publication (51)

  1. Development and validation of a genetic algorithm for flexible docking. Jones G, Willett P, Glen RC, Leach AR, Taylor R. J. Mol. Biol. 267 727-748 (1997)
  2. Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation. Komar AA, Lesnik T, Reiss C. FEBS Lett. 462 387-391 (1999)
  3. An oligomeric protein is imported into peroxisomes in vivo. McNew JA, Goodman JM. J. Cell Biol. 127 1245-1257 (1994)
  4. A network of orthogonal ribosome x mRNA pairs. Rackham O, Chin JW. Nat. Chem. Biol. 1 159-166 (2005)
  5. Conformational energy penalties of protein-bound ligands. Boström J, Norrby PO, Liljefors T. J. Comput. Aided Mol. Des. 12 383-396 (1998)
  6. HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Eisen MB, Wiley DC, Karplus M, Hubbard RE. Proteins 19 199-221 (1994)
  7. Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. Poornima CS, Dean PM. J. Comput. Aided Mol. Des. 9 500-512 (1995)
  8. Melatonin biosynthesis: the structure of serotonin N-acetyltransferase at 2.5 A resolution suggests a catalytic mechanism. Hickman AB, Klein DC, Dyda F. Mol. Cell 3 23-32 (1999)
  9. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Lu Y, Welsh JP, Swartz JR. Proc. Natl. Acad. Sci. U.S.A. 111 125-130 (2014)
  10. CD40 and LMP-1 both signal from lipid rafts but LMP-1 assembles a distinct, more efficient signaling complex. Kaykas A, Worringer K, Sugden B. EMBO J. 20 2641-2654 (2001)
  11. High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids. Goerke AR, Swartz JR. Biotechnol. Bioeng. 102 400-416 (2009)
  12. Mutational analysis of the C-domain in nonribosomal peptide synthesis. Bergendahl V, Linne U, Marahiel MA. Eur. J. Biochem. 269 620-629 (2002)
  13. Genetic analysis of bacterial acetyltransferases: identification of amino acids determining the specificities of the aminoglycoside 6'-N-acetyltransferase Ib and IIa proteins. Rather PN, Munayyer H, Mann PA, Hare RS, Miller GH, Shaw KJ. J. Bacteriol. 174 3196-3203 (1992)
  14. Mutational analyses of a type 2 peroxisomal targeting signal that is capable of directing oligomeric protein import into tobacco BY-2 glyoxysomes. Flynn CR, Mullen RT, Trelease RN. Plant J. 16 709-720 (1998)
  15. Acetyltransfer in natural product biosynthesis--functional cloning and molecular analysis of vinorine synthase. Bayer A, Ma X, Stöckigt J. Bioorg. Med. Chem. 12 2787-2795 (2004)
  16. The chloramphenicol acetyltransferase gene of Tn2424: a new breed of cat. Parent R, Roy PH. J. Bacteriol. 174 2891-2897 (1992)
  17. Crystal structure of the truncated cubic core component of the Escherichia coli 2-oxoglutarate dehydrogenase multienzyme complex. Knapp JE, Mitchell DT, Yazdi MA, Ernst SR, Reed LJ, Hackert ML. J. Mol. Biol. 280 655-668 (1998)
  18. Hydration in drug design. 2. Influence of local site surface shape on water binding. Poornima CS, Dean PM. J. Comput. Aided Mol. Des. 9 513-520 (1995)
  19. Six new candidate members of the alpha/beta twisted open-sheet family detected by sequence similarity to flavodoxin. Grandori R, Carey J. Protein Sci. 3 2185-2193 (1994)
  20. Induced expression of trimerized intracellular domains of the human tumor necrosis factor (TNF) p55 receptor elicits TNF effects. Vandevoorde V, Haegeman G, Fiers W. J. Cell Biol. 137 1627-1638 (1997)
  21. Do active site conformations of small ligands correspond to low free-energy solution structures? Vieth M, Hirst JD, Brooks CL. J. Comput. Aided Mol. Des. 12 563-572 (1998)
  22. Purification of liver aldehyde dehydrogenase by p-hydroxyacetophenone-sepharose affinity matrix and the coelution of chloramphenicol acetyl transferase from the same matrix with recombinantly expressed aldehyde dehydrogenase. Ghenbot G, Weiner H. Protein Expr. Purif. 3 470-478 (1992)
  23. Influence of global fluorination on chloramphenicol acetyltransferase activity and stability. Panchenko T, Zhu WW, Montclare JK. Biotechnol. Bioeng. 94 921-930 (2006)
  24. Overproduction of the pyruvate dehydrogenase multienzyme complex of Escherichia coli and site-directed substitutions in the E1p and E2p subunits. Russell GC, Machado RS, Guest JR. Biochem. J. 287 ( Pt 2) 611-619 (1992)
  25. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Schwarz S, Cardoso M. Antimicrob. Agents Chemother. 35 1551-1556 (1991)
  26. Site-directed mutagenesis of the dihydrolipoyl transacetylase component (E2p) of the pyruvate dehydrogenase complex from Azotobacter vinelandii. Binding of the peripheral components E1p and E3. Schulze E, Westphal AH, Boumans H, de Kok A. Eur. J. Biochem. 202 841-848 (1991)
  27. The catalytic domain of the dihydrolipoyl transacetylase component of the pyruvate dehydrogenase complex from Azotobacter vinelandii and Escherichia coli. Expression, purification, properties and preliminary X-ray analysis. Schulze E, Westphal AH, Obmolova G, Mattevi A, Hol WG, de Kok A. Eur. J. Biochem. 201 561-568 (1991)
  28. Antibiotic resistance due to an unusual ColE1-type replicon plasmid in Aeromonas salmonicida. Vincent AT, Emond-Rheault JG, Barbeau X, Attéré SA, Frenette M, Lagüe P, Charette SJ. Microbiology (Reading, Engl.) 162 942-953 (2016)
  29. Scoring predictive models using a reduced representation of proteins: model and energy definition. Fogolari F, Pieri L, Dovier A, Bortolussi L, Giugliarelli G, Corazza A, Esposito G, Viglino P. BMC Struct. Biol. 7 15 (2007)
  30. Comparative sequence analysis of the catB gene from Clostridium butyricum. Huggins AS, Bannam TL, Rood JI. Antimicrob. Agents Chemother. 36 2548-2551 (1992)
  31. Site-directed mutagenesis of the lipoate acetyltransferase of Escherichia coli. Russell GC, Guest JR. Proc Biol Sci 243 155-160 (1991)
  32. The structural basis for substrate versatility of chloramphenicol acetyltransferase CATI. Biswas T, Houghton JL, Garneau-Tsodikova S, Tsodikov OV. Protein Sci. 21 520-530 (2012)
  33. Thermoadaptation-directed evolution of chloramphenicol acetyltransferase in an error-prone thermophile using improved procedures. Kobayashi J, Furukawa M, Ohshiro T, Suzuki H. Appl. Microbiol. Biotechnol. 99 5563-5572 (2015)
  34. Fluorinated chloramphenicol acetyltransferase thermostability and activity profile: improved thermostability by a single-isoleucine mutant. Voloshchuk N, Lee MX, Zhu WW, Tanrikulu IC, Montclare JK. Bioorg. Med. Chem. Lett. 17 5907-5911 (2007)
  35. Cloning and nucleotide sequence analysis of a chloramphenicol acetyltransferase gene from Vibrio anguillarum. Zhao J, Aoki T. Microbiol. Immunol. 36 695-705 (1992)
  36. Comparison of Composer and ORCHESTRAR. Dolan MA, Keil M, Baker DS. Proteins 72 1243-1258 (2008)
  37. The pKa of the catalytic histidine residue of chloramphenicol acetyltransferase. Lewendon A, Shaw WV. Biochem. J. 290 ( Pt 1) 15-19 (1993)
  38. A plasmid toolkit for cloning chimeric cDNAs encoding customized fusion proteins into any Gateway destination expression vector. Buj R, Iglesias N, Planas AM, Santalucía T. BMC Mol. Biol. 14 18 (2013)
  39. Analysis of a conserved hydrophobic pocket important for the thermostability of Bacillus pumilus chloramphenicol acetyltransferase (CAT-86). Chirakkal H, Ford GC, Moir A. Protein Eng. 14 161-166 (2001)
  40. Flexsim-R: a virtual affinity fingerprint descriptor to calculate similarities of functional groups. Weber A, Teckentrup A, Briem H. J. Comput. Aided Mol. Des. 16 903-916 (2002)
  41. Ionic polypeptide tags for protein phase separation. Kapelner RA, Obermeyer AC. Chem Sci 10 2700-2707 (2019)
  42. Non-covalent binding of the heavy atom compound [Au(CN)2]- at the halide binding site of haloalkane dehalogenase from Xanthobacter autotrophicus GJ10. Verschueren KH, Franken SM, Rozeboom HJ, Kalk KH, Dijkstra BW. FEBS Lett. 323 267-270 (1993)
  43. Statistical relationships among docking scores for different protein binding sites. Koehler RT, Villar HO. J. Comput. Aided Mol. Des. 14 23-37 (2000)
  44. Altering small and medium alcohol selectivity in the wax ester synthase. Barney BM, Ohlert JM, Timler JG, Lijewski AM. Appl. Microbiol. Biotechnol. 99 9675-9684 (2015)
  45. Identification of the C2-1H histidine NMR resonances in chloramphenicol acetyltransferase by a 13C-1H heteronuclear multiple quantum coherence method. Derrick JP, Lian LY, Roberts GC, Shaw WV. FEBS Lett. 280 125-128 (1991)
  46. Purification and crystallization of Pseudomonas aeruginosa chloramphenicol acetyltransferase. Tian Y, Beaman TW, Roderick SL. Proteins 28 298-300 (1997)
  47. Structural basis for chain release from the enacyloxin polyketide synthase. Kosol S, Gallo A, Griffiths D, Valentic TR, Masschelein J, Jenner M, de Los Santos ELC, Manzi L, Sydor PK, Rea D, Zhou S, Fülöp V, Oldham NJ, Tsai SC, Challis GL, Lewandowski JR. Nat Chem 11 913-923 (2019)
  48. Deletion of the Bcnrps1 Gene Increases the Pathogenicity of Botrytis cinerea and Reduces Its Tolerance to the Exogenous Toxic Substances Spermidine and Pyrimethanil. Fernández-Morales A, Carbú M, González-Rodríguez VE, Papaspyrou S, Garrido C, Cantoral JM. J Fungi (Basel) 7 721 (2021)
  49. Engineering Escherichia coli for the production of butyl octanoate from endogenous octanoyl-CoA. Chacón MG, Kendrick EG, Leak DJ. PeerJ 7 e6971 (2019)
  50. Single mutation at a highly conserved region of chloramphenicol acetyltransferase enables isobutyl acetate production directly from cellulose by Clostridium thermocellum at elevated temperatures. Seo H, Lee JW, Garcia S, Trinh CT. Biotechnol Biofuels 12 245 (2019)
  51. Structural and Biochemical Studies of a Biocatalyst for the Enzymatic Production of Wax Esters. Petronikolou N, Nair SK. ACS Catal 8 6334-6344 (2018)


Related citations provided by authors (5)

  1. Crystal Structure of the Asp-199-Asn Mutant of Chloramphenicol Acetyltransferase to 2.35 Angstroms Resolution. Structural Consequences of Disruption of a Buried Salt-Bridge.. Gibbs MR, Moody PCE, Leslie AGW To be published -
  2. Evidence for Transition-State Stabilization by Serine-148 in the Catalytic Mechanism of Chloramphenicol Acetyltransferase. Lewendon A, Murray IA, Shaw WV, Gibbs MR, Leslie AGW Biochemistry 29 2075- (1990)
  3. Substitutions in the Active Site of Chloramphenicol Acetyltransferase. Role of a Conserved Aspartate. Lewendon A, Murray IA, Kleanthous C, Cullis PM, Shaw WV Biochemistry 27 7385- (1988)
  4. Structure of Chloramphenicol Acetyltransferase at 1.75-Angstroms Resolution. Leslie AGW, Moody PCE, Shaw WV Proc. Natl. Acad. Sci. U.S.A. 85 4133- (1988)
  5. Crystallization of a Type III Chloramphenicol Acetyl Transferase. Leslie AGW, Liddell JM, Shaw WV J. Mol. Biol. 188 283- (1986)