3agz Citations

Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70.

Biochemistry 49 8577-84 (2010)
Related entries: 3agx, 3agy

Cited: 28 times
EuropePMC logo PMID: 20809635

Abstract

Heat shock protein (Hsp) 40s play essential roles in cellular processes by cooperating with Hsp70 proteins. Hsp40 proteins recognize non-native polypeptides, deliver these peptides to Hsp70 proteins, and stimulate the ATPase activity of Hsp70 proteins to facilitate the correct folding of the polypeptides. We have determined the crystal structures of the C-terminal peptide-binding domain of human Hsp40 Hdj1 (CTD) and of its complex with the C-terminal octapeptide of human Hsp70, (634')GPTIEEVD(641'). CTD exists as a twisted, horseshoe-shaped homodimer. The protomer consists of two domains, I and II, with similar topologies. The octapeptides are located in two sites, 1 and 2, of domain I. In site 1, the octapeptide forms an antiparallel β-sheet with CTD. The negatively charged residues of the EEVD motif in the octapeptide form electrostatic interactions with the positively charged Lys residues of CTD. The Ile side chain of the octapeptide fits into the narrow concave formed by the hydrophobic residues of CTD. In site 2, the octapeptide also forms an antiparallel β-sheet with CTD, and the EEVD motif forms electrostatic interactions. The side chains of Pro and Ile of the octapeptide interact with the hydrophobic surface region of CTD site 2, which is broader and shallower than the concave binding region of site 1. This region seems to be capable of binding hydrophobic side chains that are bulkier than the Ile side chain. The roles of these two peptide-binding sites of Hdj1 are discussed.

Articles - 3agz mentioned but not cited (8)

  1. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, Guilbride DL, Wade RC, Morimoto RI, Mayer MP, Bukau B. Nature 524 247-251 (2015)
  2. Evolution of an intricate J-protein network driving protein disaggregation in eukaryotes. Nillegoda NB, Stank A, Malinverni D, Alberts N, Szlachcic A, Szlachcic A, Barducci A, De Los Rios P, Wade RC, Bukau B. Elife 6 e24560 (2017)
  3. Synergism between a foldase and an unfoldase: reciprocal dependence between the thioredoxin-like activity of DnaJ and the polypeptide-unfolding activity of DnaK. Mattoo RU, Farina Henriquez Cuendet A, Subanna S, Finka A, Priya S, Sharma SK, Goloubinoff P. Front Mol Biosci 1 7 (2014)
  4. Evolution and activation mechanism of the flavivirus class II membrane-fusion machinery. Vaney MC, Dellarole M, Duquerroy S, Medits I, Tsouchnikas G, Rouvinski A, England P, Stiasny K, Heinz FX, Rey FA. Nat Commun 13 3718 (2022)
  5. The roles of a flagellar HSP40 ensuring rhythmic beating. Zhu X, Poghosyan E, Rezabkova L, Mehall B, Sakakibara H, Hirono M, Kamiya R, Ishikawa T, Yang P. Mol Biol Cell 30 228-241 (2019)
  6. Hidden information on protein function in censuses of proteome foldedness. Cox D, Ang CS, Nillegoda NB, Reid GE, Hatters DM. Nat Commun 13 1992 (2022)
  7. Identification of a HTT-specific binding motif in DNAJB1 essential for suppression and disaggregation of HTT. Ayala Mariscal SM, Pigazzini ML, Richter Y, Özel M, Grothaus IL, Protze J, Ziege K, Kulke M, ElBediwi M, Vermaas JV, Colombi Ciacchi L, Köppen S, Liu F, Kirstein J. Nat Commun 13 4692 (2022)
  8. The functional mechanisms of synchronizing royal jelly consumption and physical activity on rat with multiple sclerosis-like behaviors hallmarks based on bioinformatics analysis, and experimental survey. Lohrasbi M, Taghian F, Jalali Dehkordi K, Hosseini SA. BMC Neurosci 23 34 (2022)


Reviews citing this publication (8)

  1. The human HSP70 family of chaperones: where do we stand? Radons J. Cell Stress Chaperones 21 379-404 (2016)
  2. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. Mayer MP, Gierasch LM. J Biol Chem 294 2085-2097 (2019)
  3. Allostery in the Hsp70 chaperone proteins. Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Top Curr Chem 328 99-153 (2013)
  4. HSP70 Multi-Functionality in Cancer. Albakova Z, Armeev GA, Kanevskiy LM, Kovalenko EI, Sapozhnikov AM. Cells 9 E587 (2020)
  5. The remarkable multivalency of the Hsp70 chaperones. Zuiderweg ER, Hightower LE, Gestwicki JE. Cell Stress Chaperones 22 173-189 (2017)
  6. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Liu Q, Liang C, Zhou L. Protein Sci 29 378-390 (2020)
  7. ATP-driven molecular chaperone machines. Clare DK, Saibil HR. Biopolymers 99 846-859 (2013)
  8. Multivalent protein-protein interactions are pivotal regulators of eukaryotic Hsp70 complexes. Johnson OT, Gestwicki JE. Cell Stress Chaperones 27 397-415 (2022)

Articles citing this publication (12)

  1. Structural characterization of the substrate transfer mechanism in Hsp70/Hsp90 folding machinery mediated by Hop. Alvira S, Cuéllar J, Röhl A, Yamamoto S, Itoh H, Alfonso C, Rivas G, Buchner J, Valpuesta JM. Nat Commun 5 5484 (2014)
  2. HSP40 proteins use class-specific regulation to drive HSP70 functional diversity. Faust O, Abayev-Avraham M, Wentink AS, Maurer M, Nillegoda NB, London N, Bukau B, Rosenzweig R. Nature 587 489-494 (2020)
  3. DNAJB6 is a peptide-binding chaperone which can suppress amyloid fibrillation of polyglutamine peptides at substoichiometric molar ratios. Månsson C, Kakkar V, Monsellier E, Sourigues Y, Härmark J, Kampinga HH, Melki R, Emanuelsson C. Cell Stress Chaperones 19 227-239 (2014)
  4. Structural basis for client recognition and activity of Hsp40 chaperones. Jiang Y, Rossi P, Kalodimos CG. Science 365 1313-1319 (2019)
  5. Roles of intramolecular and intermolecular interactions in functional regulation of the Hsp70 J-protein co-chaperone Sis1. Yu HY, Ziegelhoffer T, Osipiuk J, Ciesielski SJ, Baranowski M, Zhou M, Joachimiak A, Craig EA. J Mol Biol 427 1632-1643 (2015)
  6. Structural modelling of the DNAJB6 oligomeric chaperone shows a peptide-binding cleft lined with conserved S/T-residues at the dimer interface. Söderberg CAG, Månsson C, Bernfur K, Rutsdottir G, Härmark J, Rajan S, Al-Karadaghi S, Rasmussen M, Höjrup P, Hebert H, Emanuelsson C. Sci Rep 8 5199 (2018)
  7. Functionality of Class A and Class B J-protein co-chaperones with Hsp70. Yu HY, Ziegelhoffer T, Craig EA. FEBS Lett 589 2825-2830 (2015)
  8. Human Hsp40 proteins, DNAJA1 and DNAJA2, as potential targets of the immune response triggered by bacterial DnaJ in rheumatoid arthritis. Kotlarz A, Tukaj S, Krzewski K, Brycka E, Lipinska B. Cell Stress Chaperones 18 653-659 (2013)
  9. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities. Durech M, Trcka F, Man P, Blackburn EA, Hernychova L, Dvorakova P, Coufalova D, Kavan D, Vojtesek B, Muller P. Mol Cell Proteomics 15 1710-1727 (2016)
  10. General Structural and Functional Features of Molecular Chaperones. Edkins AL, Boshoff A. Adv Exp Med Biol 1340 11-73 (2021)
  11. Two distinct classes of cochaperones compete for the EEVD motif in heat shock protein 70 to tune its chaperone activities. Johnson OT, Nadel CM, Carroll EC, Arhar T, Gestwicki JE. J Biol Chem 298 101697 (2022)
  12. DNAJB6 mutants display toxic gain of function through unregulated interaction with Hsp70 chaperones. Abayev-Avraham M, Salzberg Y, Gliksberg D, Oren-Suissa M, Rosenzweig R. Nat Commun 14 7066 (2023)