2y2a Citations

Molecular basis for amyloid-beta polymorphism.

Proc Natl Acad Sci U S A 108 16938-43 (2011)
Related entries: 2y29, 2y3j, 2y3k, 2y3l, 3ow9, 3pzz, 3q2x

Cited: 194 times
EuropePMC logo PMID: 21949245

Abstract

Amyloid-beta (Aβ) aggregates are the main constituent of senile plaques, the histological hallmark of Alzheimer's disease. Aβ molecules form β-sheet containing structures that assemble into a variety of polymorphic oligomers, protofibers, and fibers that exhibit a range of lifetimes and cellular toxicities. This polymorphic nature of Aβ has frustrated its biophysical characterization, its structural determination, and our understanding of its pathological mechanism. To elucidate Aβ polymorphism in atomic detail, we determined eight new microcrystal structures of fiber-forming segments of Aβ. These structures, all of short, self-complementing pairs of β-sheets termed steric zippers, reveal a variety of modes of self-association of Aβ. Combining these atomic structures with previous NMR studies allows us to propose several fiber models, offering molecular models for some of the repertoire of polydisperse structures accessible to Aβ. These structures and molecular models contribute fundamental information for understanding Aβ polymorphic nature and pathogenesis.

Reviews - 2y2a mentioned but not cited (1)

  1. Alzheimer's disease--a panorama glimpse. Zhao LN, Lu L, Chew LY, Mu Y. Int J Mol Sci 15 12631-12650 (2014)

Articles - 2y2a mentioned but not cited (12)

  1. Molecular basis for amyloid-beta polymorphism. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 108 16938-16943 (2011)
  2. Out-of-register β-sheets suggest a pathway to toxic amyloid aggregates. Liu C, Zhao M, Jiang L, Cheng PN, Park J, Sawaya MR, Pensalfini A, Gou D, Berk AJ, Glabe CG, Nowick J, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 109 20913-20918 (2012)
  3. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. Houben B, Michiels E, Ramakers M, Konstantoulea K, Louros N, Verniers J, van der Kant R, De Vleeschouwer M, Chicória N, Vanpoucke T, Gallardo R, Schymkowitz J, Rousseau F. EMBO J 39 e102864 (2020)
  4. The zipper groups of the amyloid state of proteins. Stroud JC. Acta Crystallogr. D Biol. Crystallogr. 69 540-545 (2013)
  5. A computational study on how structure influences the optical properties in model crystal structures of amyloid fibrils. Grisanti L, Pinotsi D, Gebauer R, Kaminski Schierle GS, Hassanali AA. Phys Chem Chem Phys 19 4030-4040 (2017)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. Heparin-Assisted Amyloidogenesis Uncovered through Molecular Dynamics Simulations. Khurshid B, Rehman AU, Luo R, Khan A, Wadood A, Anwar J. ACS Omega 7 15132-15144 (2022)
  8. Structure-Based Peptide Inhibitor Design of Amyloid-β Aggregation. Lu J, Cao Q, Wang C, Zheng J, Luo F, Xie J, Li Y, Ma X, He L, Eisenberg D, Nowick J, Jiang L, Li D. Front Mol Neurosci 12 54 (2019)
  9. Acidic pH Promotes Refolding and Macroscopic Assembly of Amyloid β (16-22) Peptides at the Air-Water Interface. Lu H, Bellucci L, Sun S, Qi D, Rosa M, Berger R, Corni S, Bonn M. J Phys Chem Lett 13 6674-6679 (2022)
  10. MELD-accelerated molecular dynamics help determine amyloid fibril structures. Sharma B, Dill KA. Commun Biol 4 942 (2021)
  11. Structure-based inhibitors of amyloid beta core suggest a common interface with tau. Griner SL, Seidler P, Bowler J, Murray KA, Yang TP, Sahay S, Sawaya MR, Cascio D, Rodriguez JA, Philipp S, Sosna J, Glabe CG, Gonen T, Eisenberg DS. Elife 8 (2019)
  12. The inhibition of cellular toxicity of amyloid-β by dissociated transthyretin. Cao Q, Anderson DH, Liang WY, Chou J, Saelices L. J Biol Chem 295 14015-14024 (2020)


Reviews citing this publication (39)

  1. The amyloid state of proteins in human diseases. Eisenberg D, Jucker M. Cell 148 1188-1203 (2012)
  2. Amyloid β Protein and Alzheimer's Disease: When Computer Simulations Complement Experimental Studies. Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete NV, Coté S, De Simone A, Doig AJ, Faller P, Garcia A, Laio A, Li MS, Melchionna S, Mousseau N, Mu Y, Paravastu A, Pasquali S, Rosenman DJ, Strodel B, Tarus B, Viles JH, Zhang T, Zhang T, Wang C, Derreumaux P. Chem. Rev. 115 3518-3563 (2015)
  3. The activities of amyloids from a structural perspective. Riek R, Eisenberg DS. Nature 539 227-235 (2016)
  4. Immunotherapy for Alzheimer disease: the challenge of adverse effects. Liu YH, Giunta B, Zhou HD, Tan J, Wang YJ. Nat Rev Neurol 8 465-469 (2012)
  5. The supramolecular chemistry of β-sheets. Cheng PN, Pham JD, Nowick JS. J. Am. Chem. Soc. 135 5477-5492 (2013)
  6. Amyloid-based nanosensors and nanodevices. Hauser CA, Maurer-Stroh S, Martins IC. Chem Soc Rev 43 5326-5345 (2014)
  7. Structural Studies of Amyloid Proteins at the Molecular Level. Eisenberg DS, Sawaya MR. Annu. Rev. Biochem. 86 69-95 (2017)
  8. Clearance of amyloid-beta in Alzheimer's disease: shifting the action site from center to periphery. Liu YH, Wang YR, Xiang Y, Zhou HD, Giunta B, Mañucat-Tan NB, Tan J, Zhou XF, Wang YJ. Mol. Neurobiol. 51 1-7 (2015)
  9. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Arbor SC, LaFontaine M, Cumbay M. Yale J Biol Med 89 5-21 (2016)
  10. From soluble aβ to progressive aβ aggregation: could prion-like templated misfolding play a role? Eisele YS. Brain Pathol. 23 333-341 (2013)
  11. A new era for understanding amyloid structures and disease. Iadanza MG, Jackson MP, Hewitt EW, Ranson NA, Radford SE. Nat. Rev. Mol. Cell Biol. 19 755-773 (2018)
  12. Alzheimer's disease: pathophysiology and applications of magnetic nanoparticles as MRI theranostic agents. Amiri H, Saeidi K, Borhani P, Manafirad A, Ghavami M, Zerbi V. ACS Chem Neurosci 4 1417-1429 (2013)
  13. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Sahoo BR, Cox SJ, Ramamoorthy A. Chem Commun (Camb) 56 4627-4639 (2020)
  14. The formation, function and regulation of amyloids: insights from structural biology. Landreh M, Sawaya MR, Hipp MS, Eisenberg DS, Wüthrich K, Hartl FU. J. Intern. Med. 280 164-176 (2016)
  15. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Chem Rev 122 12046-12109 (2022)
  16. The existence of Aβ strains and their potential for driving phenotypic heterogeneity in Alzheimer's disease. Lau HHC, Ingelsson M, Watts JC. Acta Neuropathol 142 17-39 (2021)
  17. Structure and Function of Alzheimer's Amyloid βeta Proteins from Monomer to Fibrils: A Mini Review. Agrawal N, Skelton AA. Protein J 38 425-434 (2019)
  18. Amyloid-Like Aggregation in Diseases and Biomaterials: Osmosis of Structural Information. Balasco N, Diaferia C, Morelli G, Vitagliano L, Accardo A. Front Bioeng Biotechnol 9 641372 (2021)
  19. The contribution of biophysical and structural studies of protein self-assembly to the design of therapeutic strategies for amyloid diseases. Cremades N, Dobson CM. Neurobiol. Dis. 109 178-190 (2018)
  20. Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. Linser R. Solid State Nucl Magn Reson 87 45-53 (2017)
  21. Liquid-Liquid Phase Separation and Its Mechanistic Role in Pathological Protein Aggregation. Babinchak WM, Surewicz WK. J Mol Biol 432 1910-1925 (2020)
  22. Amyloid Polymorphism in the Protein Folding and Aggregation Energy Landscape. Adamcik J, Mezzenga R. Angew. Chem. Int. Ed. Engl. 57 8370-8382 (2018)
  23. The Three-Dimensional Structures of Amyloids. Riek R. Cold Spring Harb Perspect Biol 9 (2017)
  24. The epididymal amyloid matrix: structure and putative functions. Cornwall GA, Do HQ, Hewetson A, Muthusubramanian A, Myers C. Andrology 7 603-609 (2019)
  25. Crystallographic studies on protein misfolding: Domain swapping and amyloid formation in the SH3 domain. Cámara-Artigas A. Arch. Biochem. Biophys. 602 116-126 (2016)
  26. Amyloid seeding as a disease mechanism and treatment target in transthyretin cardiac amyloidosis. Morfino P, Aimo A, Panichella G, Rapezzi C, Emdin M. Heart Fail Rev 27 2187-2200 (2022)
  27. Characterisation of the Structure and Oligomerisation of Islet Amyloid Polypeptides (IAPP): A Review of Molecular Dynamics Simulation Studies. Moore SJ, Sonar K, Bharadwaj P, Deplazes E, Mancera RL. Molecules 23 (2018)
  28. Current Understanding of the Structure, Stability and Dynamic Properties of Amyloid Fibrils. Chatani E, Yuzu K, Ohhashi Y, Goto Y. Int J Mol Sci 22 4349 (2021)
  29. The diversity and utility of amyloid fibrils formed by short amyloidogenic peptides. Al-Garawi ZS, Morris KL, Marshall KE, Eichler J, Serpell LC. Interface Focus 7 20170027 (2017)
  30. Advances in protein misfolding, amyloidosis and its correlation with human diseases. Kundu D, Prerna K, Chaurasia R, Bharty MK, Dubey VK. 3 Biotech 10 193 (2020)
  31. Antibody-Mediated Clearance of Brain Amyloid-β: Mechanisms of Action, Effects of Natural and Monoclonal Anti-Aβ Antibodies, and Downstream Effects. Loeffler DA. J Alzheimers Dis Rep 7 873-899 (2023)
  32. Bias-generating factors in biofluid amyloid-β measurements for Alzheimer's disease diagnosis. Park S, Kim Y. Biomed Eng Lett 11 287-295 (2021)
  33. Biophysical Aspects of Alzheimer's Disease: Implications for Pharmaceutical Sciences : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Arosio P. Pharm. Res. 34 2628-2636 (2017)
  34. Catalytically Active Amyloids as Future Bionanomaterials. Diaz-Espinoza R. Nanomaterials (Basel) 12 3802 (2022)
  35. Conformational strains of pathogenic amyloid proteins in neurodegenerative diseases. Li D, Liu C. Nat Rev Neurosci 23 523-534 (2022)
  36. Fluctuation matching approach for elastic network model and structure-based model of biomacromolecules. Bope CD, Tong D, Li X, Lu L. Prog. Biophys. Mol. Biol. 128 100-112 (2017)
  37. High-Speed Atomic Force Microscopy Reveals the Structural Dynamics of the Amyloid-β and Amylin Aggregation Pathways. Watanabe-Nakayama T, Sahoo BR, Ramamoorthy A, Ono K. Int J Mol Sci 21 (2020)
  38. Recent Advances by In Silico and In Vitro Studies of Amyloid-β 1-42 Fibril Depicted a S-Shape Conformation. Villalobos Acosta DMÁ, Chimal Vega B, Correa Basurto J, Fragoso Morales LG, Rosales Hernández MC. Int J Mol Sci 19 (2018)
  39. Strains of Pathological Protein Aggregates in Neurodegenerative Diseases. Wang X, Noroozian Z, Lynch M, Armstrong N, Schneider R, Liu M, Ghodrati F, Zhang AB, Yang YJ, Hall AC, Solarski M, Killackey SA, Watts JC. Discoveries (Craiova) 5 e78 (2017)

Articles citing this publication (142)

  1. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue. Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R. Cell 154 1257-1268 (2013)
  2. Atomic-resolution structure of a disease-relevant Aβ(1-42) amyloid fibril. Wälti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Böckmann A, Güntert P, Meier BH, Riek R. Proc. Natl. Acad. Sci. U.S.A. 113 E4976-84 (2016)
  3. Toxic fibrillar oligomers of amyloid-β have cross-β structure. Stroud JC, Liu C, Teng PK, Eisenberg D. Proc. Natl. Acad. Sci. U.S.A. 109 7717-7722 (2012)
  4. Short peptides self-assemble to produce catalytic amyloids. Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, DeGrado WF, Korendovych IV. Nat Chem 6 303-309 (2014)
  5. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Cheng PN, Liu C, Zhao M, Eisenberg D, Nowick JS. Nat Chem 4 927-933 (2012)
  6. Direct three-dimensional visualization of membrane disruption by amyloid fibrils. Milanesi L, Sheynis T, Xue WF, Orlova EV, Hellewell AL, Jelinek R, Hewitt EW, Radford SE, Saibil HR. Proc. Natl. Acad. Sci. U.S.A. 109 20455-20460 (2012)
  7. Peptide dimer structure in an Aβ(1-42) fibril visualized with cryo-EM. Schmidt M, Rohou A, Lasker K, Yadav JK, Yadav JK, Schiene-Fischer C, Fändrich M, Grigorieff N. Proc. Natl. Acad. Sci. U.S.A. 112 11858-11863 (2015)
  8. Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS. Elife 2 e00857 (2013)
  9. Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation. Miles LA, Crespi GA, Doughty L, Parker MW. Sci Rep 3 1302 (2013)
  10. Aliphatic peptides show similar self-assembly to amyloid core sequences, challenging the importance of aromatic interactions in amyloidosis. Lakshmanan A, Cheong DW, Accardo A, Di Fabrizio E, Riekel C, Hauser CA. Proc. Natl. Acad. Sci. U.S.A. 110 519-524 (2013)
  11. Dynamics of amyloid β fibrils revealed by solid-state NMR. Scheidt HA, Morgado I, Rothemund S, Huster D. J. Biol. Chem. 287 2017-2021 (2012)
  12. Uncovering the Mechanism of Aggregation of Human Transthyretin. Saelices L, Johnson LM, Liang WY, Sawaya MR, Cascio D, Ruchala P, Whitelegge J, Jiang L, Riek R, Eisenberg DS. J. Biol. Chem. 290 28932-28943 (2015)
  13. Molecular basis of β-amyloid oligomer recognition with a conformational antibody fragment. Morgado I, Wieligmann K, Bereza M, Rönicke R, Meinhardt K, Annamalai K, Baumann M, Wacker J, Hortschansky P, Malešević M, Parthier C, Mawrin C, Schiene-Fischer C, Reymann KG, Stubbs MT, Balbach J, Görlach M, Horn U, Fändrich M. Proc. Natl. Acad. Sci. U.S.A. 109 12503-12508 (2012)
  14. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, Colletier JP, Landau M. Science 355 831-833 (2017)
  15. Edaravone alleviates Alzheimer's disease-type pathologies and cognitive deficits. Jiao SS, Yao XQ, Liu YH, Wang QH, Zeng F, Lu JJ, Liu J, Zhu C, Shen LL, Liu CH, Wang YR, Zeng GH, Parikh A, Chen J, Liang CR, Xiang Y, Bu XL, Deng J, Li J, Xu J, Zeng YQ, Xu X, Xu HW, Zhong JH, Zhou HD, Zhou XF, Wang YJ. Proc. Natl. Acad. Sci. U.S.A. 112 5225-5230 (2015)
  16. Crystal structure of a human prion protein fragment reveals a motif for oligomer formation. Apostol MI, Perry K, Surewicz WK. J. Am. Chem. Soc. 135 10202-10205 (2013)
  17. Folding without charges. Kurnik M, Hedberg L, Danielsson J, Oliveberg M. Proc. Natl. Acad. Sci. U.S.A. 109 5705-5710 (2012)
  18. Structure and dynamics of amyloid-β segmental polymorphisms. Berhanu WM, Hansmann UH. PLoS ONE 7 e41479 (2012)
  19. Bacterial curli protein promotes the conversion of PAP248-286 into the amyloid SEVI: cross-seeding of dissimilar amyloid sequences. Hartman K, Brender JR, Monde K, Ono A, Evans ML, Popovych N, Chapman MR, Ramamoorthy A. PeerJ 1 e5 (2013)
  20. In silico cross seeding of Aβ and amylin fibril-like oligomers. Berhanu WM, Yaşar F, Hansmann UH. ACS Chem Neurosci 4 1488-1500 (2013)
  21. The Aβ40 and Aβ42 peptides self-assemble into separate homomolecular fibrils in binary mixtures but cross-react during primary nucleation. Cukalevski R, Yang X, Meisl G, Weininger U, Bernfur K, Frohm B, Knowles TPJ, Linse S. Chem Sci 6 4215-4233 (2015)
  22. Amyloid β-Protein C-Terminal Fragments: Formation of Cylindrins and β-Barrels. Do TD, LaPointe NE, Nelson R, Krotee P, Hayden EY, Ulrich B, Quan S, Feinstein SC, Teplow DB, Eisenberg D, Shea JE, Bowers MT. J. Am. Chem. Soc. 138 549-557 (2016)
  23. Facilitated aggregation of FG nucleoporins under molecular crowding conditions. Milles S, Huy Bui K, Koehler C, Eltsov M, Beck M, Lemke EA. EMBO Rep. 14 178-183 (2013)
  24. High-resolution analytical imaging and electron holography of magnetite particles in amyloid cores of Alzheimer's disease. Plascencia-Villa G, Ponce A, Collingwood JF, Arellano-Jiménez MJ, Zhu X, Rogers JT, Betancourt I, José-Yacamán M, Perry G. Sci Rep 6 24873 (2016)
  25. Molecular basis for mid-region amyloid-β capture by leading Alzheimer's disease immunotherapies. Crespi GA, Hermans SJ, Parker MW, Miles LA. Sci Rep 5 9649 (2015)
  26. Atomic structures of fibrillar segments of hIAPP suggest tightly mated β-sheets are important for cytotoxicity. Krotee P, Rodriguez JA, Sawaya MR, Cascio D, Reyes FE, Shi D, Hattne J, Nannenga BL, Oskarsson ME, Philipp S, Griner S, Jiang L, Glabe CG, Westermark GT, Gonen T, Eisenberg DS. Elife 6 (2017)
  27. Crystal Structures of IAPP Amyloidogenic Segments Reveal a Novel Packing Motif of Out-of-Register Beta Sheets. Soriaga AB, Sangwan S, Macdonald R, Sawaya MR, Eisenberg D. J Phys Chem B 120 5810-5816 (2016)
  28. Local interactions influence the fibrillation kinetics, structure and dynamics of Aβ(1-40) but leave the general fibril structure unchanged. Adler J, Scheidt HA, Krüger M, Thomas L, Huster D. Phys Chem Chem Phys 16 7461-7471 (2014)
  29. X-ray Crystallographic Structures of a Trimer, Dodecamer, and Annular Pore Formed by an Aβ17-36 β-Hairpin. Kreutzer AG, Hamza IL, Spencer RK, Nowick JS. J. Am. Chem. Soc. 138 4634-4642 (2016)
  30. Intrinsic structural heterogeneity and long-term maturation of amyloid β peptide fibrils. Ma J, Komatsu H, Kim YS, Liu L, Hochstrasser RM, Axelsen PH. ACS Chem Neurosci 4 1236-1243 (2013)
  31. Destruction of amyloid fibrils by graphene through penetration and extraction of peptides. Yang Z, Ge C, Liu J, Chong Y, Gu Z, Jimenez-Cruz CA, Chai Z, Zhou R. Nanoscale 7 18725-18737 (2015)
  32. A fibril-like assembly of oligomers of a peptide derived from β-amyloid. Pham JD, Spencer RK, Chen KH, Nowick JS. J. Am. Chem. Soc. 136 12682-12690 (2014)
  33. Side-chain hydrophobicity and the stability of Aβ₁₆₋₂₂ aggregates. Berhanu WM, Hansmann UH. Protein Sci. 21 1837-1848 (2012)
  34. Spontaneous variants of the [RNQ+] prion in yeast demonstrate the extensive conformational diversity possible with prion proteins. Huang VJ, Stein KC, True HL. PLoS ONE 8 e79582 (2013)
  35. Structural Conversion of Aβ17-42 Peptides from Disordered Oligomers to U-Shape Protofilaments via Multiple Kinetic Pathways. Cheon M, Hall CK, Chang I. PLoS Comput. Biol. 11 e1004258 (2015)
  36. Familial Alzheimer's Disease Mutations within the Amyloid Precursor Protein Alter the Aggregation and Conformation of the Amyloid-β Peptide. Hatami A, Monjazeb S, Milton S, Glabe CG. J. Biol. Chem. 292 3172-3185 (2017)
  37. Interactions between amyloid-β and Tau fragments promote aberrant aggregates: implications for amyloid toxicity. Do TD, Economou NJ, Chamas A, Buratto SK, Shea JE, Bowers MT. J Phys Chem B 118 11220-11230 (2014)
  38. Cyclic peptides as inhibitors of amyloid fibrillation. Luo J, Abrahams JP. Chemistry 20 2410-2419 (2014)
  39. A bacteriophage capsid protein provides a general amyloid interaction motif (GAIM) that binds and remodels misfolded protein assemblies. Krishnan R, Tsubery H, Proschitsky MY, Asp E, Lulu M, Gilead S, Gartner M, Waltho JP, Davis PJ, Hounslow AM, Kirschner DA, Inouye H, Myszka DG, Wright J, Solomon B, Fisher RA. J. Mol. Biol. 426 2500-2519 (2014)
  40. A kinetic approach to the sequence-aggregation relationship in disease-related protein assembly. Barz B, Wales DJ, Strodel B. J Phys Chem B 118 1003-1011 (2014)
  41. An N-terminal antibody promotes the transformation of amyloid fibrils into oligomers and enhances the neurotoxicity of amyloid-beta: the dust-raising effect. Liu YH, Bu XL, Liang CR, Wang YR, Zhang T, Jiao SS, Zeng F, Yao XQ, Zhou HD, Deng J, Wang YJ. J Neuroinflammation 12 153 (2015)
  42. Cryo-EM reveals the steric zipper structure of a light chain-derived amyloid fibril. Schmidt A, Annamalai K, Schmidt M, Grigorieff N, Fändrich M. Proc. Natl. Acad. Sci. U.S.A. 113 6200-6205 (2016)
  43. De novo design and experimental characterization of ultrashort self-associating peptides. Smadbeck J, Chan KH, Khoury GA, Xue B, Robinson RC, Hauser CA, Floudas CA. PLoS Comput. Biol. 10 e1003718 (2014)
  44. Fibrils and nanotubes assembled from a modified amyloid-β peptide fragment differ in the packing of the same β-sheet building blocks. Madine J, Davies HA, Shaw C, Hamley IW, Middleton DA. Chem. Commun. (Camb.) 48 2976-2978 (2012)
  45. The interaction with gold suppresses fiber-like conformations of the amyloid β (16-22) peptide. Bellucci L, Ardèvol A, Parrinello M, Lutz H, Lu H, Weidner T, Corni S. Nanoscale 8 8737-8748 (2016)
  46. Virtual-system-coupled adaptive umbrella sampling to compute free-energy landscape for flexible molecular docking. Higo J, Dasgupta B, Mashimo T, Kasahara K, Fukunishi Y, Nakamura H. J Comput Chem 36 1489-1501 (2015)
  47. Atomic-level evidence for packing and positional amyloid polymorphism by segment from TDP-43 RRM2. Guenther EL, Ge P, Trinh H, Sawaya MR, Cascio D, Boyer DR, Gonen T, Zhou ZH, Eisenberg DS. Nat. Struct. Mol. Biol. 25 311-319 (2018)
  48. Hierarchical Analysis of Self-Assembled PEGylated Hexaphenylalanine Photoluminescent Nanostructures. Diaferia C, Sibillano T, Balasco N, Giannini C, Roviello V, Vitagliano L, Morelli G, Accardo A. Chemistry 22 16586-16597 (2016)
  49. ESI-IMS-MS: A method for rapid analysis of protein aggregation and its inhibition by small molecules. Young LM, Saunders JC, Mahood RA, Revill CH, Foster RJ, Ashcroft AE, Radford SE. Methods 95 62-69 (2016)
  50. Ester carbonyl vibration as a sensitive probe of protein local electric field. Pazos IM, Ghosh A, Tucker MJ, Gai F. Angew. Chem. Int. Ed. Engl. 53 6080-6084 (2014)
  51. Small angle X-ray scattering analysis of Cu(2+)-induced oligomers of the Alzheimer's amyloid β peptide. Ryan TM, Kirby N, Mertens HD, Roberts B, Barnham KJ, Cappai R, Pham Cle L, Masters CL, Curtain CC. Metallomics 7 536-543 (2015)
  52. Combining conformational sampling and selection to identify the binding mode of zinc-bound amyloid peptides with bifunctional molecules. Xu L, Gao K, Bao C, Wang X. J. Comput. Aided Mol. Des. 26 963-976 (2012)
  53. Spontaneous aggregation of the insulin-derived steric zipper peptide VEALYL results in different aggregation forms with common features. Matthes D, Daebel V, Meyenberg K, Riedel D, Heim G, Diederichsen U, Lange A, de Groot BL. J. Mol. Biol. 426 362-376 (2014)
  54. The Effect of (-)-Epigallo-catechin-(3)-gallate on Amyloidogenic Proteins Suggests a Common Mechanism. Andrich K, Bieschke J. Adv. Exp. Med. Biol. 863 139-161 (2015)
  55. Two different packing arrangements of antiparallel polyalanine. Asakura T, Okonogi M, Horiguchi K, Aoki A, Saitô H, Knight DP, Williamson MP. Angew. Chem. Int. Ed. Engl. 51 1212-1215 (2012)
  56. Determination of accurate 1H positions of an alanine tripeptide with anti-parallel and parallel β-sheet structures by high resolution 1H solid state NMR and GIPAW chemical shift calculation. Yazawa K, Suzuki F, Nishiyama Y, Ohata T, Aoki A, Nishimura K, Kaji H, Shimizu T, Asakura T. Chem. Commun. (Camb.) 48 11199-11201 (2012)
  57. Fmoc-RGDS based fibrils: atomistic details of their hierarchical assembly. Zanuy D, Poater J, Solà M, Hamley IW, Alemán C. Phys Chem Chem Phys 18 1265-1278 (2016)
  58. Preformed template fluctuations promote fibril formation: insights from lattice and all-atom models. Kouza M, Co NT, Nguyen PH, Kolinski A, Li MS. J Chem Phys 142 145104 (2015)
  59. Spectroscopic evidence for polymorphic aggregates formed by amyloid-β fragments. Guo Y, Wang J. Chemphyschem 13 3901-3908 (2012)
  60. Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses. Pansieri J, Iashchishyn IA, Fakhouri H, Ostojić L, Malisauskas M, Musteikyte G, Smirnovas V, Schneider MM, Scheidt T, Xu CK, Meisl G, Knowles TPJ, Gazit E, Antoine R, Morozova-Roche LA. Chem Sci 11 7031-7039 (2020)
  61. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides. Gill AC. PLoS ONE 9 e87354 (2014)
  62. A one-way shooting algorithm for transition path sampling of asymmetric barriers. Brotzakis ZF, Bolhuis PG. J Chem Phys 145 164112 (2016)
  63. Cross-β Amyloid Nanohybrids Loaded With Cytochrome C Exhibit Superactivity in Organic Solvents. Kapil N, Singh A, Das D. Angew. Chem. Int. Ed. Engl. 54 6492-6495 (2015)
  64. Heterodivalent linked macrocyclic β-sheets with enhanced activity against Aβ aggregation: two sites are better than one. Cheng PN, Spencer R, Woods RJ, Glabe CG, Nowick JS. J. Am. Chem. Soc. 134 14179-14184 (2012)
  65. Impact of sequence on the molecular assembly of short amyloid peptides. Wagoner VA, Cheon M, Chang I, Hall CK. Proteins 82 1469-1483 (2014)
  66. Specific aromatic foldamers potently inhibit spontaneous and seeded Aβ42 and Aβ43 fibril assembly. Seither KM, McMahon HA, Singh N, Wang H, Cushman-Nick M, Montalvo GL, DeGrado WF, Shorter J. Biochem. J. 464 85-98 (2014)
  67. An Atomistic View of Amyloidogenic Self-assembly: Structure and Dynamics of Heterogeneous Conformational States in the Pre-nucleation Phase. Matthes D, Gapsys V, Brennecke JT, de Groot BL. Sci Rep 6 33156 (2016)
  68. Common fibrillar spines of amyloid-β and human islet amyloid polypeptide revealed by microelectron diffraction and structure-based inhibitors. Krotee P, Griner SL, Sawaya MR, Cascio D, Rodriguez JA, Shi D, Philipp S, Murray K, Saelices L, Lee J, Seidler P, Glabe CG, Jiang L, Gonen T, Eisenberg DS. J. Biol. Chem. 293 2888-2902 (2018)
  69. Distinct position-specific sequence features of hexa-peptides that form amyloid-fibrils: application to discriminate between amyloid fibril and amorphous β-aggregate forming peptide sequences. Thangakani AM, Kumar S, Velmurugan D, Gromiha MM. BMC Bioinformatics 14 Suppl 8 S6 (2013)
  70. Elucidation of the Aggregation Pathways of Helix-Turn-Helix Peptides: Stabilization at the Turn Region Is Critical for Fibril Formation. Do TD, Chamas A, Zheng X, Barnes A, Chang D, Veldstra T, Takhar H, Dressler N, Trapp B, Miller K, McMahon A, Meredith SC, Shea JE, Lazar Cantrell K, Bowers MT. Biochemistry 54 4050-4062 (2015)
  71. Extreme amyloid polymorphism in Staphylococcus aureus virulent PSMα peptides. Salinas N, Colletier JP, Moshe A, Landau M. Nat Commun 9 3512 (2018)
  72. Halogenation dictates the architecture of amyloid peptide nanostructures. Pizzi A, Pigliacelli C, Gori A, Nonappa, Ikkala O, Demitri N, Terraneo G, Castelletto V, Hamley IW, Baldelli Bombelli F, Metrangolo P. Nanoscale 9 9805-9810 (2017)
  73. Pathogenic properties of Alzheimer's β-amyloid identified from structure-property patient-phenotype correlations. Tiwari MK, Kepp KP. Dalton Trans 44 2747-2754 (2015)
  74. Tracking the mechanism of fibril assembly by simulated two-dimensional ultraviolet spectroscopy. Lam AR, Rodriguez JJ, Rojas A, Scheraga HA, Mukamel S. J Phys Chem A 117 342-350 (2013)
  75. 1,2-Diaryl-2-hydroxyiminoethanones as dual COX-1 and β-amyloid aggregation inhibitors: biological evaluation and in silico study. Irannejad H, Unsal Tan O, Ozadali K, Dadashpour S, Tuylu Kucukkilinc T, Ahangar N, Ahmadnejad M, Emami S. Chem Biol Drug Des 85 494-503 (2015)
  76. A Novel PEGylated Block Copolymer in New Age Therapeutics for Alzheimer's Disease. Som Chaudhury S, Sannigrahi A, Nandi M, Mishra VK, De P, Chattopadhyay K, Mishra S, Sil J, Das Mukhopadhyay C. Mol Neurobiol 56 6551-6565 (2019)
  77. Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins. Valéry C, Deville-Foillard S, Lefebvre C, Taberner N, Legrand P, Meneau F, Meriadec C, Delvaux C, Bizien T, Kasotakis E, Lopez-Iglesias C, Gall A, Bressanelli S, Le Du MH, Paternostre M, Artzner F. Nat Commun 6 7771 (2015)
  78. Distinct neurotoxic TDP-43 fibril polymorphs are generated by heterotypic interactions with α-Synuclein. Dhakal S, Robang AS, Bhatt N, Puangmalai N, Fung L, Kayed R, Paravastu AK, Rangachari V. J Biol Chem 298 102498 (2022)
  79. Engineering of a peptide probe for β-amyloid aggregates. Aoraha E, Candreva J, Kim JR. Mol Biosyst 11 2281-2289 (2015)
  80. Modeling the Aggregation Propensity and Toxicity of Amyloid-β Variants. Tiwari MK, Kepp KP. J. Alzheimers Dis. 47 215-229 (2015)
  81. Sketching protein aggregation with a physics-based toy model. Enciso M, Rey A. J Chem Phys 139 115101 (2013)
  82. Sodium chloride's effect on self-assembly of diphenylalanine bilayer. Kwon J, Lee M, Na S. J Comput Chem 37 1839-1846 (2016)
  83. Spectroscopic Signature for Stable β-Amyloid Fibrils versus β-Sheet-Rich Oligomers. Lomont JP, Rich KL, Maj M, Ho JJ, Ostrander JS, Zanni MT. J Phys Chem B 122 144-153 (2018)
  84. Varied Probability of Staying Collapsed/Extended at the Conformational Equilibrium of Monomeric Aβ40 and Aβ42. Song W, Wang Y, Colletier JP, Yang H, Xu Y. Sci Rep 5 11024 (2015)
  85. Amyloid-Like Fibrillary Morphology Originated by Tyrosine-Containing Aromatic Hexapeptides. Diaferia C, Balasco N, Sibillano T, Ghosh M, Adler-Abramovich L, Giannini C, Vitagliano L, Morelli G, Accardo A. Chemistry 24 6804-6817 (2018)
  86. Assemblies of amyloid-β30-36 hexamer and its G33V/L34T mutants by replica-exchange molecular dynamics simulation. Qian Z, Zhang Q, Liu Y, Chen P. PLoS ONE 12 e0188794 (2017)
  87. Directing peptide crystallization through curvature control of nanotubes. Gobeaux F, Tarabout C, Fay N, Meriadec C, Ligeti M, Buisson DA, Cintrat JC, Artzner F, Paternostre M. J. Pept. Sci. 20 508-516 (2014)
  88. Kinetics and polymorphs of yeast prion Sup35NM amyloidogenesis. Kinoshita M, Lin Y, Nakatsuji M, Inui T, Lee YH. Int. J. Biol. Macromol. 102 1241-1249 (2017)
  89. Molecular dynamics investigation of halogenated amyloidogenic peptides. Gautieri A, Milani A, Pizzi A, Rigoldi F, Redaelli A, Metrangolo P. J Mol Model 25 124 (2019)
  90. Nanoscale Infrared Spectroscopy Identifies Parallel to Antiparallel β-Sheet Transformation of Aβ Fibrils. Banerjee S, Baghel D, Hasan Ul Iqbal M, Ghosh A. J Phys Chem Lett 13 10522-10526 (2022)
  91. Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph. Wälti MA, Orts J, Riek R. PLoS ONE 12 e0172862 (2017)
  92. Structural Characterization of Self-Assembled Tetra-Tryptophan Based Nanostructures: Variations on a Common Theme. Diaferia C, Balasco N, Sibillano T, Giannini C, Vitagliano L, Morelli G, Accardo A. Chemphyschem 19 1635-1642 (2018)
  93. A Hybrid Structural Method for Investigating Low Molecular Weight Oligomeric Structures of Amyloid Beta. Gupta S, Raskatov JA, Ralston CY. Chembiochem 23 e202200333 (2022)
  94. Research Support, Non-U.S. Gov't A novel amyloid designable scaffold and potential inhibitor inspired by GAIIG of amyloid beta and the HIV-1 V3 loop. Kokotidou C, Jonnalagadda SVR, Orr AA, Seoane-Blanco M, Apostolidou CP, van Raaij MJ, Kotzabasaki M, Chatzoudis A, Jakubowski JM, Mossou E, Forsyth VT, Mitchell EP, Bowler MW, Llamas-Saiz AL, Tamamis P, Mitraki A. FEBS Lett. 592 1777-1788 (2018)
  95. Amyloid-β 1-24 C-terminal truncated fragment promotes amyloid-β 1-42 aggregate formation in the healthy brain. Mazzitelli S, Filipello F, Rasile M, Lauranzano E, Starvaggi-Cucuzza C, Tamborini M, Pozzi D, Barajon I, Giorgino T, Natalello A, Matteoli M. Acta Neuropathol Commun 4 110 (2016)
  96. Assessment of Amyloid Forming Tendency of Peptide Sequences from Amyloid Beta and Tau Proteins Using Force-Field, Semi-Empirical, and Density Functional Theory Calculations. Muvva C, Murugan NA, Subramanian V. Int J Mol Sci 22 3244 (2021)
  97. Atomistic fibrillar architectures of polar prion-inspired heptapeptides. Peccati F, Díaz-Caballero M, Navarro S, Rodríguez-Santiago L, Ventura S, Sodupe M. Chem Sci 11 13143-13151 (2020)
  98. Crystal structures of amyloidogenic segments of human transthyretin. Saelices L, Sievers SA, Sawaya MR, Eisenberg DS. Protein Sci. 27 1295-1303 (2018)
  99. Crystallographic insights into the self-assembly of KLVFF amyloid-beta peptides. Pizzi A, Dichiarante V, Terraneo G, Metrangolo P. Biopolymers (2017)
  100. Deciphering the Biochemical Pathway and Pharmacokinetic Study of Amyloid βeta-42 with Superparamagnetic Iron Oxide Nanoparticles (SPIONs) Using Systems Biology Approach. Kaushik AC, Kumar A, Dwivedi VD, Bharadwaj S, Kumar S, Bharti K, Kumar P, Chaudhary RK, Mishra SK. Mol. Neurobiol. 55 3224-3236 (2018)
  101. Distinct solvent- and temperature-dependent packing arrangements of anti-parallel β-sheet polyalanines studied with solid-state 13C NMR and MD simulation. Kametani S, Tasei Y, Nishimura A, Asakura T. Phys Chem Chem Phys 19 20829-20838 (2017)
  102. Identification of a Steric Zipper Motif in the Amyloidogenic Core of Human Cystatin C and Its Use for the Design of Self-Assembling Peptides. Iłowska E, Barciszewski J, Jaskólski M, Moliński A, Kozak M, Szymańska A. Int J Mol Sci 23 5800 (2022)
  103. Phenol-soluble modulins PSMα3 and PSMβ2 form nanotubes that are cross-α amyloids. Kreutzberger MAB, Wang S, Beltran LC, Tuachi A, Zuo X, Egelman EH, Conticello VP. Proc Natl Acad Sci U S A 119 e2121586119 (2022)
  104. The Introduction of a Cysteine Residue Modulates The Mechanical Properties of Aromatic-Based Solid Aggregates and Self-Supporting Hydrogels. Diaferia C, Rosa E, Balasco N, Sibillano T, Morelli G, Giannini C, Vitagliano L, Accardo A. Chemistry 27 14886-14898 (2021)
  105. The carbonyl-lock mechanism underlying non-aromatic fluorescence in biological matter. Mirón GD, Semelak JA, Grisanti L, Rodriguez A, Conti I, Stella M, Velusamy J, Seriani N, Došlić N, Rivalta I, Garavelli M, Estrin DA, Kaminski Schierle GS, González Lebrero MC, Hassanali A, Morzan UN. Nat Commun 14 7325 (2023)
  106. Towards the design of anti-amyloid short peptide helices. Roterman I, Banach M, Konieczny L. Bioinformation 14 1-7 (2018)
  107. Ultrafast Hydrogen-Bonding Dynamics in Amyloid Fibrils. Pazos IM, Ma J, Mukherjee D, Gai F. J Phys Chem B 122 11023-11029 (2018)
  108. A Novel Cell Penetrating Peptide for the Differentiation of Human Neural Stem Cells. Ma W, Jin GW, Gehret PM, Chada NC, Suh WH. Biomolecules 8 (2018)
  109. A computational study of self-assembled hexapeptide inhibitors against amyloid-β (Aβ) aggregation. Qiao Y, Zhang M, Liang Y, Zheng J, Liang G. Phys Chem Chem Phys 19 155-166 (2016)
  110. A structural model of the hierarchical assembly of an amyloid nanosheet by an infrared probe technique. Jia B, Sun Y, Yang L, Yu Y, Fan H, Ma G. Phys Chem Chem Phys 20 27261-27271 (2018)
  111. Aggregation of an Amyloidogenic Peptide on Gold Surfaces. Cheung DL. Biomolecules 13 1261 (2023)
  112. Alzheimer's Aβ1-40 peptide degradation by thermolysin: evidence of inhibition by a C-terminal Aβ product. Leite JP, Gales L. FEBS Lett 593 128-137 (2019)
  113. Asymmetric Michael addition catalysed by copper-amyloid complexes. Fujieda N, Tonomura A, Mochizuki T, Itoh S. RSC Adv 14 206-210 (2024)
  114. Cascade autohydrolysis of Alzheimer's Aβ peptides. Wolfram M, Tiwari MK, Hassenkam T, Li M, Bjerrum MJ, Meldal M. Chem Sci 14 4986-4996 (2023)
  115. Distal amyloid β-protein fragments template amyloid assembly. Do TD, Sangwan S, de Almeida NEC, Ilitchev AI, Giammona M, Sawaya MR, Buratto SK, Eisenberg DS, Bowers MT. Protein Sci. 27 1181-1190 (2018)
  116. Effects of Aβ-derived peptide fragments on fibrillogenesis of Aβ. Abedin F, Kandel N, Tatulian SA. Sci Rep 11 19262 (2021)
  117. Emergence of distinct and heterogeneous strains of amyloid beta with advanced Alzheimer's disease pathology in Down syndrome. Maxwell AM, Yuan P, Rivera BM, Schaaf W, Mladinov M, Prasher VP, Robinson AC, DeGrado WF, Condello C. Acta Neuropathol Commun 9 201 (2021)
  118. Evidence for aggregation-independent, PrPC-mediated Aβ cellular internalization. Foley AR, Roseman GP, Chan K, Smart A, Finn TS, Yang K, Lokey RS, Millhauser GL, Raskatov JA. Proc Natl Acad Sci U S A 117 28625-28631 (2020)
  119. Human Serum Albumin-Inspired Glycopeptide-Based Multifunctional Inhibitor of Amyloid-β Toxicity. Roy R, Pradhan K, Khan J, Das G, Mukherjee N, Das D, Ghosh S. ACS Omega 5 18628-18641 (2020)
  120. Inhibiting amyloid-β cytotoxicity through its interaction with the cell surface receptor LilrB2 by structure-based design. Cao Q, Shin WS, Chan H, Vuong CK, Dubois B, Li B, Murray KA, Sawaya MR, Feigon J, Black DL, Eisenberg DS, Jiang L. Nat Chem 10 1213-1221 (2018)
  121. Insight into the Interactions of Amyloid β-Sheets with Graphene Flakes: Scrutinizing the Role of Aromatic Residues in Amyloids that Interact with Graphene. Božinovski DM, Petrović PV, Belić MR, Zarić SD. Chemphyschem 19 1226-1233 (2018)
  122. Intracellular Aβ42 Aggregation Leads to Cellular Thermogenesis. Chung CW, Stephens AD, Konno T, Ward E, Avezov E, Kaminski CF, Hassanali AA, Kaminski Schierle GS. J Am Chem Soc 144 10034-10041 (2022)
  123. Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study. Zhou H, Liu S, Shao Q, Ma D, Yang Z, Zhou R. J Chem Phys 148 115102 (2018)
  124. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. Xie H, Rojas A, Maisuradze GG, Khelashvili G. ACS Chem Neurosci 13 987-1001 (2022)
  125. Molecular dynamics study of water channels in natural and synthetic amyloid-β fibrils. Natesh SR, Hummels AR, Sachleben JR, Sosnick TR, Freed KF, Douglas JF, Meredith SC, Haddadian EJ. J Chem Phys 154 235102 (2021)
  126. Nanostructures Formed by Custom-Made Peptides Based on Amyloid Peptide Sequences and Their Inhibition by 2-Hydroxynaphthoquinone. Mannem R, Yousuf M, Sreerama L. Front Chem 8 684 (2020)
  127. Polymorphic amyloid nanostructures of hormone peptides involved in glucose homeostasis display reversible amyloid formation. Horváth D, Dürvanger Z, K Menyhárd D, Sulyok-Eiler M, Bencs F, Gyulai G, Horváth P, Taricska N, Perczel A. Nat Commun 14 4621 (2023)
  128. Proteolysis of Amyloid β by Lysosomal Enzymes as a Function of Fibril Morphology. Lambeth TR, Julian RR. ACS Omega 6 31520-31527 (2021)
  129. Self-Assembled Materials Based on Fully Aromatic Peptides: The Impact of Tryptophan, Tyrosine, and Dopa Residues. Balasco N, Altamura D, Scognamiglio PL, Sibillano T, Giannini C, Morelli G, Vitagliano L, Accardo A, Diaferia C. Langmuir 40 1470-1486 (2024)
  130. Simulations of Amyloid-Forming Peptides in the Crystal State. Hosseini AN, van der Spoel D. Protein J 42 192-204 (2023)
  131. Small static electric field strength promotes aggregation-prone structures in amyloid-β(29-42). Lu Y, Shi XF, Salsbury FR, Derreumaux P. J Chem Phys 146 145101 (2017)
  132. Staphylococcus aureus functional amyloids catalyze degradation of β-lactam antibiotics. Arad E, Pedersen KB, Malka O, Mambram Kunnath S, Golan N, Aibinder P, Schiøtt B, Rapaport H, Landau M, Jelinek R. Nat Commun 14 8198 (2023)
  133. Structural Insight of Amyloidogenic Intermediates of Human Insulin. Dolui S, Roy A, Pal U, Saha A, Maiti NC. ACS Omega 3 2452-2462 (2018)
  134. Structural insights into peptide self-assembly using photo-induced crosslinking experiments and discontinuous molecular dynamics. Bunce SJ, Wang Y, Radford SE, Wilson AJ, Hall CK. AIChE J 67 e17101 (2021)
  135. Structure of amyloid-β (20-34) with Alzheimer's-associated isomerization at Asp23 reveals a distinct protofilament interface. Warmack RA, Boyer DR, Zee CT, Richards LS, Sawaya MR, Cascio D, Gonen T, Eisenberg DS, Clarke SG. Nat Commun 10 3357 (2019)
  136. Synthesis and physicochemical studies of amyloidogenic hexapeptides derived from human cystatin C. Iłowska E, Sawicka J, Szymańska A. J. Pept. Sci. 24 e3073 (2018)
  137. The Route from the Folded to the Amyloid State: Exploring the Potential Energy Surface of a Drug-Like Miniprotein. Taricska N, Horváth D, Menyhárd DK, Ákontz-Kiss H, Noji M, So M, Goto Y, Fujiwara T, Perczel A. Chemistry 26 1968-1978 (2020)
  138. The amphibian antimicrobial peptide uperin 3.5 is a cross-α/cross-β chameleon functional amyloid. Salinas N, Tayeb-Fligelman E, Sammito MD, Bloch D, Jelinek R, Noy D, Usón I, Landau M. Proc Natl Acad Sci U S A 118 (2021)
  139. Thermodynamics of Aβ16-21 dissociation from a fibril: Enthalpy, entropy, and volumetric properties. Rao Jampani S, Mahmoudinobar F, Su Z, Dias CL. Proteins 83 1963-1972 (2015)
  140. Unexpected Importance of Aromatic-Aliphatic and Aliphatic Side Chain-Backbone Interactions in the Stability of Amyloids. Ninković DB, Malenov DP, Petrović PV, Brothers EN, Niu S, Hall MB, Belić MR, Zarić SD. Chemistry 23 11046-11053 (2017)
  141. Unpicking the determinants of amide NHO[double bond, length as m-dash]C hydrogen bond strength with diphenylacetylene molecular balances. Luccarelli J, Jones IM, Thompson S, Hamilton AD. Org. Biomol. Chem. 15 9156-9163 (2017)
  142. l-Dopa and dopamine conjugated naphthalenediimides modulate amyloid β toxicity. Ramesh M, Makam P, Voshavar C, Khare H, Rajasekhar K, Ramakumar S, Govindaraju T. Org. Biomol. Chem. 16 7682-7692 (2018)