3bgm Citations

Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self.

Nat Immunol 9 1236-43 (2008)
Related entries: 3bh8, 3bh9, 3bhb

Cited: 94 times
EuropePMC logo PMID: 18836451

Abstract

Protein phosphorylation generates a source of phosphopeptides that are presented by major histocompatibility complex class I molecules and recognized by T cells. As deregulated phosphorylation is a hallmark of malignant transformation, the differential display of phosphopeptides on cancer cells provides an immunological signature of 'transformed self'. Here we demonstrate that phosphorylation can considerably increase peptide binding affinity for HLA-A2. To understand this, we solved crystal structures of four phosphopeptide-HLA-A2 complexes. These identified a novel peptide-binding motif centered on a solvent-exposed phosphate anchor. Our findings indicate that deregulated phosphorylation can create neoantigens by promoting binding to major histocompatibility complex molecules or by affecting the antigenic identity of presented epitopes. These results highlight the potential of phosphopeptides as novel targets for cancer immunotherapy.

Articles - 3bgm mentioned but not cited (5)

  1. Phosphorylation-dependent interaction between antigenic peptides and MHC class I: a molecular basis for the presentation of transformed self. Mohammed F, Cobbold M, Zarling AL, Salim M, Barrett-Wilt GA, Shabanowitz J, Hunt DF, Engelhard VH, Willcox BE. Nat. Immunol. 9 1236-1243 (2008)
  2. Broad TCR repertoire and diverse structural solutions for recognition of an immunodominant CD8+ T cell epitope. Song I, Gil A, Mishra R, Ghersi D, Selin LK, Stern LJ. Nat. Struct. Mol. Biol. 24 395-406 (2017)
  3. Molecular mechanism of phosphopeptide neoantigen immunogenicity. Patskovsky Y, Natarajan A, Patskovska L, Nyovanie S, Joshi B, Morin B, Brittsan C, Huber O, Gordon S, Michelet X, Schmitzberger F, Stein RB, Findeis MA, Hurwitz A, Van Dijk M, Buell JS, Underwood D, Krogsgaard M. Nat Commun 14 3763 (2023)
  4. Phosphosite-dependent presentation of dual phosphorylated peptides by MHC class I molecules. Zhao Y, Sun M, Zhang N, Liu X, Yue C, Feng L, Ji S, Liu X, Qi J, Wong CCL, Gao GF, Liu WJ. iScience 25 104013 (2022)
  5. Rosetta FlexPepDock to predict peptide-MHC binding: An approach for non-canonical amino acids. Bloodworth N, Barbaro NR, Moretti R, Harrison DG, Meiler J. PLoS One 17 e0275759 (2022)


Reviews citing this publication (35)

  1. α-Enolase: a promising therapeutic and diagnostic tumor target. Capello M, Ferri-Borgogno S, Cappello P, Novelli F. FEBS J. 278 1064-1074 (2011)
  2. Why must T cells be cross-reactive? Sewell AK. Nat. Rev. Immunol. 12 669-677 (2012)
  3. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Slingluff CL. Cancer J 17 343-350 (2011)
  4. Present Yourself! By MHC Class I and MHC Class II Molecules. Rock KL, Reits E, Neefjes J. Trends Immunol. 37 724-737 (2016)
  5. The Role of Neoantigens in Naturally Occurring and Therapeutically Induced Immune Responses to Cancer. Ward JP, Gubin MM, Schreiber RD. Adv. Immunol. 130 25-74 (2016)
  6. Insights into MHC class I antigen processing gained from large-scale analysis of class I ligands. Mester G, Hoffmann V, Stevanović S. Cell. Mol. Life Sci. 68 1521-1532 (2011)
  7. Post-translationally modified T cell epitopes: immune recognition and immunotherapy. Petersen J, Purcell AW, Rossjohn J. J. Mol. Med. 87 1045-1051 (2009)
  8. HLA variation and disease. Dendrou CA, Petersen J, Rossjohn J, Fugger L. Nat. Rev. Immunol. 18 325-339 (2018)
  9. Revival of the identification of cytotoxic T-lymphocyte epitopes for immunological diagnosis, therapy and vaccine development. Liu J, Zhang S, Tan S, Zheng B, Gao GF. Exp. Biol. Med. (Maywood) 236 253-267 (2011)
  10. Understanding the complexity and malleability of T-cell recognition. Miles JJ, McCluskey J, Rossjohn J, Gras S. Immunol. Cell Biol. 93 433-441 (2015)
  11. Building proteomic tool boxes to monitor MHC class I and class II peptides. Schumacher FR, Delamarre L, Jhunjhunwala S, Modrusan Z, Phung QT, Elias JE, Lill JR. Proteomics 17 (2017)
  12. Is It Possible to Develop Cancer Vaccines to Neoantigens, What Are the Major Challenges, and How Can These Be Overcome? Neoantigens: Nothing New in Spite of the Name. Finn OJ, Rammensee HG. Cold Spring Harb Perspect Biol 10 (2018)
  13. Neoantigens: promising targets for cancer therapy. Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Signal Transduct Target Ther 8 9 (2023)
  14. T-cell epitope discovery technologies. Sharma G, Holt RA. Hum. Immunol. 75 514-519 (2014)
  15. The Role of Mass Spectrometry and Proteogenomics in the Advancement of HLA Epitope Prediction. Creech AL, Ting YS, Goulding SP, Sauld JFK, Barthelme D, Rooney MS, Addona TA, Abelin JG. Proteomics 18 e1700259 (2018)
  16. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Joyce S, Ternette N. Proteomics 21 e2000143 (2021)
  17. Novel Antigen Targets for Immunotherapy of Acute Myeloid Leukemia. Goswami M, Hourigan CS. Curr Drug Targets 18 296-303 (2017)
  18. Advances in chemical probing of protein O-GlcNAc glycosylation: structural role and molecular mechanisms. Saha A, Bello D, Fernández-Tejada A. Chem Soc Rev 50 10451-10485 (2021)
  19. Auto-reactive T cells revised. Overestimation based on methodology? Thorlacius-Ussing G, Sørensen JF, Wandall HH, Pedersen AE. J. Immunol. Methods 420 56-59 (2015)
  20. Charting Immune Signaling Proteomes En Route to New Therapeutic Strategies. Haura EB, Beg AA, Rix U, Antonia S. Cancer Immunol Res 3 714-720 (2015)
  21. Informatics for cancer immunotherapy. Hammerbacher J, Snyder A. Ann. Oncol. 28 xii56-xii73 (2017)
  22. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules. Morita D, Sugita M. Immunology 149 139-145 (2016)
  23. Sources of Cancer Neoantigens beyond Single-Nucleotide Variants. Capietto AH, Hoshyar R, Delamarre L. Int J Mol Sci 23 10131 (2022)
  24. Structural aspects of chemical modifications in the MHC-restricted immunopeptidome; Implications for immune recognition. Sandalova T, Sala BM, Achour A. Front Chem 10 861609 (2022)
  25. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Bentzen AK, Hadrup SR. Immunooncol Technol 2 1-10 (2019)
  26. The pockets guide to HLA class I molecules. Nguyen AT, Szeto C, Gras S. Biochem Soc Trans 49 2319-2331 (2021)
  27. Vaccine Strategy in Melanoma. Kwak M, Leick KM, Melssen MM, Slingluff CL. Surg Oncol Clin N Am 28 337-351 (2019)
  28. Boosting Antitumor Immunity with an Expanded Neoepitope Landscape. Nagel R, Pataskar A, Champagne J, Agami R. Cancer Res 82 3637-3649 (2022)
  29. Empirical and Rational Design of T Cell Receptor-Based Immunotherapies. Jones HF, Molvi Z, Klatt MG, Dao T, Scheinberg DA. Front Immunol 11 585385 (2020)
  30. Employing proteomics in the study of antigen presentation: an update. Ramarathinam SH, Croft NP, Illing PT, Faridi P, Purcell AW. Expert Rev Proteomics 15 637-645 (2018)
  31. MHC Phosphopeptides: Promising Targets for Immunotherapy of Cancer and Other Chronic Diseases. Mahoney KE, Shabanowitz J, Hunt DF. Mol Cell Proteomics 20 100112 (2021)
  32. Mining the Immunopeptidome for Antigenic Peptides in Cancer. León-Letelier RA, Katayama H, Hanash S. Cancers (Basel) 14 4968 (2022)
  33. Modulation of T cell function and survival by the tumor microenvironment. Mani N, Andrews D, Obeng RC. Front Cell Dev Biol 11 1191774 (2023)
  34. Predicting Cross-Reactivity and Antigen Specificity of T Cell Receptors. Lee CH, Salio M, Napolitani G, Ogg G, Simmons A, Koohy H. Front Immunol 11 565096 (2020)
  35. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Li J, Xiao Z, Wang D, Jia L, Nie S, Zeng X, Hu W. Mol Cancer 22 141 (2023)

Articles citing this publication (54)

  1. Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Bassani-Sternberg M, Bräunlein E, Klar R, Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J, Slotta-Huspenina J, Specht K, Martignoni ME, Werner A, Hein R, H Busch D, Peschel C, Rad R, Cox J, Mann M, Krackhardt AM. Nat Commun 7 13404 (2016)
  2. Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Purcell AW, Ramarathinam SH, Ternette N. Nat Protoc 14 1687-1707 (2019)
  3. Identification of tumor-associated, MHC class II-restricted phosphopeptides as targets for immunotherapy. Depontieu FR, Qian J, Zarling AL, McMiller TL, Salay TM, Norris A, English AM, Shabanowitz J, Engelhard VH, Hunt DF, Topalian SL. Proc. Natl. Acad. Sci. U.S.A. 106 12073-12078 (2009)
  4. MHC class I-associated phosphopeptides are the targets of memory-like immunity in leukemia. Cobbold M, De La Peña H, Norris A, Polefrone JM, Qian J, English AM, Cummings KL, Penny S, Turner JE, Cottine J, Abelin JG, Malaker SA, Zarling AL, Huang HW, Goodyear O, Freeman SD, Shabanowitz J, Pratt G, Craddock C, Williams ME, Hunt DF, Engelhard VH. Sci Transl Med 5 203ra125 (2013)
  5. Association of a dominantly inherited hyperphosphorylated paraprotein target with sporadic and familial multiple myeloma and monoclonal gammopathy of undetermined significance: a case-control study. Grass S, Preuss KD, Ahlgrimm M, Fadle N, Regitz E, Pfoehler C, Murawski N, Pfreundschuh M. Lancet Oncol. 10 950-956 (2009)
  6. Phosphorylated self-peptides alter human leukocyte antigen class I-restricted antigen presentation and generate tumor-specific epitopes. Petersen J, Wurzbacher SJ, Williamson NA, Ramarathinam SH, Reid HH, Nair AK, Zhao AY, Nastovska R, Rudge G, Rossjohn J, Purcell AW. Proc. Natl. Acad. Sci. U.S.A. 106 2776-2781 (2009)
  7. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Gauba V, Grünewald J, Gorney V, Deaton LM, Kang M, Bursulaya B, Ou W, Lerner RA, Schmedt C, Geierstanger BH, Schultz PG, Ramirez-Montagut T. Proc. Natl. Acad. Sci. U.S.A. 108 12821-12826 (2011)
  8. Structure of a classical MHC class I molecule that binds "non-classical" ligands. Hee CS, Gao S, Loll B, Miller MM, Uchanska-Ziegler B, Daumke O, Ziegler A. PLoS Biol. 8 e1000557 (2010)
  9. Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Yanover C, Bradley P. Proc. Natl. Acad. Sci. U.S.A. 108 6981-6986 (2011)
  10. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST, Hildebrand WH, Cobbold M, Bai DL, Shabanowitz J, Hunt DF. Nat Protoc 10 1308-1318 (2015)
  11. High-sensitivity HLA class I peptidome analysis enables a precise definition of peptide motifs and the identification of peptides from cell lines and patients' sera. Ritz D, Gloger A, Weide B, Garbe C, Neri D, Fugmann T. Proteomics 16 1570-1580 (2016)
  12. Paraproteins of familial MGUS/multiple myeloma target family-typical antigens: hyperphosphorylation of autoantigens is a consistent finding in familial and sporadic MGUS/MM. Grass S, Preuss KD, Thome S, Weisenburger DD, Witt V, Lynch J, Zettl F, Trümper L, Fadle N, Regitz E, Lynch H, Pfreundschuh M. Blood 118 635-637 (2011)
  13. Structural basis for the presentation of tumor-associated MHC class II-restricted phosphopeptides to CD4+ T cells. Li Y, Depontieu FR, Sidney J, Salay TM, Engelhard VH, Hunt DF, Sette A, Topalian SL, Mariuzza RA. J. Mol. Biol. 399 596-603 (2010)
  14. Hyperphosphorylated paratarg-7: a new molecularly defined risk factor for monoclonal gammopathy of undetermined significance of the IgM type and Waldenstrom macroglobulinemia. Grass S, Preuss KD, Wikowicz A, Terpos E, Ziepert M, Nikolaus D, Yang Y, Fadle N, Regitz E, Dimopoulos MA, Treon SP, Hunter ZR, Pfreundschuh M. Blood 117 2918-2923 (2011)
  15. Structural insights into the binding of hepatitis B virus core peptide to HLA-A2 alleles: towards designing better vaccines. Liu J, Chen KY, Ren EC. Eur. J. Immunol. 41 2097-2106 (2011)
  16. Identification of Glycopeptides as Posttranslationally Modified Neoantigens in Leukemia. Malaker SA, Penny SA, Steadman LG, Myers PT, Loke JC, Raghavan M, Bai DL, Shabanowitz J, Hunt DF, Cobbold M. Cancer Immunol Res 5 376-384 (2017)
  17. A Molecular Basis for the Presentation of Phosphorylated Peptides by HLA-B Antigens. Alpízar A, Marino F, Ramos-Fernández A, Lombardía M, Jeko A, Pazos F, Paradela A, Santiago C, Heck AJ, Marcilla M. Mol. Cell Proteomics 16 181-193 (2017)
  18. The Evolving Landscape of Autoantigen Discovery and Characterization in Type 1 Diabetes. Purcell AW, Sechi S, DiLorenzo TP. Diabetes 68 879-886 (2019)
  19. Differential ion mobility spectrometry coupled to tandem mass spectrometry enables targeted leukemia antigen detection. Dharmasiri U, Isenberg SL, Glish GL, Armistead PM. J. Proteome Res. 13 4356-4362 (2014)
  20. The cellular redox environment alters antigen presentation. Trujillo JA, Croft NP, Dudek NL, Channappanavar R, Theodossis A, Webb AI, Dunstone MA, Illing PT, Butler NS, Fett C, Tscharke DC, Rossjohn J, Perlman S, Purcell AW. J. Biol. Chem. 289 27979-27991 (2014)
  21. Immune parameters to consider when choosing T-cell receptors for therapy. Burrows SR, Miles JJ. Front Immunol 4 229 (2013)
  22. Purification of soluble HLA class I complexes from human serum or plasma deliver high quality immuno peptidomes required for biomarker discovery. Ritz D, Gloger A, Neri D, Fugmann T. Proteomics 17 (2017)
  23. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. Mol Cell Proteomics 19 31-49 (2020)
  24. Autoantibody Repertoire in APECED Patients Targets Two Distinct Subgroups of Proteins. Fishman D, Kisand K, Hertel C, Rothe M, Remm A, Pihlap M, Adler P, Vilo J, Peet A, Meloni A, Podkrajsek KT, Battelino T, Bruserud Ø, Wolff ASB, Husebye ES, Kluger N, Krohn K, Ranki A, Peterson H, Hayday A, Peterson P. Front Immunol 8 976 (2017)
  25. Identification of Native and Posttranslationally Modified HLA-B*57:01-Restricted HIV Envelope Derived Epitopes Using Immunoproteomics. Ramarathinam SH, Gras S, Alcantara S, Yeung AWS, Mifsud NA, Sonza S, Illing PT, Glaros EN, Center RJ, Thomas SR, Kent SJ, Ternette N, Purcell DFJ, Rossjohn J, Purcell AW. Proteomics 18 e1700253 (2018)
  26. Nα-terminal acetylation for T cell recognition: molecular basis of MHC class I-restricted nα-acetylpeptide presentation. Sun M, Liu J, Qi J, Tefsen B, Shi Y, Yan J, Gao GF. J Immunol 192 5509-5519 (2014)
  27. Phosphorylated alpha-enolase induces autoantibodies in HLA-DR8 pancreatic cancer patients and triggers HLA-DR8 restricted T-cell activation. Capello M, Caorsi C, Bogantes Hernandez PJ, Dametto E, Bertinetto FE, Magistroni P, Rendine S, Amoroso A, Novelli F. Immunol. Lett. 167 11-16 (2015)
  28. Translating Immunopeptidomics to Immunotherapy-Decision-Making for Patient and Personalized Target Selection. Fritsche J, Rakitsch B, Hoffgaard F, Römer M, Schuster H, Kowalewski DJ, Priemer M, Stos-Zweifel V, Hörzer H, Satelli A, Sonntag A, Goldfinger V, Song C, Mahr A, Ott M, Schoor O, Weinschenk T. Proteomics 18 e1700284 (2018)
  29. Mass Spectrometry Based Immunopeptidomics Leads to Robust Predictions of Phosphorylated HLA Class I Ligands. Solleder M, Guillaume P, Racle J, Michaux J, Pak HS, Müller M, Coukos G, Bassani-Sternberg M, Gfeller D. Mol Cell Proteomics 19 390-404 (2020)
  30. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC, Baker BM. Nat. Chem. Biol. 14 934-942 (2018)
  31. Diketopiperazine Formation from FPGnK (n = 1-9) Peptides: Rates of Structural Rearrangements and Mechanisms. Zhang Z, Conant CR, El-Baba TJ, Raab SA, Fuller DR, Hales DA, Clemmer DE. J Phys Chem B 125 8107-8116 (2021)
  32. MHC-restricted phosphopeptide antigens: preclinical validation and first-in-humans clinical trial in participants with high-risk melanoma. Engelhard VH, Obeng RC, Cummings KL, Petroni GR, Ambakhutwala AL, Chianese-Bullock KA, Smith KT, Lulu A, Varhegyi N, Smolkin ME, Myers P, Mahoney KE, Shabanowitz J, Buettner N, Hall EH, Haden K, Cobbold M, Hunt DF, Weiss G, Gaughan E, Slingluff CL. J Immunother Cancer 8 (2020)
  33. Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus. Wu Y, Wang J, Fan S, Chen R, Liu Y, Zhang J, Yuan H, Liang R, Zhang N, Xia C. J. Virol. 91 (2017)
  34. The antigenic identity of human class I MHC phosphopeptides is critically dependent upon phosphorylation status. Mohammed F, Stones DH, Zarling AL, Willcox CR, Shabanowitz J, Cummings KL, Hunt DF, Cobbold M, Engelhard VH, Willcox BE. Oncotarget 8 54160-54172 (2017)
  35. caAtlas: An immunopeptidome atlas of human cancer. Yi X, Liao Y, Wen B, Li K, Dou Y, Savage SR, Zhang B. iScience 24 103107 (2021)
  36. Allogeneic Tumor Antigen-Specific T Cells for Broadly Applicable Adoptive Cell Therapy of Cancer. Molvi Z, O'Reilly RJ. Cancer Treat Res 183 131-159 (2022)
  37. Tumor Infiltrating Lymphocytes Target HLA-I Phosphopeptides Derived From Cancer Signaling in Colorectal Cancer. Penny SA, Abelin JG, Malaker SA, Myers PT, Saeed AZ, Steadman LG, Bai DL, Ward ST, Shabanowitz J, Hunt DF, Cobbold M. Front Immunol 12 723566 (2021)
  38. A TCR mimic monoclonal antibody reactive with the "public" phospho-neoantigen pIRS2/HLA-A*02:01 complex. Dao T, Mun SS, Molvi Z, Korontsvit T, Klatt MG, Khan AG, Nyakatura EK, Pohl MA, White TE, Balderes PJ, Lorenz IC, O'Reilly RJ, Scheinberg DA. JCI Insight 7 e151624 (2022)
  39. Amoxicillin Haptenation of α-Enolase is Modulated by Active Site Occupancy and Acetylation. González-Morena JM, Sánchez-Gómez FJ, Vida Y, Pérez-Inestrosa E, Salas M, Montañez MI, Altomare A, Aldini G, Pajares MA, Pérez-Sala D. Front Pharmacol 12 807742 (2021)
  40. Analysis of the affinity of influenza A virus protein epitopes for swine MHC I by a modified in vitro refolding method indicated cross-reactivity between swine and human MHC I specificities. Fan S, Wang Y, Wang X, Huang L, Zhang Y, Liu X, Zhu W. Immunogenetics 70 671-680 (2018)
  41. Carbamazepine-Mediated Adverse Drug Reactions: CBZ-10,11-epoxide but Not Carbamazepine Induces the Alteration of Peptides Presented by HLA-B∗15:02. Simper GS, Hò GT, Celik AA, Huyton T, Kuhn J, Kunze-Schumacher H, Blasczyk R, Bade-Döding C. J Immunol Res 2018 5086503 (2018)
  42. Challenges targeting cancer neoantigens in 2021: a systematic literature review. Chen I, Chen MY, Goedegebuure SP, Gillanders WE. Expert Rev Vaccines 20 827-837 (2021)
  43. Characteristics of Immune Memory and Effector Activity to Cancer-Expressed MHC Class I Phosphopeptides Differ in Healthy Donors and Ovarian Cancer Patients. Lulu AM, Cummings KL, Jeffery ED, Myers PT, Underwood D, Lacy RM, Chianese-Bullock KA, Slingluff CL, Modesitt SC, Engelhard VH. Cancer Immunol Res 9 1327-1341 (2021)
  44. Charge-based interactions through peptide position 4 drive diversity of antigen presentation by human leukocyte antigen class I molecules. Jackson KR, Antunes DA, Talukder AH, Maleki AR, Amagai K, Salmon A, Katailiha AS, Chiu Y, Fasoulis R, Rigo MM, Abella JR, Melendez BD, Li F, Sun Y, Sonnemann HM, Belousov V, Frenkel F, Justesen S, Makaju A, Liu Y, Horn D, Lopez-Ferrer D, Huhmer AF, Hwu P, Roszik J, Hawke D, Kavraki LE, Lizée G. PNAS Nexus 1 pgac124 (2022)
  45. Deciphering the landscape of phosphorylated HLA-II ligands. Solleder M, Racle J, Guillaume P, Coukos G, Bassani-Sternberg M, Gfeller D. iScience 25 104215 (2022)
  46. Generation of Phosphopeptide-Specific T Cell Lines as Tools for Melanoma Immunotherapy. Obeng RC, Ambakhutwala AL. Methods Mol Biol 2265 655-670 (2021)
  47. Immunological evaluation of a novel HLA-A2 restricted phosphopeptide of tumor associated Antigen, TRAP1, on cancer therapy. Lin MH, Shen KY, Liu BS, Chen IH, Sher YP, Tseng GC, Liu SJ, Sung WC. Vaccine X 1 100017 (2019)
  48. Murine xenograft bioreactors for human immunopeptidome discovery. Heather JM, Myers PT, Shi F, Aziz-Zanjani MO, Mahoney KE, Perez M, Morin B, Brittsan C, Shabanowitz J, Hunt DF, Cobbold M. Sci Rep 9 18558 (2019)
  49. Peptide presentation by bat MHC class I provides new insight into the antiviral immunity of bats. Lu D, Liu K, Zhang D, Yue C, Lu Q, Cheng H, Wang L, Chai Y, Qi J, Wang LF, Gao GF, Liu WJ. PLoS Biol. 17 e3000436 (2019)
  50. Pre-fractionation Extends but also Creates a Bias in the Detectable HLA Class Ι Ligandome. Demmers LC, Heck AJR, Wu W. J. Proteome Res. 18 1634-1643 (2019)
  51. Structures suggest an approach for converting weak self-peptide tumor antigens into superagonists for CD8 T cells in cancer. Wei P, Jordan KR, Buhrman JD, Lei J, Deng H, Marrack P, Dai S, Kappler JW, Slansky JE, Yin L. Proc Natl Acad Sci U S A 118 e2100588118 (2021)
  52. The landscape of MHC-presented phosphopeptides yields actionable shared tumor antigens for cancer immunotherapy across multiple HLA alleles. Molvi Z, Klatt MG, Dao T, Urraca J, Scheinberg DA, O'Reilly RJ. J Immunother Cancer 11 e006889 (2023)
  53. The presentation of SARS-CoV-2 peptides by the common HLA-A02:01 molecule. Szeto C, Chatzileontiadou DSM, Nguyen AT, Sloane H, Lobos CA, Jayasinghe D, Halim H, Smith C, Riboldi-Tunnicliffe A, Grant EJ, Gras S. iScience 24 102096 (2021)
  54. Vaccination with post-translational modified, homocitrullinated peptides induces CD8 T-cell responses that mediate antitumor immunity. Shah S, Cook KW, Symonds P, Weißer J, Skinner A, Al Omari A, Paston SJ, Pike I, Durrant LG, Brentville VA. J Immunother Cancer 11 e006966 (2023)