2ya8 Citations

Structural basis for Streptococcus pneumoniae NanA inhibition by influenza antivirals zanamivir and oseltamivir carboxylate.

J Mol Biol 409 496-503 (2011)
Related entries: 2ya4, 2ya5, 2ya6, 2ya7

Cited: 29 times
EuropePMC logo PMID: 21514303

Abstract

The human pathogen Streptococcus pneumoniae is the major cause of bacterial meningitis, respiratory tract infection, septicemia, and otitis media. The bacterium expresses neuraminidase (NA) proteins that contribute to pathogenesis by cleaving sialic acids from host glycoconjugates, thereby enhancing biofilm formation and colonization. Recent in vivo experiments have shown that antiviral compounds, widely used in clinics and designed to inhibit influenza NA, significantly reduce biofilm formation and nasopharyngeal colonization of S. pneumoniae in mice. Here, we present the structural basis for the beneficial effect of these compounds against pneumococcal infection. Crystal structures of pneumococcal NanA in complex with zanamivir and oseltamivir carboxylate are discussed, correlated with measured inhibitory constants K(i), and compared with the binding modes of the inhibitors in the viral enzyme. Inhibitor structures show for the first time how clinically approved anti-influenza compounds interact with an NA of the human pathogen S. pneumoniae and give a rational explanation for their antibacterial effects.

Articles - 2ya8 mentioned but not cited (1)

  1. Sequence diversity of NanA manifests in distinct enzyme kinetics and inhibitor susceptibility. Xu Z, von Grafenstein S, Walther E, Fuchs JE, Liedl KR, Sauerbrei A, Schmidtke M. Sci Rep 6 25169 (2016)


Reviews citing this publication (6)

  1. Interactions between Streptococcus pneumoniae and influenza virus: a mutually beneficial relationship? Short KR, Habets MN, Hermans PW, Diavatopoulos DA. Future Microbiol 7 609-624 (2012)
  2. Pneumococcal surface proteins: when the whole is greater than the sum of its parts. Pérez-Dorado I, Galan-Bartual S, Hermoso JA. Mol Oral Microbiol 27 221-245 (2012)
  3. Viral bacterial co-infection of the respiratory tract during early childhood. Brealey JC, Sly PD, Young PR, Chappell KJ. FEMS Microbiol. Lett. 362 (2015)
  4. Influenza-associated thrombotic microangiopathies. Bitzan M, Zieg J. Pediatr. Nephrol. 33 2009-2025 (2018)
  5. Co-infection of the respiratory epithelium, scene of complex functional interactions between viral, bacterial, and human neuraminidases. Escuret V, Terrier O. Front Microbiol 14 1137336 (2023)
  6. The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Mikušová M, Tomčíková K, Briestenská K, Kostolanský F, Varečková E. Viruses 14 1064 (2022)

Articles citing this publication (22)

  1. Discovery of intramolecular trans-sialidases in human gut microbiota suggests novel mechanisms of mucosal adaptation. Tailford LE, Owen CD, Walshaw J, Crost EH, Hardy-Goddard J, Le Gall G, de Vos WM, Taylor GL, Juge N. Nat Commun 6 7624 (2015)
  2. Streptococcus pneumoniae NanC: STRUCTURAL INSIGHTS INTO THE SPECIFICITY AND MECHANISM OF A SIALIDASE THAT PRODUCES A SIALIDASE INHIBITOR. Owen CD, Lukacik P, Potter JA, Sleator O, Taylor GL, Walsh MA. J. Biol. Chem. 290 27736-27748 (2015)
  3. Antipneumococcal activity of neuraminidase inhibiting artocarpin. Walther E, Richter M, Xu Z, Kramer C, von Grafenstein S, Kirchmair J, Grienke U, Rollinger JM, Liedl KR, Slevogt H, Sauerbrei A, Saluz HP, Pfister W, Schmidtke M. Int. J. Med. Microbiol. 305 289-297 (2015)
  4. Dual Acting Neuraminidase Inhibitors Open New Opportunities to Disrupt the Lethal Synergism between Streptococcus pneumoniae and Influenza Virus. Walther E, Xu Z, Richter M, Kirchmair J, Grienke U, Rollinger JM, Krumbholz A, Saluz HP, Pfister W, Sauerbrei A, Schmidtke M. Front Microbiol 7 357 (2016)
  5. Conformational analysis of StrH, the surface-attached exo-β-D-N-acetylglucosaminidase from Streptococcus pneumoniae. Pluvinage B, Chitayat S, Ficko-Blean E, Abbott DW, Kunjachen JM, Grondin J, Spencer HL, Smith SP, Boraston AB. J. Mol. Biol. 425 334-349 (2013)
  6. Streptococcus pneumoniae Sialidase SpNanB-Catalyzed One-Pot Multienzyme (OPME) Synthesis of 2,7-Anhydro-Sialic Acids as Selective Sialidase Inhibitors. Xiao A, Slack TJ, Li Y, Shi D, Yu H, Li W, Liu Y, Chen X. J. Org. Chem. 83 10798-10804 (2018)
  7. Optimization of a direct spectrophotometric method to investigate the kinetics and inhibition of sialidases. Hayre JK, Xu G, Borgianni L, Taylor GL, Andrew PW, Docquier JD, Oggioni MR. BMC Biochem. 13 19 (2012)
  8. Oseltamivir PK/PD Modeling and Simulation to Evaluate Treatment Strategies against Influenza-Pneumococcus Coinfection. Boianelli A, Sharma-Chawla N, Bruder D, Hernandez-Vargas EA. Front Cell Infect Microbiol 6 60 (2016)
  9. Discovery and Characterization of Diazenylaryl Sulfonic Acids as Inhibitors of Viral and Bacterial Neuraminidases. Hoffmann A, Richter M, von Grafenstein S, Walther E, Xu Z, Schumann L, Grienke U, Mair CE, Kramer C, Rollinger JM, Liedl KR, Schmidtke M, Kirchmair J. Front Microbiol 8 205 (2017)
  10. Desialylation of Platelets by Pneumococcal Neuraminidase A Induces ADP-Dependent Platelet Hyperreactivity. Kullaya V, de Jonge MI, Langereis JD, van der Gaast-de Jongh CE, Büll C, Adema GJ, Lefeber D, Cremers AJ, Mmbaga BT, de Groot PG, de Mast Q, van der Ven AJ. Infect. Immun. 86 (2018)
  11. Highly specific and rapid glycan based amperometric detection of influenza viruses. Cui X, Das A, Dhawane AN, Sweeney J, Zhang X, Chivukula V, Iyer SS. Chem Sci 8 3628-3634 (2017)
  12. Neuraminidase A from Streptococcus pneumoniae has a modular organization of catalytic and lectin domains separated by a flexible linker. Sharapova Y, Suplatov D, Švedas V. FEBS J. 285 2428-2445 (2018)
  13. Pneumococcal neuraminidase activates TGF-β signalling. Gratz N, Loh LN, Mann B, Gao G, Carter R, Rosch J, Tuomanen EI. Microbiology (Reading, Engl.) 163 1198-1207 (2017)
  14. Different Inhibitory Potencies of Oseltamivir Carboxylate, Zanamivir, and Several Tannins on Bacterial and Viral Neuraminidases as Assessed in a Cell-Free Fluorescence-Based Enzyme Inhibition Assay. Quosdorf S, Schuetz A, Kolodziej H. Molecules 22 (2017)
  15. The elusive crystal structure of the neuraminidase inhibitor Tamiflu (oseltamivir phosphate): molecular details of action. Naumov P, Yasuda N, Rabeh WM, Bernstein J. Chem. Commun. (Camb.) 49 1948-1950 (2013)
  16. An easy, rapid, and sensitive method for detection of drug-resistant influenza virus by using a sialidase fluorescent imaging probe, BTP3-Neu5Ac. Kato D, Kurebayashi Y, Takahashi T, Otsubo T, Otake H, Yamazaki M, Tamoto C, Minami A, Ikeda K, Suzuki T. PLoS ONE 13 e0200761 (2018)
  17. Exploration of Binding Mechanism of a Potential Streptococcus pneumoniae Neuraminidase Inhibitor from Herbaceous Plants by Molecular Simulation. Guan S, Zhu K, Dong Y, Li H, Yang S, Wang S, Shan Y. Int J Mol Sci 21 (2020)
  18. Influenza virus and pneumococcal neuraminidases enhance catalysis by similar yet distinct sialic acid-binding strategies. Klenow L, Elfageih R, Gao J, Wan H, Withers SG, de Gier JW, Daniels R. J Biol Chem 299 102891 (2023)
  19. Modulation of the activity of moxifloxacin and solithromycin in an in vitro pharmacodynamic model of Streptococcus pneumoniae naive and induced biofilms. Vandevelde NM, Tulkens PM, Muccioli GG, Van Bambeke F. J. Antimicrob. Chemother. 70 1713-1726 (2015)
  20. Pyrrolo[2,3-e]indazole as a novel chemotype for both influenza A virus and pneumococcal neuraminidase inhibitors. Egorova A, Richter M, Khrenova M, Dietrich E, Tsedilin A, Kazakova E, Lepioshkin A, Jahn B, Chernyshev V, Schmidtke M, Makarov V. RSC Adv 13 18253-18261 (2023)
  21. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Front Microbiol 11 582437 (2020)
  22. Triazole-linked transition state analogs as selective inhibitors against V. cholerae sialidase. Slack TJ, Li W, Shi D, McArthur JB, Zhao G, Li Y, Xiao A, Khedri Z, Yu H, Liu Y, Chen X. Bioorg. Med. Chem. 26 5751-5757 (2018)