2wtk Citations

Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation.

Science 326 1707-11 (2009)
Cited: 206 times
EuropePMC logo PMID: 19892943

Abstract

The LKB1 tumor suppressor is a protein kinase that controls the activity of adenosine monophosphate-activated protein kinase (AMPK). LKB1 activity is regulated by the pseudokinase STRADalpha and the scaffolding protein MO25alpha through an unknown, phosphorylation-independent, mechanism. We describe the structure of the core heterotrimeric LKB1-STRADalpha-MO25alpha complex, revealing an unusual allosteric mechanism of LKB1 activation. STRADalpha adopts a closed conformation typical of active protein kinases and binds LKB1 as a pseudosubstrate. STRADalpha and MO25alpha promote the active conformation of LKB1, which is stabilized by MO25alpha interacting with the LKB1 activation loop. This previously undescribed mechanism of kinase activation may be relevant to understanding the evolution of other pseudokinases. The structure also reveals how mutations found in Peutz-Jeghers syndrome and in various sporadic cancers impair LKB1 function.

Reviews - 2wtk mentioned but not cited (7)

  1. MultiBac: expanding the research toolbox for multiprotein complexes. Bieniossek C, Imasaki T, Takagi Y, Berger I. Trends Biochem Sci 37 49-57 (2012)
  2. Pseudokinases-remnants of evolution or key allosteric regulators? Zeqiraj E, van Aalten DM. Curr Opin Struct Biol 20 772-781 (2010)
  3. Structural Basis for the Non-catalytic Functions of Protein Kinases. Kung JE, Jura N. Structure 24 7-24 (2016)
  4. Prospects for pharmacological targeting of pseudokinases. Kung JE, Jura N. Nat Rev Drug Discov 18 501-526 (2019)
  5. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Cancers (Basel) 10 E196 (2018)
  6. Nucleotide-binding mechanisms in pseudokinases. Hammarén HM, Virtanen AT, Silvennoinen O. Biosci Rep 36 e00282 (2015)
  7. Looking lively: emerging principles of pseudokinase signaling. Sheetz JB, Lemmon MA. Trends Biochem Sci 47 875-891 (2022)

Articles - 2wtk mentioned but not cited (14)

  1. Structure of the LKB1-STRAD-MO25 complex reveals an allosteric mechanism of kinase activation. Zeqiraj E, Filippi BM, Deak M, Alessi DR, van Aalten DM. Science 326 1707-1711 (2009)
  2. Broad-Spectrum Kinase Profiling in Live Cells with Lysine-Targeted Sulfonyl Fluoride Probes. Zhao Q, Ouyang X, Wan X, Gajiwala KS, Kath JC, Jones LH, Burlingame AL, Taunton J. J Am Chem Soc 139 680-685 (2017)
  3. Tankyrase disrupts metabolic homeostasis and promotes tumorigenesis by inhibiting LKB1-AMPK signalling. Li N, Wang Y, Neri S, Zhen Y, Fong LWR, Qiao Y, Li X, Chen Z, Stephan C, Deng W, Ye R, Jiang W, Zhang S, Yu Y, Hung MC, Chen J, Lin SH. Nat Commun 10 4363 (2019)
  4. The structural impact of cancer-associated missense mutations in oncogenes and tumor suppressors. Stehr H, Jang SH, Duarte JM, Wierling C, Lehrach H, Lappe M, Lange BM. Mol Cancer 10 54 (2011)
  5. SUMOylation regulates LKB1 localization and its oncogenic activity in liver cancer. Zubiete-Franco I, García-Rodríguez JL, Lopitz-Otsoa F, Serrano-Macia M, Simon J, Fernández-Tussy P, Barbier-Torres L, Fernández-Ramos D, Gutiérrez-de-Juan V, López de Davalillo S, Carlevaris O, Beguiristain Gómez A, Villa E, Calvisi D, Martín C, Berra E, Aspichueta P, Beraza N, Varela-Rey M, Ávila M, Rodríguez MS, Mato JM, Díaz-Moreno I, Díaz-Quintana A, Delgado TC, Martínez-Chantar ML. EBioMedicine 40 406-421 (2019)
  6. Prediction of Deleterious Non-synonymous SNPs of Human STK11 Gene by Combining Algorithms, Molecular Docking, and Molecular Dynamics Simulation. Islam MJ, Khan AM, Parves MR, Hossain MN, Halim MA. Sci Rep 9 16426 (2019)
  7. Structural insights into the activation of MST3 by MO25. Mehellou Y, Alessi DR, Macartney TJ, Szklarz M, Knapp S, Elkins JM. Biochem Biophys Res Commun 431 604-609 (2013)
  8. STK11 (LKB1) missense somatic mutant isoforms promote tumor growth, motility and inflammation. Granado-Martínez P, Garcia-Ortega S, González-Sánchez E, McGrail K, Selgas R, Grueso J, Gil R, Naldaiz-Gastesi N, Rhodes AC, Hernandez-Losa J, Ferrer B, Canals F, Villanueva J, Méndez O, Espinosa-Gil S, Lizcano JM, Muñoz-Couselo E, García-Patos V, Recio JA. Commun Biol 3 366 (2020)
  9. The altered activity of P53 signaling pathway by STK11 gene mutations and its cancer phenotype in Peutz-Jeghers syndrome. Jiang YL, Zhao ZY, Li BR, Yang F, Li J, Jin XW, Wang H, Yu ED, Sun SH, Ning SB. BMC Med Genet 19 141 (2018)
  10. Cheonggukjang-Specific Component 1,3-Diphenyl-2-Propanone as a Novel PPARα/γ Dual Agonist: An In Vitro and In Silico Study. Arulkumar R, Jung HJ, Noh SG, Park D, Chung HY. Int J Mol Sci 22 10884 (2021)
  11. AMPK targets a proto-oncogene TPD52 (isoform 3) expression and its interaction with LKB1 suppress AMPK-GSK3β signaling axis in prostate cancer. Khilar P, Sruthi KK, Parveen SMA, Natani S, Jadav SS, Ummanni R. J Cell Commun Signal 17 957-974 (2023)
  12. Phosphorylation of LKB1 by PDK1 Inhibits Cell Proliferation and Organ Growth by Decreased Activation of AMPK. Borkowsky S, Gass M, Alavizargar A, Hanewinkel J, Hallstein I, Nedvetsky P, Heuer A, Krahn MP. Cells 12 812 (2023)
  13. Regulatory spine RS3 residue of protein kinases: a lipophilic bystander or a decisive element in the small-molecule kinase inhibitor binding? Shevchenko E, Pantsar T. Biochem Soc Trans 50 633-648 (2022)
  14. Successive Statistical and Structure-Based Modeling to Identify Chemically Novel Kinase Inhibitors. Burggraaff L, Lenselink EB, Jespers W, van Engelen J, Bongers BJ, González MG, Liu R, Hoos HH, van Vlijmen HWT, IJzerman AP, van Westen GJP. J Chem Inf Model 60 4283-4295 (2020)


Reviews citing this publication (63)

  1. Protein kinases: evolution of dynamic regulatory proteins. Taylor SS, Kornev AP. Trends Biochem Sci 36 65-77 (2011)
  2. The structural basis for control of eukaryotic protein kinases. Endicott JA, Noble ME, Johnson LN. Annu Rev Biochem 81 587-613 (2012)
  3. mTOR in Brain Physiology and Pathologies. Bockaert J, Marin P. Physiol Rev 95 1157-1187 (2015)
  4. Signalling scaffolds and local organization of cellular behaviour. Langeberg LK, Scott JD. Nat Rev Mol Cell Biol 16 232-244 (2015)
  5. The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Dar AC, Shokat KM. Annu Rev Biochem 80 769-795 (2011)
  6. Targeting metabolism for cancer treatment and prevention: metformin, an old drug with multi-faceted effects. Pierotti MA, Berrino F, Gariboldi M, Melani C, Mogavero A, Negri T, Pasanisi P, Pilotti S. Oncogene 32 1475-1487 (2013)
  7. Ten things you should know about protein kinases: IUPHAR Review 14. Fabbro D, Cowan-Jacob SW, Moebitz H. Br J Pharmacol 172 2675-2700 (2015)
  8. AMPK: regulating energy balance at the cellular and whole body levels. Hardie DG, Ashford ML. Physiology (Bethesda) 29 99-107 (2014)
  9. 6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling. Lin R, Elf S, Shan C, Kang HB, Ji Q, Zhou L, Hitosugi T, Zhang L, Zhang S, Seo JH, Xie J, Tucker M, Gu TL, Sudderth J, Jiang L, Mitsche M, DeBerardinis RJ, Wu S, Li Y, Mao H, Chen PR, Wang D, Chen GZ, Hurwitz SJ, Lonial S, Arellano ML, Khoury HJ, Khuri FR, Lee BH, Lei Q, Brat DJ, Ye K, Boggon TJ, He C, Kang S, Fan J, Chen J. Nat Cell Biol 17 1484-1496 (2015)
  10. Hypothalamic AMPK: a canonical regulator of whole-body energy balance. López M, Nogueiras R, Tena-Sempere M, Diéguez C. Nat Rev Endocrinol 12 421-432 (2016)
  11. Day of the dead: pseudokinases and pseudophosphatases in physiology and disease. Reiterer V, Eyers PA, Farhan H. Trends Cell Biol 24 489-505 (2014)
  12. Kinases and pseudokinases: lessons from RAF. Shaw AS, Kornev AP, Hu J, Ahuja LG, Taylor SS. Mol Cell Biol 34 1538-1546 (2014)
  13. Mitotic exit and separation of mother and daughter cells. Weiss EL. Genetics 192 1165-1202 (2012)
  14. ILK: a pseudokinase in the center stage of cell-matrix adhesion and signaling. Qin J, Wu C. Curr Opin Cell Biol 24 607-613 (2012)
  15. Molecular physiology of SPAK and OSR1: two Ste20-related protein kinases regulating ion transport. Gagnon KB, Delpire E. Physiol Rev 92 1577-1617 (2012)
  16. How Do Protein Kinases Take a Selfie (Autophosphorylate)? Beenstock J, Mooshayef N, Engelberg D. Trends Biochem Sci 41 938-953 (2016)
  17. The strange case of AMPK and cancer: Dr Jekyll or Mr Hyde? . Vara-Ciruelos D, Russell FM, Hardie DG. Open Biol 9 190099 (2019)
  18. Molecular mechanisms of tumor suppression by LKB1. Vaahtomeri K, Mäkelä TP. FEBS Lett 585 944-951 (2011)
  19. Dawn of the dead: protein pseudokinases signal new adventures in cell biology. Eyers PA, Murphy JM. Biochem Soc Trans 41 969-974 (2013)
  20. The Skp2 Pathway: A Critical Target for Cancer Therapy. Cai Z, Moten A, Peng D, Hsu CC, Pan BS, Manne R, Li HY, Lin HK. Semin Cancer Biol 67 16-33 (2020)
  21. Live and let die: insights into pseudoenzyme mechanisms from structure. Murphy JM, Mace PD, Eyers PA. Curr Opin Struct Biol 47 95-104 (2017)
  22. Molecular Pathways Underlying Projection Neuron Production and Migration during Cerebral Cortical Development. Ohtaka-Maruyama C, Okado H. Front Neurosci 9 447 (2015)
  23. Recent progress on liver kinase B1 (LKB1): expression, regulation, downstream signaling and cancer suppressive function. Gan RY, Li HB. Int J Mol Sci 15 16698-16718 (2014)
  24. LKB1 regulated pathways in lung cancer invasion and metastasis. Marcus AI, Zhou W. J Thorac Oncol 5 1883-1886 (2010)
  25. Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review). Li N, Huang D, Lu N, Luo L. Oncol Rep 34 2821-2826 (2015)
  26. AMP-activated protein kinase - not just an energy sensor. Hardie DG, Lin SC. F1000Res 6 1724 (2017)
  27. Pseudokinases: update on their functions and evaluation as new drug targets. Byrne DP, Foulkes DM, Eyers PA. Future Med Chem 9 245-265 (2017)
  28. Toxoplasma and Plasmodium protein kinases: roles in invasion and host cell remodelling. Lim DC, Cooke BM, Doerig C, Saeij JP. Int J Parasitol 42 21-32 (2012)
  29. SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Sugden PH, McGuffin LJ, Clerk A. Biochem J 454 13-30 (2013)
  30. The MultiBac Baculovirus/Insect Cell Expression Vector System for Producing Complex Protein Biologics. Sari D, Gupta K, Thimiri Govinda Raj DB, Aubert A, Drncová P, Garzoni F, Fitzgerald D, Berger I. Adv Exp Med Biol 896 199-215 (2016)
  31. An exploration of genotype-phenotype link between Peutz-Jeghers syndrome and STK11: a review. Daniell J, Plazzer JP, Perera A, Macrae F. Fam Cancer 17 421-427 (2018)
  32. Par proteins and neuronal polarity. Insolera R, Chen S, Shi SH. Dev Neurobiol 71 483-494 (2011)
  33. Mechanisms of innate immunity in C. elegans epidermis. Taffoni C, Pujol N. Tissue Barriers 3 e1078432 (2015)
  34. The role of adiponectin signaling in metabolic syndrome and cancer. Scheid MP, Sweeney G. Rev Endocr Metab Disord 15 157-167 (2014)
  35. Controlling the master-upstream regulation of the tumor suppressor LKB1. Kullmann L, Krahn MP. Oncogene 37 3045-3057 (2018)
  36. Metformin as a geroprotector. Bulterijs S. Rejuvenation Res 14 469-482 (2011)
  37. Germinal center kinases in immune regulation. Yin H, Shi Z, Jiao S, Chen C, Wang W, Greene MI, Zhou Z. Cell Mol Immunol 9 439-445 (2012)
  38. AMP-activated protein kinase: implications on ischemic diseases. Ahn YJ, Kim H, Lim H, Lee M, Kang Y, Moon S, Kim HS, Kim HH. BMB Rep 45 489-495 (2012)
  39. DEPDC5 as a potential therapeutic target for epilepsy. Myers KA, Scheffer IE. Expert Opin Ther Targets 21 591-600 (2017)
  40. The role of pseudokinases in cancer. Zhang H, Photiou A, Grothey A, Stebbing J, Giamas G. Cell Signal 24 1173-1184 (2012)
  41. AMP-Activated Protein Kinase: Do We Need Activators or Inhibitors to Treat or Prevent Cancer? Russell FM, Hardie DG. Int J Mol Sci 22 E186 (2020)
  42. The LKB1 complex-AMPK pathway: the tree that hides the forest. Sebbagh M, Olschwang S, Santoni MJ, Borg JP. Fam Cancer 10 415-424 (2011)
  43. Dictyostelium, a microbial model for brain disease. Annesley SJ, Chen S, Francione LM, Sanislav O, Chavan AJ, Farah C, De Piazza SW, Storey CL, Ilievska J, Fernando SG, Smith PK, Lay ST, Fisher PR. Biochim Biophys Acta 1840 1413-1432 (2014)
  44. Unravelling the connection between metabolism and tumorigenesis through studies of the liver kinase B1 tumour suppressor. Shackelford DB. J Carcinog 12 16 (2013)
  45. Going for broke: targeting the human cancer pseudokinome. Bailey FP, Byrne DP, McSkimming D, Kannan N, Eyers PA. Biochem J 465 195-211 (2015)
  46. LKB1 loss of function studied in vivo. Shorning BY, Clarke AR. FEBS Lett 585 958-966 (2011)
  47. Pseudo-DUBs as allosteric activators and molecular scaffolds of protein complexes. Walden M, Masandi SK, Pawłowski K, Zeqiraj E. Biochem Soc Trans 46 453-466 (2018)
  48. Nuclear receptor-binding protein 1: a novel tumour suppressor and pseudokinase. Kerr JS, Wilson CH. Biochem Soc Trans 41 1055-1060 (2013)
  49. Tankyrases as modulators of pro-tumoral functions: molecular insights and therapeutic opportunities. Zamudio-Martinez E, Herrera-Campos AB, Muñoz A, Rodríguez-Vargas JM, Oliver FJ. J Exp Clin Cancer Res 40 144 (2021)
  50. Cataloguing the dead: breathing new life into pseudokinase research. Shrestha S, Byrne DP, Harris JA, Kannan N, Eyers PA. FEBS J 287 4150-4169 (2020)
  51. Techniques to examine nucleotide binding by pseudokinases. Lucet IS, Babon JJ, Murphy JM. Biochem Soc Trans 41 975-980 (2013)
  52. The AMPK pathway in fatty liver disease. Fang C, Pan J, Qu N, Lei Y, Han J, Zhang J, Han D. Front Physiol 13 970292 (2022)
  53. Pseudokinase drug intervention: a potentially poisoned chalice. Claus J, Cameron AJ, Parker PJ. Biochem Soc Trans 41 1083-1088 (2013)
  54. The ABCs of the atypical Fam20 secretory pathway kinases. Worby CA, Mayfield JE, Pollak AJ, Dixon JE, Banerjee S. J Biol Chem 296 100267 (2021)
  55. A pickup in pseudokinase activity. Dar AC. Biochem Soc Trans 41 987-994 (2013)
  56. The EphB6 Receptor: Kinase-Dead but Very Much Alive. Strozen TG, Sharpe JC, Harris ED, Uppalapati M, Toosi BM. Int J Mol Sci 22 8211 (2021)
  57. Genetic approaches for understanding virulence in Toxoplasma gondii. Weilhammer DR, Rasley A. Brief Funct Genomics 10 365-373 (2011)
  58. Hydrogen Sulfide: A Key Role in Autophagy Regulation from Plants to Mammalians. Aroca A, Gotor C. Antioxidants (Basel) 11 327 (2022)
  59. Precision Therapy for Epilepsy Related to Brain Malformations. D'Gama AM, Poduri A. Neurotherapeutics 18 1548-1563 (2021)
  60. AMPK and the Challenge of Treating Hypoxic Pulmonary Hypertension. Flores K, Siques P, Brito J, Arribas SM. Int J Mol Sci 23 6205 (2022)
  61. Posttranslational regulation of liver kinase B1 in human cancer. Hu L, Liu M, Tang B, Li Q, Pan BS, Xu C, Lin HK. J Biol Chem 299 104570 (2023)
  62. ULK4 in Neurodevelopmental and Neuropsychiatric Disorders. Luo S, Zheng N, Lang B. Front Cell Dev Biol 10 873706 (2022)
  63. Emerging functions of pseudoenzymes. Goldberg T, Sreelatha A. Biochem J 480 715-728 (2023)

Articles citing this publication (122)

  1. Proteomics of Primary Cilia by Proximity Labeling. Mick DU, Rodrigues RB, Leib RD, Adams CM, Chien AS, Gygi SP, Nachury MV. Dev Cell 35 497-512 (2015)
  2. Kinase drug discovery--what's next in the field? Cohen P, Alessi DR. ACS Chem Biol 8 96-104 (2013)
  3. Polymorphic family of injected pseudokinases is paramount in Toxoplasma virulence. Reese ML, Zeiner GM, Saeij JP, Boothroyd JC, Boyle JP. Proc Natl Acad Sci U S A 108 9625-9630 (2011)
  4. The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Ungureanu D, Wu J, Pekkala T, Niranjan Y, Young C, Jensen ON, Xu CF, Neubert TA, Skoda RC, Hubbard SR, Silvennoinen O. Nat Struct Mol Biol 18 971-976 (2011)
  5. A robust methodology to subclassify pseudokinases based on their nucleotide-binding properties. Murphy JM, Zhang Q, Young SN, Reese ML, Bailey FP, Eyers PA, Ungureanu D, Hammaren H, Silvennoinen O, Varghese LN, Chen K, Tripaydonis A, Jura N, Fukuda K, Qin J, Nimchuk Z, Mudgett MB, Elowe S, Gee CL, Liu L, Daly RJ, Manning G, Babon JJ, Lucet IS. Biochem J 457 323-334 (2014)
  6. AMP as a low-energy charge signal autonomously initiates assembly of AXIN-AMPK-LKB1 complex for AMPK activation. Zhang YL, Guo H, Zhang CS, Lin SY, Yin Z, Peng Y, Luo H, Shi Y, Lian G, Zhang C, Li M, Ye Z, Ye J, Han J, Li P, Wu JW, Lin SC. Cell Metab 18 546-555 (2013)
  7. New baculovirus expression tools for recombinant protein complex production. Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I. J Struct Biol 172 45-54 (2010)
  8. The polymorphic pseudokinase ROP5 controls virulence in Toxoplasma gondii by regulating the active kinase ROP18. Behnke MS, Fentress SJ, Mashayekhi M, Li LX, Taylor GA, Sibley LD. PLoS Pathog 8 e1002992 (2012)
  9. SPAK isoforms and OSR1 regulate sodium-chloride co-transporters in a nephron-specific manner. Grimm PR, Taneja TK, Liu J, Coleman R, Chen YY, Delpire E, Wade JB, Welling PA. J Biol Chem 287 37673-37690 (2012)
  10. MO25 is a master regulator of SPAK/OSR1 and MST3/MST4/YSK1 protein kinases. Filippi BM, de los Heros P, Mehellou Y, Navratilova I, Gourlay R, Deak M, Plater L, Toth R, Zeqiraj E, Alessi DR. EMBO J 30 1730-1741 (2011)
  11. STRADalpha deficiency results in aberrant mTORC1 signaling during corticogenesis in humans and mice. Orlova KA, Parker WE, Heuer GG, Tsai V, Yoon J, Baybis M, Fenning RS, Strauss K, Crino PB. J Clin Invest 120 1591-1602 (2010)
  12. Structural insights into phosphoinositide 3-kinase activation by the influenza A virus NS1 protein. Hale BG, Kerry PS, Jackson D, Precious BL, Gray A, Killip MJ, Randall RE, Russell RJ. Proc Natl Acad Sci U S A 107 1954-1959 (2010)
  13. TGFβ-stimulated microRNA-21 utilizes PTEN to orchestrate AKT/mTORC1 signaling for mesangial cell hypertrophy and matrix expansion. Dey N, Ghosh-Choudhury N, Kasinath BS, Choudhury GG. PLoS One 7 e42316 (2012)
  14. A secretory kinase complex regulates extracellular protein phosphorylation. Cui J, Xiao J, Tagliabracci VS, Wen J, Rahdar M, Dixon JE. Elife 4 e06120 (2015)
  15. Rap2A links intestinal cell polarity to brush border formation. Gloerich M, ten Klooster JP, Vliem MJ, Koorman T, Zwartkruis FJ, Clevers H, Bos JL. Nat Cell Biol 14 793-801 (2012)
  16. Skp2-dependent ubiquitination and activation of LKB1 is essential for cancer cell survival under energy stress. Lee SW, Li CF, Jin G, Cai Z, Han F, Chan CH, Yang WL, Li BK, Rezaeian AH, Li HY, Huang HY, Lin HK. Mol Cell 57 1022-1033 (2015)
  17. Rapamycin prevents seizures after depletion of STRADA in a rare neurodevelopmental disorder. Parker WE, Orlova KA, Parker WH, Birnbaum JF, Krymskaya VP, Goncharov DA, Baybis M, Helfferich J, Okochi K, Strauss KA, Crino PB. Sci Transl Med 5 182ra53 (2013)
  18. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT pathway. Hur W, Lee JH, Kim SW, Kim JH, Bae SH, Kim M, Hwang D, Kim YS, Park T, Um SJ, Song BJ, Yoon SK. Int J Biochem Cell Biol 64 265-276 (2015)
  19. Nilotinib induces autophagy in hepatocellular carcinoma through AMPK activation. Yu HC, Lin CS, Tai WT, Liu CY, Shiau CW, Chen KF. J Biol Chem 288 18249-18259 (2013)
  20. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling. Dhawan NS, Scopton AP, Dar AC. Nature 537 112-116 (2016)
  21. A conserved non-canonical motif in the pseudoactive site of the ROP5 pseudokinase domain mediates its effect on Toxoplasma virulence. Reese ML, Boothroyd JC. J Biol Chem 286 29366-29375 (2011)
  22. Cell-type-dependent regulation of mTORC1 by REDD1 and the tumor suppressors TSC1/TSC2 and LKB1 in response to hypoxia. Wolff NC, Vega-Rubin-de-Celis S, Xie XJ, Castrillon DH, Kabbani W, Brugarolas J. Mol Cell Biol 31 1870-1884 (2011)
  23. ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Hammarén HM, Ungureanu D, Grisouard J, Skoda RC, Hubbard SR, Silvennoinen O. Proc Natl Acad Sci U S A 112 4642-4647 (2015)
  24. Structural and evolutionary adaptation of rhoptry kinases and pseudokinases, a family of coccidian virulence factors. Talevich E, Kannan N. BMC Evol Biol 13 117 (2013)
  25. Cilia-localized LKB1 regulates chemokine signaling, macrophage recruitment, and tissue homeostasis in the kidney. Viau A, Bienaimé F, Lukas K, Todkar AP, Knoll M, Yakulov TA, Hofherr A, Kretz O, Helmstädter M, Reichardt W, Braeg S, Aschman T, Merkle A, Pfeifer D, Dumit VI, Gubler MC, Nitschke R, Huber TB, Terzi F, Dengjel J, Grahammer F, Köttgen M, Busch H, Boerries M, Walz G, Triantafyllopoulou A, Kuehn EW. EMBO J 37 e98615 (2018)
  26. Programmed elimination of cells by caspase-independent cell extrusion in C. elegans. Denning DP, Hatch V, Horvitz HR. Nature 488 226-230 (2012)
  27. Micro-RNA-195 and -451 regulate the LKB1/AMPK signaling axis by targeting MO25. Chen H, Untiveros GM, McKee LA, Perez J, Li J, Antin PB, Konhilas JP. PLoS One 7 e41574 (2012)
  28. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A, Godlewski J. Cell Rep 11 902-909 (2015)
  29. The Toxoplasma pseudokinase ROP5 is an allosteric inhibitor of the immunity-related GTPases. Reese ML, Shah N, Boothroyd JC. J Biol Chem 289 27849-27858 (2014)
  30. Negative regulation of TGFβ signaling by the kinase LKB1 and the scaffolding protein LIP1. Morén A, Raja E, Heldin CH, Moustakas A. J Biol Chem 286 341-353 (2011)
  31. Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Pulito C, Mori F, Sacconi A, Goeman F, Ferraiuolo M, Pasanisi P, Campagnoli C, Berrino F, Fanciulli M, Ford RJ, Levrero M, Pediconi N, Ciuffreda L, Milella M, Steinberg GR, Cioce M, Muti P, Strano S, Blandino G. Cell Discov 3 17022 (2017)
  32. The Tribbles 2 (TRB2) pseudokinase binds to ATP and autophosphorylates in a metal-independent manner. Bailey FP, Byrne DP, Oruganty K, Eyers CE, Novotny CJ, Shokat KM, Kannan N, Eyers PA. Biochem J 467 47-62 (2015)
  33. Inhibitor-induced HER2-HER3 heterodimerisation promotes proliferation through a novel dimer interface. Claus J, Patel G, Autore F, Colomba A, Weitsman G, Soliman TN, Roberts S, Zanetti-Domingues LC, Hirsch M, Collu F, George R, Ortiz-Zapater E, Barber PR, Vojnovic B, Yarden Y, Martin-Fernandez ML, Cameron A, Fraternali F, Ng T, Parker PJ. Elife 7 e32271 (2018)
  34. Non-catalytic signaling by pseudokinase ILK for regulating cell adhesion. Vaynberg J, Fukuda K, Lu F, Bialkowska K, Chen Y, Plow EF, Qin J. Nat Commun 9 4465 (2018)
  35. A protein interaction landscape of breast cancer. Kim M, Park J, Bouhaddou M, Kim K, Rojc A, Modak M, Soucheray M, McGregor MJ, O'Leary P, Wolf D, Stevenson E, Foo TK, Mitchell D, Herrington KA, Muñoz DP, Tutuncuoglu B, Chen KH, Zheng F, Kreisberg JF, Diolaiti ME, Gordan JD, Coppé JP, Swaney DL, Xia B, van 't Veer L, Ashworth A, Ideker T, Krogan NJ. Science 374 eabf3066 (2021)
  36. Structure and identification of a pterin dehydratase-like protein as a ribulose-bisphosphate carboxylase/oxygenase (RuBisCO) assembly factor in the α-carboxysome. Wheatley NM, Sundberg CD, Gidaniyan SD, Cascio D, Yeates TO. J Biol Chem 289 7973-7981 (2014)
  37. Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Liu M, Jiang L, Fu X, Wang W, Ma J, Tian T, Nan K, Liang X. Cancer Sci 109 3055-3067 (2018)
  38. Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Houde VP, Ritorto MS, Gourlay R, Varghese J, Davies P, Shpiro N, Sakamoto K, Alessi DR. Biochem J 458 41-56 (2014)
  39. Molecular chaperone complexes with antagonizing activities regulate stability and activity of the tumor suppressor LKB1. Gaude H, Aznar N, Delay A, Bres A, Buchet-Poyau K, Caillat C, Vigouroux A, Rogon C, Woods A, Vanacker JM, Höhfeld J, Perret C, Meyer P, Billaud M, Forcet C. Oncogene 31 1582-1591 (2012)
  40. Structure of the pseudokinase domain of BIR2, a regulator of BAK1-mediated immune signaling in Arabidopsis. Blaum BS, Mazzotta S, Nöldeke ER, Halter T, Madlung J, Kemmerling B, Stehle T. J Struct Biol 186 112-121 (2014)
  41. Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Shi Z, Jiao S, Zhang Z, Ma M, Zhang Z, Chen C, Wang K, Wang H, Wang W, Zhang L, Zhao Y, Zhou Z. Structure 21 449-461 (2013)
  42. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. Ponce-Coria J, Markadieu N, Austin TM, Flammang L, Rios K, Welling PA, Delpire E. J Biol Chem 289 17680-17688 (2014)
  43. Distinct pseudokinase domain conformations underlie divergent activation mechanisms among vertebrate MLKL orthologues. Davies KA, Fitzgibbon C, Young SN, Garnish SE, Yeung W, Coursier D, Birkinshaw RW, Sandow JJ, Lehmann WIL, Liang LY, Lucet IS, Chalmers JD, Patrick WM, Kannan N, Petrie EJ, Czabotar PE, Murphy JM. Nat Commun 11 3060 (2020)
  44. Increased dietary fat contributes to dysregulation of the LKB1/AMPK pathway and increased damage in a mouse model of early-stage ethanol-mediated steatosis. Shearn CT, Smathers RL, Jiang H, Orlicky DJ, Maclean KN, Petersen DR. J Nutr Biochem 24 1436-1445 (2013)
  45. Activation of AMPK by bitter melon triterpenoids involves CaMKKβ. Iseli TJ, Turner N, Zeng XY, Cooney GJ, Kraegen EW, Yao S, Ye Y, James DE, Ye JM. PLoS One 8 e62309 (2013)
  46. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway. Yang H, Sun W, Quan N, Wang L, Chu D, Cates C, Liu Q, Zheng Y, Li J. Biochem Pharmacol 108 47-57 (2016)
  47. CAB39L elicited an anti-Warburg effect via a LKB1-AMPK-PGC1α axis to inhibit gastric tumorigenesis. Li W, Wong CC, Zhang X, Kang W, Nakatsu G, Zhao Q, Chen H, Go MYY, Chiu PWY, Wang X, Ji J, Li X, Cai Z, Ng EKW, Yu J. Oncogene 37 6383-6398 (2018)
  48. Mechanism of Activation of AMPK by Cordycepin. Hawley SA, Ross FA, Russell FM, Atrih A, Lamont DJ, Hardie DG. Cell Chem Biol 27 214-222.e4 (2020)
  49. Oestrogen receptors interact with the α-catalytic subunit of AMP-activated protein kinase. Lipovka Y, Chen H, Vagner J, Price TJ, Tsao TS, Konhilas JP. Biosci Rep 35 e00264 (2015)
  50. Aurora-A-mediated phosphorylation of LKB1 compromises LKB1/AMPK signaling axis to facilitate NSCLC growth and migration. Zheng X, Chi J, Zhi J, Zhang H, Yue D, Zhao J, Li D, Li Y, Gao M, Guo J. Oncogene 37 502-511 (2018)
  51. LKB1 represses focal adhesion kinase (FAK) signaling via a FAK-LKB1 complex to regulate FAK site maturation and directional persistence. Kline ER, Shupe J, Gilbert-Ross M, Zhou W, Marcus AI. J Biol Chem 288 17663-17674 (2013)
  52. Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune evasion mechanisms. Lehtiö J, Arslan T, Siavelis I, Pan Y, Socciarelli F, Berkovska O, Umer HM, Mermelekas G, Pirmoradian M, Jönsson M, Brunnström H, Brustugun OT, Purohit KP, Cunningham R, Foroughi Asl H, Isaksson S, Arbajian E, Aine M, Karlsson A, Kotevska M, Gram Hansen C, Drageset Haakensen V, Helland Å, Tamborero D, Johansson HJ, Branca RM, Planck M, Staaf J, Orre LM. Nat Cancer 2 1224-1242 (2021)
  53. Metazoan evolution of the armadillo repeat superfamily. Gul IS, Hulpiau P, Saeys Y, van Roy F. Cell Mol Life Sci 74 525-541 (2017)
  54. Structure of SgK223 pseudokinase reveals novel mechanisms of homotypic and heterotypic association. Patel O, Griffin MDW, Panjikar S, Dai W, Ma X, Chan H, Zheng C, Kropp A, Murphy JM, Daly RJ, Lucet IS. Nat Commun 8 1157 (2017)
  55. Caenorhabditis elegans PIG-1/MELK acts in a conserved PAR-4/LKB1 polarity pathway to promote asymmetric neuroblast divisions. Chien SC, Brinkmann EM, Teuliere J, Garriga G. Genetics 193 897-909 (2013)
  56. Structural characterization of the RLCK family member BSK8: a pseudokinase with an unprecedented architecture. Grütter C, Sreeramulu S, Sessa G, Rauh D. J Mol Biol 425 4455-4467 (2013)
  57. Reelin modulates cytoskeletal organization by regulating Rho GTPases. Leemhuis J, Bock HH. Commun Integr Biol 4 254-257 (2011)
  58. The LKB1 tumor suppressor controls spindle orientation and localization of activated AMPK in mitotic epithelial cells. Wei C, Bhattaram VK, Igwe JC, Fleming E, Tirnauer JS. PLoS One 7 e41118 (2012)
  59. Domain-Swapping Switch Point in Ste20 Protein Kinase SPAK. Taylor CA, Juang YC, Earnest S, Sengupta S, Goldsmith EJ, Cobb MH. Biochemistry 54 5063-5071 (2015)
  60. Emerging Therapeutic Implications of STK11 Mutation: Case Series. Laderian B, Mundi P, Fojo T, E Bates S. Oncologist 25 733-737 (2020)
  61. Functional insights into the activation mechanism of Ste20-related kinases. Gagnon KB, Rios K, Delpire E. Cell Physiol Biochem 28 1219-1230 (2011)
  62. In Vitro Anti-Echinococcal and Metabolic Effects of Metformin Involve Activation of AMP-Activated Protein Kinase in Larval Stages of Echinococcus granulosus. Loos JA, Cumino AC. PLoS One 10 e0126009 (2015)
  63. PDB-scale analysis of known and putative ligand-binding sites with structural sketches. Ito J, Tabei Y, Shimizu K, Tomii K, Tsuda K. Proteins 80 747-763 (2012)
  64. Enhanced interaction between pseudokinase and kinase domains in Gcn2 stimulates eIF2α phosphorylation in starved cells. Lageix S, Rothenburg S, Dever TE, Hinnebusch AG. PLoS Genet 10 e1004326 (2014)
  65. Protein kinase LKB1 regulates polarized dendrite formation of adult hippocampal newborn neurons. Huang W, She L, Chang XY, Yang RR, Wang L, Ji HB, Jiao JW, Poo MM. Proc Natl Acad Sci U S A 111 469-474 (2014)
  66. Dimeric Structure of the Pseudokinase IRAK3 Suggests an Allosteric Mechanism for Negative Regulation. Lange SM, Nelen MI, Cohen P, Kulathu Y. Structure 29 238-251.e4 (2021)
  67. STE20-related kinase adaptor protein α (STRADα) regulates cell polarity and invasion through PAK1 signaling in LKB1-null cells. Eggers CM, Kline ER, Zhong D, Zhou W, Marcus AI. J Biol Chem 287 18758-18768 (2012)
  68. Structural insight into the mechanism of synergistic autoinhibition of SAD kinases. Wu JX, Cheng YS, Wang J, Chen L, Ding M, Wu JW. Nat Commun 6 8953 (2015)
  69. A novel LKB1 isoform enhances AMPK metabolic activity and displays oncogenic properties. Dahmani R, Just PA, Delay A, Canal F, Finzi L, Prip-Buus C, Lambert M, Sujobert P, Buchet-Poyau K, Miller E, Cavard C, Marmier S, Terris B, Billaud M, Perret C. Oncogene 34 2337-2346 (2015)
  70. Resveratrol-induced Sirt1 phosphorylation by LKB1 mediates mitochondrial metabolism. Huang Y, Lu J, Zhan L, Wang M, Shi R, Yuan X, Gao X, Liu X, Zang J, Liu W, Yao X. J Biol Chem 297 100929 (2021)
  71. STRAD pseudokinases regulate axogenesis and LKB1 stability. Veleva-Rotse BO, Smart JL, Baas AF, Edmonds B, Zhao ZM, Brown A, Klug LR, Hansen K, Reilly G, Gardner AP, Subbiah K, Gaucher EA, Clevers H, Barnes AP. Neural Dev 9 5 (2014)
  72. Homodimerization of the Wnt receptor DERAILED recruits the Src family kinase SRC64B. Petrova IM, Lahaye LL, Martiáñez T, de Jong AW, Malessy MJ, Verhaagen J, Noordermeer JN, Fradkin LG. Mol Cell Biol 33 4116-4127 (2013)
  73. MultiBac complexomics. Trowitzsch S, Palmberger D, Fitzgerald D, Takagi Y, Berger I. Expert Rev Proteomics 9 363-373 (2012)
  74. Functional Role of Histidine in the Conserved His-x-Asp Motif in the Catalytic Core of Protein Kinases. Zhang L, Wang JC, Hou L, Cao PR, Wu L, Zhang QS, Yang HY, Zang Y, Ding JP, Li J. Sci Rep 5 10115 (2015)
  75. The Pseudokinase Domain of Saccharomyces cerevisiae Tra1 Is Required for Nuclear Localization and Incorporation into the SAGA and NuA4 Complexes. Berg MD, Genereaux J, Karagiannis J, Brandl CJ. G3 (Bethesda) 8 1943-1957 (2018)
  76. Cell cycle regulated interaction of a yeast Hippo kinase and its activator MO25/Hym1. Hsu J, Weiss EL. PLoS One 8 e78334 (2013)
  77. KinCon: Cell-based recording of full-length kinase conformations. Enzler F, Tschaikner P, Schneider R, Stefan E. IUBMB Life 72 1168-1174 (2020)
  78. The protein kinase LKB1 negatively regulates bone morphogenetic protein receptor signaling. Raja E, Tzavlaki K, Vuilleumier R, Edlund K, Kahata K, Zieba A, Morén A, Watanabe Y, Voytyuk I, Botling J, Söderberg O, Micke P, Pyrowolakis G, Heldin CH, Moustakas A. Oncotarget 7 1120-1143 (2016)
  79. IL11 stimulates ERK/P90RSK to inhibit LKB1/AMPK and activate mTOR initiating a mesenchymal program in stromal, epithelial, and cancer cells. Widjaja AA, Viswanathan S, Wei Ting JG, Tan J, Shekeran SG, Carling D, Lim WW, Cook SA. iScience 25 104806 (2022)
  80. Interactions between TULP3 tubby domain and ARL13B amphipathic helix promote lipidated protein transport to cilia. Palicharla VR, Hwang SH, Somatilaka BN, Legué E, Shimada IS, Familiari NE, Tran VM, Woodruff JB, Liem KF, Mukhopadhyay S. Mol Biol Cell 34 ar18 (2023)
  81. Post-translational modifiers of liver kinase B1/serine/threonine kinase 11 in hepatocellular carcinoma. Delgado TC, Lopitz-Otsoa F, Martínez-Chantar ML. J Hepatocell Carcinoma 6 85-91 (2019)
  82. Structural and biochemical insights into the activation mechanisms of germinal center kinase OSR1. Li C, Feng M, Shi Z, Hao Q, Song X, Wang W, Zhao Y, Jiao S, Zhou Z. J Biol Chem 289 35969-35978 (2014)
  83. The double edge of the HSP90-CDC37 chaperone machinery: opposing determinants of kinase stability and activity. Xu W, Neckers L. Future Oncol 8 939-942 (2012)
  84. What is the point of pseudokinases? Raju S, Shaw AS. Elife 4 e07771 (2015)
  85. Integrated genomics approach to identify biologically relevant alterations in fewer samples. Chandrani P, Upadhyay P, Iyer P, Tanna M, Shetty M, Raghuram GV, Oak N, Singh A, Chaubal R, Ramteke M, Gupta S, Dutt A. BMC Genomics 16 936 (2015)
  86. A new mechanism for LKB1 activation. Lee SW, Lin HK. Mol Cell Oncol 5 e1035691 (2018)
  87. Association between STK11 Gene Polymorphisms and Coronary Artery Disease in Type 2 Diabetes in Han Population in China. Ma X, Bai G, Lu D, Huang L, Zhang J, Deng R, Ding S, Gu N, Guo X. J Diabetes Res 2017 6297087 (2017)
  88. Caspase cleavage and nuclear retention of the energy sensor AMPK-α1 during apoptosis. Cheratta AR, Thayyullathil F, Hawley SA, Ross FA, Atrih A, Lamont DJ, Pallichankandy S, Subburayan K, Alakkal A, Rezgui R, Gray A, Hardie DG, Galadari S. Cell Rep 39 110761 (2022)
  89. Midkine noncanonically suppresses AMPK activation through disrupting the LKB1-STRAD-Mo25 complex. Xia T, Chen D, Liu X, Qi H, Wang W, Chen H, Ling T, Otkur W, Zhang CS, Kim J, Lin SC, Piao HL. Cell Death Dis 13 414 (2022)
  90. One novel deletion and one splicing mutation of the LKB1 gene in two Chinese patients with Peutz-Jeghers syndrome. Chen C, Zhang X, Wang F, Liu C, Lu H, Wan H, Wei J, Liu J. DNA Cell Biol 31 1535-1540 (2012)
  91. Type II Binders Targeting the "GLR-Out" Conformation of the Pseudokinase STRADα. Smith RHB, Khan ZM, Ung PM, Scopton AP, Silber L, Mack SM, Real AM, Schlessinger A, Dar AC. Biochemistry 60 289-302 (2021)
  92. Unraveling the Deleterious Effects of Cancer-Driven STK11 Mutants Through Conformational Sampling Approach. Lopus M, Paul DM, Rajasekaran R. Cancer Inform 15 35-44 (2016)
  93. 6-Gingerol Ameliorates Hepatic Steatosis, Inflammation and Oxidative Stress in High-Fat Diet-Fed Mice through Activating LKB1/AMPK Signaling. Liu Y, Li D, Wang S, Peng Z, Tan Q, He Q, Wang J. Int J Mol Sci 24 6285 (2023)
  94. A lesson from a reported pathogenic variant in Peutz-Jeghers syndrome: a case report. Tan H, Wei X, Yang P, Huang Y, Li H, Liang D, Wu L. Fam Cancer 16 417-422 (2017)
  95. A small molecule inhibitor of HER3: a proof-of-concept study. Colomba A, Fitzek M, George R, Weitsman G, Roberts S, Zanetti-Domingues L, Hirsch M, Rolfe DJ, Mehmood S, Madin A, Claus J, Kjaer S, Snijders AP, Ng T, Martin-Fernandez M, Smith DM, Parker PJ. Biochem J 477 3329-3347 (2020)
  96. Functional implications of assigned, assumed and assembled PKC structures. Linch M, Riou P, Claus J, Cameron AJ, de Naurois J, Larijani B, Ng T, McDonald NQ, Parker PJ. Biochem Soc Trans 42 35-41 (2014)
  97. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Gao J, Xu H, Rong Z, Chen L. Bioengineered 13 12409-12420 (2022)
  98. Genetic and Clinical Analyses of Southern Chinese Children with Peutz-Jeghers Syndrome. Fu J, Wen Z, Wang F, Zhong W, He Q, Liang Q, Zhang S, Kuang Y, Liu X, Zhu D, Yu J, Qiu X, Xia H. Genet Test Mol Biomarkers 19 528-531 (2015)
  99. Hotspots and trends in liver kinase B1 research: A bibliometric analysis. Song Y, Zhao F, Ma W, Li G. PLoS One 16 e0259240 (2021)
  100. News [It takes two RAFs to tango]. Lavoie H, Therrien M. Med Sci (Paris) 26 459-460 (2010)
  101. Endocannabinoid biosynthetic enzymes regulate pain response via LKB1-AMPK signaling. Chen M, Shin M, Ware TB, Donvito G, Muchhala KH, Mischel R, Mustafa MA, Serbulea V, Upchurch CM, Leitinger N, Akbarali HI, Lichtman AH, Hsu KL. Proc Natl Acad Sci U S A 120 e2304900120 (2023)
  102. Functional assessment of somatic STK11 variants identified in primary human non-small cell lung cancers. Donnelly LL, Hogan TC, Lenahan SM, Nandagopal G, Eaton JG, Lebeau MA, McCann CL, Sarausky HM, Hampel KJ, Armstrong JD, Cameron MP, Sidiropoulos N, Deming P, Seward DJ. Carcinogenesis 42 1428-1438 (2021)
  103. Inhibition of β-Catenin Activity Abolishes LKB1 Loss-Driven Pancreatic Cystadenoma in Mice. Hsieh MJ, Weng CC, Lin YC, Wu CC, Chen LT, Cheng KH. Int J Mol Sci 22 4649 (2021)
  104. Insights into the structural dynamics of Liver kinase B1 (LKB1) by the binding of STe20 Related Adapterα (STRADα) and Mouse protein 25α (MO25α) co-activators. Rungsung I, Ramaswamy A. J Biomol Struct Dyn 35 1138-1152 (2017)
  105. Protective mechanisms of loquat leaf extract and ursolic acid against diabetic pro-inflammation. Hyun MK, Kim DH, Park CH, Noh SG, Choi S, Lee JY, Choi JH, Park D, Choi YJ, Chung HY. J Mol Med (Berl) 100 1455-1464 (2022)
  106. Splice variants denote differences between a cancer stem cell side population of EWSR1‑ERG‑based Ewing sarcoma cells, its main population and EWSR1‑FLI‑based cells. Korsching E, Matschke J, Hotfilder M. Int J Mol Med 49 39 (2022)
  107. A bioactive component of Portulaca Oleracea L., HM-chromanone, improves palmitate-induced insulin resistance by inhibiting mTOR/S6K1 through activation of the AMPK pathway in L6 skeletal muscle cells. Park JE, Han JS. Toxicol Res (Camb) 11 774-783 (2022)
  108. A multi-scale map of protein assemblies in the DNA damage response. Kratz A, Kim M, Kelly MR, Zheng F, Koczor CA, Li J, Ono K, Qin Y, Churas C, Chen J, Pillich RT, Park J, Modak M, Collier R, Licon K, Pratt D, Sobol RW, Krogan NJ, Ideker T. Cell Syst 14 447-463.e8 (2023)
  109. A novel missense mutation of the STK11 gene in a Chinese family with Peutz-Jeghers syndrome. Yu Z, Liu L, Jiang F, Ji Y, Wang X, Liu L. BMC Gastroenterol 22 536 (2022)
  110. Case Reports A novel stop codon mutation in STK11 gene is associated with Peutz-Jeghers Syndrome and elevated cancer risk: a case study. Khanabadi B, Najafgholizadeh Seyfi D, Rejali L, Taleghani MY, Tavallaei M, Shahrokh S, Daskar Abkenar E, Naderi Noukabadi F, Asadzadeh Aghdaei H, Nazemalhosseini Mojarad E. Gastroenterol Hepatol Bed Bench 16 341-346 (2023)
  111. BAY-3827 and SBI-0206965: Potent AMPK Inhibitors That Paradoxically Increase Thr172 Phosphorylation. Hawley SA, Russell FM, Ross FA, Hardie DG. Int J Mol Sci 25 453 (2023)
  112. Crystal structure of DRIK1, a stress-responsive receptor-like pseudokinase, reveals the molecular basis for the absence of ATP binding. Aquino B, da Silva VCH, Massirer KB, Arruda P. BMC Plant Biol 20 158 (2020)
  113. Design of allosteric sites into rotary motor V1-ATPase by restoring lost function of pseudo-active sites. Kosugi T, Iida T, Tanabe M, Iino R, Koga N. Nat Chem 15 1591-1598 (2023)
  114. Frequent loss-of-function mutations in the AMPK-α2 catalytic subunit suggest a tumour suppressor role in human skin cancers. Ross FA, Hawley SA, Russell FM, Goodman N, Hardie DG. Biochem J 480 1951-1968 (2023)
  115. Itch and autophagy-mediated NF-κB activation contributes to inhibition of cathepsin D-induced sensitizing effect on anticancer drugs. Seo SU, Woo SM, Min KJ, Kwon TK. Cell Death Dis 13 552 (2022)
  116. Josephin domain containing 2 (JOSD2) promotes lung cancer by inhibiting LKB1 (Liver kinase B1) activity. Yuan T, Zeng C, Liu J, Zhao C, Ge F, Li Y, Qian M, Du J, Wang W, Li Y, Liu Y, Dai X, Zhou J, Chen X, Ma S, Zhu H, He Q, Yang B. Signal Transduct Target Ther 9 11 (2024)
  117. LKB1 depletion-mediated epithelial-mesenchymal transition induces fibroblast activation in lung fibrosis. Xu Z, Davies ER, Yao L, Zhou Y, Li J, Alzetani A, Marshall BG, Hancock D, Wallis T, Downward J, Ewing RM, Davies DE, Jones MG, Wang Y. Genes Dis 11 101065 (2024)
  118. LKB1 signaling is altered in skeletal muscle of a Duchenne muscular dystrophy mouse model. Boccanegra B, Mantuano P, Conte E, Cerchiara AG, Tulimiero L, Quarta R, Caputo E, Sanarica F, Forino M, Spadotto V, Cappellari O, Fossati G, Steinkühler C, De Luca A. Dis Model Mech 16 dmm049930 (2023)
  119. Lanthanum Chloride Induces Axon Abnormality Through LKB1-MARK2 and LKB1-STK25-GM130 Signaling Pathways. Song Z, Mao H, Liu J, Sun W, Wu S, Lu X, Jin C, Yang J. Cell Mol Neurobiol 43 1181-1196 (2023)
  120. RBM4 dictates ESCC cell fate switch from cellular senescence to glutamine-addiction survival through inhibiting LKB1-AMPK-axis. Chen L, Zhang W, Chen D, Yang Q, Sun S, Dai Z, Li Z, Liang X, Chen C, Jiao Y, Zhi L, Zhao L, Zhang J, Liu X, Zhao J, Li M, Wang Y, Qi Y. Signal Transduct Target Ther 8 159 (2023)
  121. Structure and inhibition analysis of the mouse SAD-B C-terminal fragment. Ma H, Wu JX, Wang J, Wang ZX, Wu JW. Biosci Biotechnol Biochem 80 1939-1946 (2016)
  122. Structure of zebrafish MO25. Zhang Z, Wang Y, Shi Z, Zhang M. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 989-993 (2013)