2y8o Citations

Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove.

Abstract

Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear "docking" motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38α, and extracellular signal-regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38α. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.

Reviews - 2y8o mentioned but not cited (3)

  1. Molecular basis of MAP kinase regulation. Peti W, Page R. Protein Sci 22 1698-1710 (2013)
  2. Orchestrating serine/threonine phosphorylation and elucidating downstream effects by short linear motifs. Kliche J, Ivarsson Y. Biochem J 479 1-22 (2022)
  3. Crystallographic mining of ASK1 regulators to unravel the intricate PPI interfaces for the discovery of small molecule. Agrahari AK, Dikshit M, Asthana S. Comput Struct Biotechnol J 20 3734-3754 (2022)

Articles - 2y8o mentioned but not cited (8)

  1. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Sci Signal 5 ra74 (2012)
  2. The structural pathway of interleukin 1 (IL-1) initiated signaling reveals mechanisms of oncogenic mutations and SNPs in inflammation and cancer. Acuner Ozbabacan SE, Gursoy A, Nussinov R, Keskin O. PLoS Comput Biol 10 e1003470 (2014)
  3. p38α Mitogen-Activated Protein Kinase Is a Druggable Target in Pancreatic Adenocarcinoma. Yang L, Sun X, Ye Y, Lu Y, Zuo J, Liu W, Elcock A, Zhu S. Front Oncol 9 1294 (2019)
  4. Mapping low-affinity/high-specificity peptide-protein interactions using ligand-footprinting mass spectrometry. Parker BW, Goncz EJ, Krist DT, Statsyuk AV, Nesvizhskii AI, Weiss EL. Proc Natl Acad Sci U S A 116 21001-21011 (2019)
  5. Engineering a Protein Binder Specific for p38α with Interface Expansion. Hussain M, Angus SP, Kuhlman B. Biochemistry 57 4526-4535 (2018)
  6. Enthalpy-Entropy Compensation in the Promiscuous Interaction of an Intrinsically Disordered Protein with Homologous Protein Partners. Kragelj J, Orand T, Delaforge E, Tengo L, Blackledge M, Palencia A, Jensen MR. Biomolecules 11 1204 (2021)
  7. The interaction of p38 with its upstream kinase MKK6. Kumar GS, Page R, Peti W. Protein Sci 30 908-913 (2021)
  8. Structural basis of a redox-dependent conformational switch that regulates the stress kinase p38α. Pous J, Baginski B, Martin-Malpartida P, González L, Scarpa M, Aragon E, Ruiz L, Mees RA, Iglesias-Fernández J, Orozco M, Nebreda AR, Macias MJ. Nat Commun 14 7920 (2023)


Reviews citing this publication (13)

  1. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Zeke A, Misheva M, Reményi A, Bogoyevitch MA. Microbiol Mol Biol Rev 80 793-835 (2016)
  2. Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Miller CJ, Turk BE. Trends Biochem Sci 43 380-394 (2018)
  3. MAPK-Activated Protein Kinases (MKs): Novel Insights and Challenges. Gaestel M. Front Cell Dev Biol 3 88 (2015)
  4. Revisiting protein kinase-substrate interactions: Toward therapeutic development. de Oliveira PS, Ferraz FA, Pena DA, Pramio DT, Morais FA, Schechtman D. Sci Signal 9 re3 (2016)
  5. The Evolution of HD2 Proteins in Green Plants. Bourque S, Jeandroz S, Grandperret V, Lehotai N, Aimé S, Soltis DE, Miles NW, Melkonian M, Deyholos MK, Leebens-Mack JH, Chase MW, Rothfels CJ, Stevenson DW, Graham SW, Wang X, Wu S, Pires JC, Edger PP, Yan Z, Xie Y, Carpenter EJ, Wong GKS, Wendehenne D, Nicolas-Francès V. Trends Plant Sci 21 1008-1016 (2016)
  6. Disordered Protein Kinase Regions in Regulation of Kinase Domain Cores. Gógl G, Kornev AP, Reményi A, Taylor SS. Trends Biochem Sci 44 300-311 (2019)
  7. Targeting ERK beyond the boundaries of the kinase active site in melanoma. Sammons RM, Ghose R, Tsai KY, Dalby KN. Mol Carcinog 58 1551-1570 (2019)
  8. Substrates of the MAPK Slt2: Shaping Yeast Cell Integrity. González-Rubio G, Sastre-Vergara L, Molina M, Martín H, Fernández-Acero T. J Fungi (Basel) 8 368 (2022)
  9. A walk-through MAPK structure and functionality with the 30-year-old yeast MAPK Slt2. González-Rubio G, Sellers-Moya Á, Martín H, Molina M. Int Microbiol 24 531-543 (2021)
  10. MK5: A novel regulator of cardiac fibroblast function? Sahadevan P, Allen BG. IUBMB Life 69 785-794 (2017)
  11. Targeting Kinase Interaction Networks: A New Paradigm in PPI Based Design of Kinase Inhibitors. Jenardhanan P, Panneerselvam M, Mathur PP. Curr Top Med Chem 19 467-485 (2019)
  12. A Perspective on the Development of c-Jun N-terminal Kinase Inhibitors as Therapeutics for Alzheimer's Disease: Investigating Structure through Docking Studies. Cho H, Hah JM. Biomedicines 9 1431 (2021)
  13. Specificity models in MAPK cascade signaling. Ma Y, Nicolet J. FEBS Open Bio 13 1177-1192 (2023)

Articles citing this publication (78)

  1. A Toxoplasma dense granule protein, GRA24, modulates the early immune response to infection by promoting a direct and sustained host p38 MAPK activation. Braun L, Brenier-Pinchart MP, Yogavel M, Curt-Varesano A, Curt-Bertini RL, Hussain T, Kieffer-Jaquinod S, Coute Y, Pelloux H, Tardieux I, Sharma A, Belrhali H, Bougdour A, Hakimi MA. J Exp Med 210 2071-2086 (2013)
  2. Differential PROTAC substrate specificity dictated by orientation of recruited E3 ligase. Smith BE, Wang SL, Jaime-Figueroa S, Harbin A, Wang J, Hamman BD, Crews CM. Nat Commun 10 131 (2019)
  3. The eukaryotic linear motif resource - 2018 update. Gouw M, Michael S, Sámano-Sánchez H, Kumar M, Zeke A, Lang B, Bely B, Chemes LB, Davey NE, Deng Z, Diella F, Gürth CM, Huber AK, Kleinsorg S, Schlegel LS, Palopoli N, Roey KV, Altenberg B, Reményi A, Dinkel H, Gibson TJ. Nucleic Acids Res 46 D428-D434 (2018)
  4. Phosphorylation of DGCR8 increases its intracellular stability and induces a progrowth miRNA profile. Herbert KM, Pimienta G, DeGregorio SJ, Alexandrov A, Steitz JA. Cell Rep 5 1070-1081 (2013)
  5. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites. Huang J, Willems P, Wei B, Tian C, Ferreira RB, Bodra N, Martínez Gache SA, Wahni K, Liu K, Vertommen D, Gevaert K, Carroll KS, Van Montagu M, Yang J, Van Breusegem F, Messens J. Proc Natl Acad Sci U S A 116 21256-21261 (2019)
  6. Structure of ERK2 bound to PEA-15 reveals a mechanism for rapid release of activated MAPK. Mace PD, Wallez Y, Egger MF, Dobaczewska MK, Robinson H, Pasquale EB, Riedl SJ. Nat Commun 4 1681 (2013)
  7. PPARγ recruitment to active ERK during memory consolidation is required for Alzheimer's disease-related cognitive enhancement. Jahrling JB, Hernandez CM, Denner L, Dineley KT. J Neurosci 34 4054-4063 (2014)
  8. Characterization of Neuronal Tau Protein as a Target of Extracellular Signal-regulated Kinase. Qi H, Prabakaran S, Cantrelle FX, Chambraud B, Gunawardena J, Lippens G, Landrieu I. J Biol Chem 291 7742-7753 (2016)
  9. Emerging topics in the cell biology of mitogen-activated protein kinases. Šamajová O, Komis G, Šamaj J. Trends Plant Sci 18 140-148 (2013)
  10. Structure and dynamics of the MKK7-JNK signaling complex. Kragelj J, Palencia A, Nanao MH, Maurin D, Bouvignies G, Blackledge M, Jensen MR. Proc Natl Acad Sci U S A 112 3409-3414 (2015)
  11. Systematic discovery of linear binding motifs targeting an ancient protein interaction surface on MAP kinases. Zeke A, Bastys T, Alexa A, Garai Á, Mészáros B, Kirsch K, Dosztányi Z, Kalinina OV, Reményi A. Mol Syst Biol 11 837 (2015)
  12. Structural Basis of Ribosomal S6 Kinase 1 (RSK1) Inhibition by S100B Protein: MODULATION OF THE EXTRACELLULAR SIGNAL-REGULATED KINASE (ERK) SIGNALING CASCADE IN A CALCIUM-DEPENDENT WAY. Gógl G, Alexa A, Kiss B, Katona G, Kovács M, Bodor A, Reményi A, Nyitray L. J Biol Chem 291 11-27 (2016)
  13. The Structure of an NDR/LATS Kinase-Mob Complex Reveals a Novel Kinase-Coactivator System and Substrate Docking Mechanism. Gógl G, Schneider KD, Yeh BJ, Alam N, Nguyen Ba AN, Moses AM, Hetényi C, Reményi A, Weiss EL. PLoS Biol 13 e1002146 (2015)
  14. Mapping the binding interface of ERK and transcriptional repressor Capicua using photocrosslinking. Futran AS, Kyin S, Shvartsman SY, Link AJ. Proc Natl Acad Sci U S A 112 8590-8595 (2015)
  15. The human Na(+)/H(+) exchanger 1 is a membrane scaffold protein for extracellular signal-regulated kinase 2. Hendus-Altenburger R, Pedraz-Cuesta E, Olesen CW, Papaleo E, Schnell JA, Hopper JT, Robinson CV, Pedersen SF, Kragelund BB. BMC Biol 14 31 (2016)
  16. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structure 25 16-26 (2017)
  17. Bipartite anchoring of SCREAM enforces stomatal initiation by coupling MAP kinases to SPEECHLESS. Putarjunan A, Ruble J, Srivastava A, Zhao C, Rychel AL, Hofstetter AK, Tang X, Zhu JK, Tama F, Zheng N, Torii KU. Nat Plants 5 742-754 (2019)
  18. Structural mechanism for the specific assembly and activation of the extracellular signal regulated kinase 5 (ERK5) module. Glatz G, Gógl G, Alexa A, Reményi A. J Biol Chem 288 8596-8609 (2013)
  19. Structural assembly of the signaling competent ERK2-RSK1 heterodimeric protein kinase complex. Alexa A, Gógl G, Glatz G, Garai Á, Zeke A, Varga J, Dudás E, Jeszenői N, Bodor A, Hetényi C, Reményi A. Proc Natl Acad Sci U S A 112 2711-2716 (2015)
  20. Ancient MAPK ERK7 is regulated by an unusual inhibitory scaffold required for Toxoplasma apical complex biogenesis. Back PS, O'Shaughnessy WJ, Moon AS, Dewangan PS, Hu X, Sha J, Wohlschlegel JA, Bradley PJ, Reese ML. Proc Natl Acad Sci U S A 117 12164-12173 (2020)
  21. Comprehensive Analysis of Aspergillus nidulans PKA Phosphorylome Identifies a Novel Mode of CreA Regulation. Ribeiro LFC, Chelius C, Boppidi KR, Naik NS, Hossain S, Ramsey JJJ, Kumar J, Ribeiro LF, Ostermeier M, Tran B, Ah Goo Y, de Assis LJ, Ulas M, Bayram O, Goldman GH, Lincoln S, Srivastava R, Harris SD, Marten MR. mBio 10 e02825-18 (2019)
  22. Differential sensing of MAP kinases using SOX-peptides. Zamora-Olivares D, Kaoud TS, Jose J, Ellington A, Dalby KN, Anslyn EV. Angew Chem Int Ed Engl 53 14064-14068 (2014)
  23. Co-regulation of the transcription controlling ATF2 phosphoswitch by JNK and p38. Kirsch K, Zeke A, Tőke O, Sok P, Sethi A, Sebő A, Kumar GS, Egri P, Póti ÁL, Gooley P, Peti W, Bento I, Alexa A, Reményi A. Nat Commun 11 5769 (2020)
  24. Specificity of Phosphorylation Responses to Mitogen Activated Protein (MAP) Kinase Pathway Inhibitors in Melanoma Cells. Basken J, Stuart SA, Kavran AJ, Lee T, Ebmeier CC, Old WM, Ahn NG. Mol Cell Proteomics 17 550-564 (2018)
  25. ERK1/2/MAPK pathway-dependent regulation of the telomeric factor TRF2. Picco V, Coste I, Giraud-Panis MJ, Renno T, Gilson E, Pagès G. Oncotarget 7 46615-46627 (2016)
  26. Dynamic control of RSK complexes by phosphoswitch-based regulation. Gógl G, Biri-Kovács B, Póti ÁL, Vadászi H, Szeder B, Bodor A, Schlosser G, Ács A, Turiák L, Buday L, Alexa A, Nyitray L, Reményi A. FEBS J 285 46-71 (2018)
  27. Mycobacterium tuberculosis Mce2E suppresses the macrophage innate immune response and promotes epithelial cell proliferation. Qiang L, Wang J, Zhang Y, Ge P, Chai Q, Li B, Shi Y, Zhang L, Gao GF, Liu CH. Cell Mol Immunol 16 380-391 (2019)
  28. SIVcol Nef counteracts SERINC5 by promoting its proteasomal degradation but does not efficiently enhance HIV-1 replication in human CD4+ T cells and lymphoid tissue. Kmiec D, Akbil B, Ananth S, Hotter D, Sparrer KMJ, Stürzel CM, Trautz B, Ayouba A, Peeters M, Yao Z, Stagljar I, Passos V, Zillinger T, Goffinet C, Sauter D, Fackler OT, Kirchhoff F. PLoS Pathog 14 e1007269 (2018)
  29. Selective mitogen activated protein kinase activity sensors through the application of directionally programmable D domain motifs. Peterson LB, Yaffe MB, Imperiali B. Biochemistry 53 5771-5778 (2014)
  30. The differential regulation of p38α by the neuronal kinase interaction motif protein tyrosine phosphatases, a detailed molecular study. Francis DM, Kumar GS, Koveal D, Tortajada A, Page R, Peti W. Structure 21 1612-1623 (2013)
  31. Local destabilization, rigid body, and fuzzy docking facilitate the phosphorylation of the transcription factor Ets-1 by the mitogen-activated protein kinase ERK2. Piserchio A, Warthaka M, Kaoud TS, Callaway K, Dalby KN, Ghose R. Proc Natl Acad Sci U S A 114 E6287-E6296 (2017)
  32. Split Intein-Mediated Protein Ligation for detecting protein-protein interactions and their inhibition. Yao Z, Aboualizadeh F, Kroll J, Akula I, Snider J, Lyakisheva A, Tang P, Kotlyar M, Jurisica I, Boxem M, Stagljar I. Nat Commun 11 2440 (2020)
  33. Rewiring of RSK-PDZ Interactome by Linear Motif Phosphorylation. Gógl G, Biri-Kovács B, Durbesson F, Jane P, Nomine Y, Kostmann C, Bilics V, Simon M, Reményi A, Vincentelli R, Trave G, Nyitray L. J Mol Biol 431 1234-1249 (2019)
  34. Small G proteins Rac1 and Ras regulate serine/threonine protein phosphatase 5 (PP5)·extracellular signal-regulated kinase (ERK) complexes involved in the feedback regulation of Raf1. Mazalouskas MD, Godoy-Ruiz R, Weber DJ, Zimmer DB, Honkanen RE, Wadzinski BE. J Biol Chem 289 4219-4232 (2014)
  35. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. Bardwell AJ, Bardwell L. J Biol Chem 290 26661-26674 (2015)
  36. Co-conserved MAPK features couple D-domain docking groove to distal allosteric sites via the C-terminal flanking tail. Nguyen T, Ruan Z, Oruganty K, Kannan N. PLoS One 10 e0119636 (2015)
  37. Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Park H, Iqbal S, Hernandez P, Mora R, Zheng K, Feng Y, LoGrasso P. Sci Rep 5 8047 (2015)
  38. DDIT4 S-Nitrosylation Aids p38-MAPK Signaling Complex Assembly to Promote Hepatic Reactive Oxygen Species Production. Li Z, Zhao Q, Lu Y, Zhang Y, Li L, Li M, Chen X, Sun D, Duan Y, Xu Y. Adv Sci (Weinh) 8 e2101957 (2021)
  39. Interaction of kinase-interaction-motif protein tyrosine phosphatases with the mitogen-activated protein kinase ERK2. Francis DM, Koveal D, Tortajada A, Page R, Peti W. PLoS One 9 e91934 (2014)
  40. Transgelin-2 is a novel target of KRAS-ERK signaling involved in the development of pancreatic cancer. Sun Y, Peng W, He W, Luo M, Chang G, Shen J, Zhao X, Hu Y. J Exp Clin Cancer Res 37 166 (2018)
  41. Structural and functional basis for p38-MK2-activated Rsk signaling in toll-like receptor-stimulated dendritic cells. Zaru R, Edgar AJ, Hanauer A, Watts C. Mol Cell Biol 35 132-140 (2015)
  42. A Novel Class of Common Docking Domain Inhibitors That Prevent ERK2 Activation and Substrate Phosphorylation. Sammons RM, Perry NA, Li Y, Cho EJ, Piserchio A, Zamora-Olivares DP, Ghose R, Kaoud TS, Debevec G, Bartholomeusz C, Gurevich VV, Iverson TM, Giulianotti M, Houghten RA, Dalby KN. ACS Chem Biol 14 1183-1194 (2019)
  43. A non-catalytic herpesviral protein reconfigures ERK-RSK signaling by targeting kinase docking systems in the host. Alexa A, Sok P, Gross F, Albert K, Kobori E, Póti ÁL, Gógl G, Bento I, Kuang E, Taylor SS, Zhu F, Ciliberto A, Reményi A. Nat Commun 13 472 (2022)
  44. Quantification of ERK Kinase Activity in Biological Samples Using Differential Sensing. Zamora-Olivares D, Kaoud TS, Zeng L, Pridgen JR, Zhuang DL, Ekpo YE, Nye JR, Telles M, Anslyn EV, Dalby KN. ACS Chem Biol 15 83-92 (2020)
  45. Reactivities of the Front Pocket N-Terminal Cap Cysteines in Human Kinases. Liu R, Zhan S, Che Y, Shen J. J Med Chem 65 1525-1535 (2022)
  46. Combining Mutational Signatures, Clonal Fitness, and Drug Affinity to Define Drug-Specific Resistance Mutations in Cancer. Kaserer T, Blagg J. Cell Chem Biol 25 1359-1371.e2 (2018)
  47. Identification of allosteric ERK2 inhibitors through in silico biased screening and competitive binding assay. Kinoshita T, Sugiyama H, Mori Y, Takahashi N, Tomonaga A. Bioorg Med Chem Lett 26 955-958 (2016)
  48. Structural basis for the regulation of the mitogen-activated protein (MAP) kinase p38α by the dual specificity phosphatase 16 MAP kinase binding domain in solution. Kumar GS, Zettl H, Page R, Peti W. J Biol Chem 288 28347-28356 (2013)
  49. Structure-Guided Strategy for the Development of Potent Bivalent ERK Inhibitors. Lechtenberg BC, Mace PD, Sessions EH, Williamson R, Stalder R, Wallez Y, Roth GP, Riedl SJ, Pasquale EB. ACS Med Chem Lett 8 726-731 (2017)
  50. Failure to Target RANKL Signaling Through p38-MAPK Results in Defective Osteoclastogenesis in the Microphthalmia Cloudy-Eyed Mutant. Carey HA, Bronisz A, Cabrera J, Hildreth BE, Cuitiño M, Fu Q, Ahmad A, Toribio RE, Ostrowski MC, Sharma SM. J Cell Physiol 231 630-640 (2016)
  51. Crystal structure of the p38α MAP kinase in complex with a docking peptide from TAB1. Xin F, Wu J. Sci China Life Sci 56 653-660 (2013)
  52. Improvement of Ligand Affinity and Thermodynamic Properties by NMR-Based Evaluation of Local Dynamics and Surface Complementarity in the Receptor-Bound State. Mizukoshi Y, Takeuchi K, Arutaki M, Tokunaga Y, Takizawa T, Hanzawa H, Shimada I. Angew Chem Int Ed Engl 55 14606-14609 (2016)
  53. MAP Kinase-Mediated Activation of RSK1 and MK2 Substrate Kinases. Sok P, Gógl G, Kumar GS, Alexa A, Singh N, Kirsch K, Sebő A, Drahos L, Gáspári Z, Peti W, Reményi A. Structure 28 1101-1113.e5 (2020)
  54. A systematic study of protein labeling by fluorogenic probes using cysteine targeting vinyl sulfone-cyclooctyne tags. Söveges B, Imre T, Szende T, Póti ÁL, Cserép GB, Hegedűs T, Kele P, Németh K. Org Biomol Chem 14 6071-6078 (2016)
  55. Droplet-based screening of phosphate transfer catalysis reveals how epistasis shapes MAP kinase interactions with substrates. Scheele RA, Lindenburg LH, Petek M, Schober M, Dalby KN, Hollfelder F. Nat Commun 13 844 (2022)
  56. Engineering and cytosolic delivery of a native regulatory protein and its variants for modulation of ERK2 signaling pathway. Ryou JH, Sohn YK, Kim DG, Kyeong HH, Kim HS. Biotechnol Bioeng 115 839-849 (2018)
  57. Kinetic and mechanistic studies of p38α MAP kinase phosphorylation by MKK6. Wang YL, Zhang YY, Lu C, Zhang W, Deng H, Wu JW, Wang J, Wang ZX. FEBS J 286 1030-1052 (2019)
  58. Peptide Based Inhibitors of Protein Binding to the Mitogen-Activated Protein Kinase Docking Groove. Alexa A, Ember O, Szabó I, Mo'ath Y, Póti ÁL, Reményi A, Bánóczi Z. Front Mol Biosci 8 690429 (2021)
  59. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Sci Signal 16 eabm5518 (2023)
  60. Structural and functional characterization of the recombinant death domain from death-associated protein kinase. Dioletis E, Dingley AJ, Driscoll PC. PLoS One 8 e70095 (2013)
  61. The crystal structure of JNK from Drosophila melanogaster reveals an evolutionarily conserved topology with that of mammalian JNK proteins. Chimnaronk S, Sitthiroongruang J, Srisucharitpanit K, Srisaisup M, Ketterman AJ, Boonserm P. BMC Struct Biol 15 17 (2015)
  62. An intrinsic temporal order of c-JUN N-terminal phosphorylation regulates its activity by orchestrating co-factor recruitment. Waudby CA, Alvarez-Teijeiro S, Josue Ruiz E, Suppinger S, Pinotsis N, Brown PR, Behrens A, Christodoulou J, Mylona A. Nat Commun 13 6133 (2022)
  63. Kinetic network model to explain gain-of-function mutations in ERK2 enzyme. Misiura M, Kolomeisky AB. J Chem Phys 150 155101 (2019)
  64. A novel selective ERK1/2 inhibitor, Laxiflorin B, targets EGFR mutation subtypes in non-small-cell lung cancer. Chiang CY, Zhang M, Huang J, Zeng J, Chen C, Pan D, Yang H, Zhang T, Yang M, Han Q, Wang Z, Xiao T, Chen Y, Zou Y, Yin F, Li Z, Zhu L, Zheng D. Acta Pharmacol Sin (2023)
  65. Architecture of the MKK6-p38α complex defines the basis of MAPK specificity and activation. Juyoux P, Galdadas I, Gobbo D, von Velsen J, Pelosse M, Tully M, Vadas O, Gervasio FL, Pellegrini E, Bowler MW. Science 381 1217-1225 (2023)
  66. Function of SYDE C2-RhoGAP family as signaling hubs for neuronal development deduced by computational analysis. Kouchi Z, Kojima M. Sci Rep 12 4325 (2022)
  67. Identification of the Kinase-Substrate Recognition Interface between MYPT1 and Rho-Kinase. Amano M, Kanazawa Y, Kozawa K, Kaibuchi K. Biomolecules 12 159 (2022)
  68. Intrinsic disorder in proteins associated with oxidative stress-induced JNK signaling. Gehi BR, Gadhave K, Uversky VN, Giri R. Cell Mol Life Sci 79 202 (2022)
  69. Network pharmacology and experimental validation to reveal the target of matrine against PRRSV. Zhao Y, Ling X, Zhang H, Sun P, Sun Y, Yin W, Fan K, Yang H, Zhong J, Zhang Z, Wang J, Li H, Sun N. iScience 26 106371 (2023)
  70. Systematic Discovery of FBXW7-Binding Phosphodegrons Highlights Mitogen-Activated Protein Kinases as Important Regulators of Intracellular Protein Levels. Singh N, Zeke A, Reményi A. Int J Mol Sci 23 3320 (2022)
  71. Tracking down protein-protein interactions via a FRET-system using site-specific thiol-labeling. Söveges B, Imre T, Póti ÁL, Sok P, Kele Z, Alexa A, Kele P, Németh K. Org Biomol Chem 16 5756-5763 (2018)
  72. A synthetic peptide from Sipunculus nudus promotes bone formation via Estrogen/MAPK signal pathway based on network pharmacology. Wang P, Feng Z, Chen S, Liang Y, Hou H, Ouyang Q, Yu H, Ye H, Cai L, Qi Y, Wu K, Luo H. Front Pharmacol 14 1173110 (2023)
  73. Crystal structure of the phosphorylated Arabidopsis MKK5 reveals activation mechanism of MAPK kinases. Pei CJ, He QX, Luo Z, Yao H, Wang ZX, Wu JW. Acta Biochim Biophys Sin (Shanghai) 54 1159-1170 (2022)
  74. Hydrogen peroxide-dependent oxidation of ERK2 within its D-recruitment site alters its substrate selection. Postiglione AE, Adams LL, Ekhator ES, Odelade AE, Patwardhan S, Chaudhari M, Pardue AS, Kumari A, LeFever WA, Tornow OP, Kaoud TS, Neiswinger J, Jeong JS, Parsonage D, Nelson KJ, Kc DB, Furdui CM, Zhu H, Wommack AJ, Dalby KN, Dong M, Poole LB, Keyes JD, Newman RH. iScience 26 107817 (2023)
  75. Identification of a putative kinase interacting domain in the durum wheat catalase 1 (TdCAT1) protein. Ghorbel M, Haddaji N, Feki K, Tounsi S, Chihaoui M, Alghamdi A, Mseddi K, Brini F. Heliyon 9 e18916 (2023)
  76. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases. Torres Robles J, Lou HJ, Shi G, Pan PL, Turk BE. Proc Natl Acad Sci U S A 120 e2316599120 (2023)
  77. Phosphorylation-Assisted Luciferase Complementation Assay Designed to Monitor Kinase Activity and Kinase-Domain-Mediated Protein-Protein Binding. Póti ÁL, Dénes L, Papp K, Bató C, Bánóczi Z, Reményi A, Alexa A. Int J Mol Sci 24 14854 (2023)
  78. Protocol for predicting drug-resistant protein mutations to an ERK2 inhibitor using RESISTOR. Guerin N, Kaserer T, Donald BR. STAR Protoc 4 102170 (2023)