2ws7 Citations

Implications for the active form of human insulin based on the structural convergence of highly active hormone analogues.

Proc Natl Acad Sci U S A 107 1966-70 (2010)
Related entries: 2wru, 2wrv, 2wrw, 2wrx, 2ws0, 2ws1, 2ws4, 2ws6

Cited: 32 times
EuropePMC logo PMID: 20133841

Abstract

Insulin is a key protein hormone that regulates blood glucose levels and, thus, has widespread impact on lipid and protein metabolism. Insulin action is manifested through binding of its monomeric form to the Insulin Receptor (IR). At present, however, our knowledge about the structural behavior of insulin is based upon inactive, multimeric, and storage-like states. The active monomeric structure, when in complex with the receptor, must be different as the residues crucial for the interactions are buried within the multimeric forms. Although the exact nature of the insulin's induced-fit is unknown, there is strong evidence that the C-terminal part of the B-chain is a dynamic element in insulin activation and receptor binding. Here, we present the design and analysis of highly active (200-500%) insulin analogues that are truncated at residue 26 of the B-chain (B(26)). They show a structural convergence in the form of a new beta-turn at B(24)-B(26). We propose that the key element in insulin's transition, from an inactive to an active state, may be the formation of the beta-turn at B(24)-B(26) associated with a trans to cis isomerisation at the B(25)-B(26) peptide bond. Here, this turn is achieved with N-methylated L-amino acids adjacent to the trans to cis switch at the B(25)-B(26) peptide bond or by the insertion of certain D-amino acids at B(26). The resultant conformational changes unmask previously buried amino acids that are implicated in IR binding and provide structural details for new approaches in rational design of ligands effective in combating diabetes.

Articles - 2ws7 mentioned but not cited (1)

  1. Non-equivalent role of inter- and intramolecular hydrogen bonds in the insulin dimer interface. Antolíková E, Žáková L, Turkenburg JP, Watson CJ, Hančlová I, Šanda M, Cooper A, Kraus T, Brzozowski AM, Jiráček J. J Biol Chem 286 36968-36977 (2011)


Reviews citing this publication (4)

  1. Insulin receptor and cancer. Belfiore A, Malaguarnera R. Endocr Relat Cancer 18 R125-47 (2011)
  2. The insulin receptor changes conformation in unforeseen ways on ligand binding: sharpening the picture of insulin receptor activation. Ward CW, Menting JG, Lawrence MC. Bioessays 35 945-54, doi/10.1002/bies.201370111 (2013)
  3. Analysis of Insulin Analogs and the Strategy of Their Further Development. Selivanova OM, Grishin SY, Glyakina AV, Sadgyan AS, Ushakova NI, Galzitskaya OV. Biochemistry (Mosc) 83 S146-S162 (2018)
  4. "Pruning of biomolecules and natural products (PBNP)": an innovative paradigm in drug discovery. Bathula SR, Akondi SM, Mainkar PS, Chandrasekhar S. Org Biomol Chem 13 6432-6448 (2015)

Articles citing this publication (27)

  1. How insulin engages its primary binding site on the insulin receptor. Menting JG, Whittaker J, Margetts MB, Whittaker LJ, Kong GK, Smith BJ, Watson CJ, Záková L, Kletvíková E, Jiráček J, Chan SJ, Steiner DF, Dodson GG, Brzozowski AM, Weiss MA, Ward CW, Lawrence MC. Nature 493 241-245 (2013)
  2. Protective hinge in insulin opens to enable its receptor engagement. Menting JG, Yang Y, Chan SJ, Phillips NB, Smith BJ, Whittaker J, Wickramasinghe NP, Whittaker LJ, Pandyarajan V, Wan ZL, Yadav SP, Carroll JM, Strokes N, Roberts CT, Ismail-Beigi F, Milewski W, Steiner DF, Chauhan VS, Ward CW, Weiss MA, Lawrence MC. Proc Natl Acad Sci U S A 111 E3395-404 (2014)
  3. Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, Iozzo RV, Belfiore A, Morrione A. J Biol Chem 287 11422-11436 (2012)
  4. Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. De Meyts P. Bioessays 37 389-397 (2015)
  5. The insulin receptor: a new target for cancer therapy. Malaguarnera R, Belfiore A. Front Endocrinol (Lausanne) 2 93 (2011)
  6. Structural integrity of the B24 site in human insulin is important for hormone functionality. Žáková L, Kletvíková E, Veverka V, Lepsík M, Watson CJ, Turkenburg JP, Jirácek J, Brzozowski AM. J Biol Chem 288 10230-10240 (2013)
  7. Landmarks in insulin research. Ward CW, Lawrence MC. Front Endocrinol (Lausanne) 2 76 (2011)
  8. Contribution of TyrB26 to the Function and Stability of Insulin: STRUCTURE-ACTIVITY RELATIONSHIPS AT A CONSERVED HORMONE-RECEPTOR INTERFACE. Pandyarajan V, Phillips NB, Rege N, Lawrence MC, Whittaker J, Weiss MA. J Biol Chem 291 12978-12990 (2016)
  9. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Kosinová L, Veverka V, Novotná P, Collinsová M, Urbanová M, Moody NR, Turkenburg JP, Jiráček J, Brzozowski AM, Žáková L. Biochemistry 53 3392-3402 (2014)
  10. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element. Vashisth H, Abrams CF. Proteins 81 1017-1030 (2013)
  11. Insulin in motion: The A6-A11 disulfide bond allosterically modulates structural transitions required for insulin activity. van Lierop B, Ong SC, Belgi A, Delaine C, Andrikopoulos S, Haworth NL, Menting JG, Lawrence MC, Robinson AJ, Forbes BE. Sci Rep 7 17239 (2017)
  12. Long-term glycemic control and prevention of diabetes complications in vivo using oleic acid-grafted-chitosan‑zinc-insulin complexes incorporated in thermosensitive copolymer. Sharma D, Singh J. J Control Release 323 161-178 (2020)
  13. Molecular Dynamics Simulations of Insulin: Elucidating the Conformational Changes that Enable Its Binding. Papaioannou A, Kuyucak S, Kuncic Z. PLoS One 10 e0144058 (2015)
  14. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. Macháčková K, Mlčochová K, Potalitsyn P, Hanková K, Socha O, Buděšínský M, Muždalo A, Lepšík M, Černeková M, Radosavljević J, Fábry M, Mitrová K, Chrudinová M, Lin J, Yurenko Y, Hobza P, Selicharová I, Žáková L, Jiráček J. J Biol Chem 294 17371-17382 (2019)
  15. Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young. Křížková K, Veverka V, Maletínská L, Hexnerová R, Brzozowski AM, Jiráček J, Žáková L. PLoS One 9 e112883 (2014)
  16. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. Hexnerová R, Křížková K, Fábry M, Sieglová I, Kedrová K, Collinsová M, Ullrichová P, Srb P, Williams C, Crump MP, Tošner Z, Jiráček J, Veverka V, Žáková L. J Biol Chem 291 21234-21245 (2016)
  17. Flexibility in the insulin receptor ectodomain enables docking of insulin in crystallographic conformation observed in a hormone-bound microreceptor. Vashisth H. Membranes (Basel) 4 730-746 (2014)
  18. Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Viková J, Collinsová M, Kletvíková E, Buděšínský M, Kaplan V, Žáková L, Veverka V, Hexnerová R, Tarazona Aviñó RJ, Straková J, Selicharová I, Vaněk V, Wright DW, Watson CJ, Turkenburg JP, Brzozowski AM, Jiráček J. Sci Rep 6 19431 (2016)
  19. Insulin mimetic peptide S371 folds into a helical structure. Mohammadiarani H, Vashisth H. J Comput Chem 38 1158-1166 (2017)
  20. The efficiency of insulin production and its content in insulin-expressing model β-cells correlate with their Zn2+ levels. Dzianová P, Asai S, Chrudinová M, Kosinová L, Potalitsyn P, Šácha P, Hadravová R, Selicharová I, Kříž J, Turkenburg JP, Brzozowski AM, Jiráček J, Žáková L. Open Biol 10 200137 (2020)
  21. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations. Papaioannou A, Kuyucak S, Kuncic Z. PLoS One 11 e0161459 (2016)
  22. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. Chrudinová M, Žáková L, Marek A, Socha O, Buděšínský M, Hubálek M, Pícha J, Macháčková K, Jiráček J, Selicharová I. J Biol Chem 293 16818-16829 (2018)
  23. Computational study of the activity, dynamics, energetics and conformations of insulin analogues using molecular dynamics simulations: Application to hyperinsulinemia and the critical residue B26. Papaioannou A, Kuyucak S, Kuncic Z. Biochem Biophys Rep 11 182-190 (2017)
  24. Identification and computational characterization of isomers with cis and trans amide bonds in folate and its analogues. Iliev S, Gocheva G, Ivanova N, Atanasova B, Petrova J, Madjarova G, Ivanova A. Phys Chem Chem Phys 20 28818-28831 (2018)
  25. An Investigation into the Acidity-Induced Insulin Agglomeration: Implications for Drug Delivery and Translation. Fagihi MHA, Premathilaka C, O'Neill T, Garré M, Bhattacharjee S. ACS Omega 8 25279-25287 (2023)
  26. Biochemical contacts and collaborations between China and the U.K. since 1911. Dodson GG. Biochem Soc Trans 39 1313-1322 (2011)
  27. The T2 structure of polycrystalline cubic human insulin. Triandafillidis DP, Karavassili F, Spiliopoulou M, Valmas A, Athanasiadou M, Nikolaras G, Fili S, Kontou P, Bowler MW, Chasapis CT, Von Dreele RB, Fitch AN, Margiolaki I. Acta Crystallogr D Struct Biol 79 374-386 (2023)