2w5f Citations

Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose.

J Struct Biol 172 353-62 (2010)
Related entries: 2wys, 2wze

Cited: 36 times
EuropePMC logo PMID: 20682344

Abstract

In general, plant cell wall degrading enzymes are modular proteins containing catalytic domains linked to one or more non-catalytic carbohydrate-binding modules (CBMs). Xyn10B from Clostridium thermocellum is a typical modular enzyme containing an N-terminal family 22 CBM (CBM22-1), a family 10 glycoside hydrolase catalytic domain (GH10), a second CBM22 (CBM22-2), a dockerin sequence and a C-terminal family 1 carbohydrate esterase (CE1) catalytic domain. The structure of the N-terminal bi-modular CBM22-1-GH10 component of Xyn10B has been determined using a SeMet derivative by SAD to 2.5Å. The data was extended to 2.0Å for the non-SeMet mutant complexed with xylohexaose. CBM22-1-GH10 is a 60kDa protein with an E337A mutation to render the GH10 subunit inactive. Three of the six xylose residues of xylohexaose are shown to be bound in the inactivated GH10 substrate binding cleft, with the other three sugars presumably disordered in the solvent channel. The protein is a dimer in the asymmetric unit with extensive surface contacts between the two GH10 modules and between the CBM22-1 and GH10 modules. Residues from helix H4 of the GH10 module provide the major contacts by fitting into the minor groove of the CBM22-1 module. The orientation of CBM22-1 is such that it would allow the substrate to be loosely bound and subsequently delivered to the active site in a processive manner.

Articles - 2w5f mentioned but not cited (16)

  1. An integrated suite of fast docking algorithms. Mashiach E, Schneidman-Duhovny D, Peri A, Shavit Y, Nussinov R, Wolfson HJ. Proteins 78 3197-3204 (2010)
  2. MDockPP: A hierarchical approach for protein-protein docking and its application to CAPRI rounds 15-19. Huang SY, Zou X. Proteins 78 3096-3103 (2010)
  3. Distinct roles for carbohydrate-binding modules of glycoside hydrolase 10 (GH10) and GH11 xylanases from Caldicellulosiruptor sp. strain F32 in thermostability and catalytic efficiency. Meng DD, Ying Y, Chen XH, Lu M, Ning K, Wang LS, Li FL. Appl. Environ. Microbiol. 81 2006-2014 (2015)
  4. CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions. Vangone A, Oliva R, Cavallo L. BMC Bioinformatics 13 Suppl 4 S19 (2012)
  5. Neotropical termite microbiomes as sources of novel plant cell wall degrading enzymes. Romero Victorica M, Soria MA, Batista-García RA, Ceja-Navarro JA, Vikram S, Ortiz M, Ontañon O, Ghio S, Martínez-Ávila L, Quintero García OJ, Etcheverry C, Campos E, Cowan D, Arneodo J, Talia PM. Sci Rep 10 3864 (2020)
  6. Selection of near-native poses in CAPRI rounds 13-19. Qin S, Zhou HX. Proteins 78 3166-3173 (2010)
  7. Finding correct protein-protein docking models using ProQDock. Basu S, Wallner B. Bioinformatics 32 i262-i270 (2016)
  8. Exploring Multimodularity in Plant Cell Wall Deconstruction: STRUCTURAL AND FUNCTIONAL ANALYSIS OF Xyn10C CONTAINING THE CBM22-1-CBM22-2 TANDEM. Sainz-Polo MA, González B, Menéndez M, Pastor FI, Sanz-Aparicio J. J. Biol. Chem. 290 17116-17130 (2015)
  9. Molecular modeling and MM-PBSA free energy analysis of endo-1,4-β-xylanase from Ruminococcus albus 8. Zhan D, Yu L, Jin H, Guan S, Han W. Int J Mol Sci 15 17284-17303 (2014)
  10. A knowledge-based scoring function to assess quaternary associations of proteins. Dhawanjewar AS, Roy AA, Madhusudhan MS. Bioinformatics 36 3739-3748 (2020)
  11. Crystallization and preliminary X-ray diffraction analysis of the N-terminal domain of Paenibacillus barcinonensis xylanase 10C containing the CBM22-1-CBM22-2 tandem. Sainz-Polo MÁ, González B, Pastor FI, Sanz-Aparicio J. Acta Crystallogr F Struct Biol Commun 71 136-140 (2015)
  12. Frequent Occurrence and Metabolic Versatility of Marinifilaceae Bacteria as Key Players in Organic Matter Mineralization in Global Deep Seas. Li J, Dong C, Lai Q, Wang G, Shao Z. mSystems 7 e0086422 (2022)
  13. Scoring of protein-protein docking models utilizing predicted interface residues. Pozzati G, Kundrotas P, Elofsson A. Proteins 90 1493-1505 (2022)
  14. Structural analysis of biological targets by host:guest crystal lattice engineering. Ernst P, Plückthun A, Mittl PRE. Sci Rep 9 15199 (2019)
  15. Structural and Functional Analysis of a Multimodular Hyperthermostable Xylanase-Glucuronoyl Esterase from Caldicellulosiruptor kristjansonii. Krska D, Mazurkewich S, Brown HA, Theibich Y, Poulsen JN, Morris AL, Koropatkin NM, Lo Leggio L, Larsbrink J. Biochemistry 60 2206-2220 (2021)
  16. Xylanase B from Clostridium cellulovorans 743B: overexpression, purification, crystallization and X-ray diffraction analysis. Nakajima D, Nagano A, Shibata T, Tanaka R, Kuroda K, Ueda M, Miyake H. Acta Crystallogr F Struct Biol Commun 74 113-116 (2018)


Reviews citing this publication (2)

  1. Enzymatic degradation of (ligno)cellulose. Bornscheuer U, Buchholz K, Seibel J. Angew. Chem. Int. Ed. Engl. 53 10876-10893 (2014)
  2. Advances in molecular engineering of carbohydrate-binding modules. Armenta S, Moreno-Mendieta S, Sánchez-Cuapio Z, Sánchez S, Rodríguez-Sanoja R. Proteins 85 1602-1617 (2017)

Articles citing this publication (18)

  1. Blind predictions of protein interfaces by docking calculations in CAPRI. Lensink MF, Wodak SJ. Proteins 78 3085-3095 (2010)
  2. Defining the limits of homology modeling in information-driven protein docking. Rodrigues JP, Melquiond AS, Karaca E, Trellet M, van Dijk M, van Zundert GC, Schmitz C, de Vries SJ, Bordogna A, Bonati L, Kastritis PL, Bonvin AM. Proteins 81 2119-2128 (2013)
  3. Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1. Santos CR, Meza AN, Hoffmam ZB, Silva JC, Alvarez TM, Ruller R, Ruller R, Giesel GM, Verli H, Squina FM, Prade RA, Murakami MT. Biochem. Biophys. Res. Commun. 403 214-219 (2010)
  4. Score_set: a CAPRI benchmark for scoring protein complexes. Lensink MF, Wodak SJ. Proteins 82 3163-3169 (2014)
  5. Multifunctional cellulase catalysis targeted by fusion to different carbohydrate-binding modules. Walker JA, Takasuka TE, Deng K, Bianchetti CM, Udell HS, Prom BM, Kim H, Adams PD, Northen TR, Fox BG. Biotechnol Biofuels 8 220 (2015)
  6. The nature of the carbohydrate binding module determines the catalytic efficiency of xylanase Z of Clostridium thermocellum. Khan MI, Sajjad M, Sadaf S, Zafar R, Niazi UH, Akhtar MW. J. Biotechnol. 168 403-408 (2013)
  7. Improved flexible refinement of protein docking in CAPRI rounds 22-27. Shen Y. Proteins 81 2129-2136 (2013)
  8. Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain. Han Q, Liu N, Robinson H, Cao L, Qian C, Wang Q, Xie L, Ding H, Wang Q, Huang Y, Li J, Zhou Z. Biotechnol. Bioeng. 110 3093-3103 (2013)
  9. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, Ruller R, Murakami MT. J. Biol. Chem. 289 32186-32200 (2014)
  10. Essential role of a family-32 carbohydrate-binding module in substrate recognition by Clostridium thermocellum mannanase CtMan5A. Mizutani K, Sakka M, Kimura T, Sakka K. FEBS Lett. 588 1726-1730 (2014)
  11. Combined Crystal Structure of a Type I Cohesin: MUTATION AND AFFINITY BINDING STUDIES REVEAL STRUCTURAL DETERMINANTS OF COHESIN-DOCKERIN SPECIFICITIES. Cameron K, Weinstein JY, Zhivin O, Bule P, Fleishman SJ, Alves VD, Gilbert HJ, Ferreira LM, Fontes CM, Bayer EA, Najmudin S. J. Biol. Chem. 290 16215-16225 (2015)
  12. Determination of glycoside hydrolase specificities during hydrolysis of plant cell walls using glycome profiling. Walker JA, Pattathil S, Bergeman LF, Beebe ET, Deng K, Mirzai M, Northen TR, Hahn MG, Fox BG. Biotechnol Biofuels 10 31 (2017)
  13. Insight into the functional roles of Glu175 in the hyperthermostable xylanase XYL10C-ΔN through structural analysis and site-saturation mutagenesis. You S, Chen CC, Tu T, Wang X, Ma R, Cai HY, Guo RT, Luo HY, Yao B. Biotechnol Biofuels 11 159 (2018)
  14. Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5. Miao Y, Kong Y, Li P, Li G, Liu D, Shen Q, Zhang R. AMB Express 8 44 (2018)
  15. Overproduction, purification, crystallization and preliminary X-ray characterization of the family 46 carbohydrate-binding module (CBM46) of endo-β-1,4-glucanase B (CelB) from Bacillus halodurans. Venditto I, Santos H, Ferreira LM, Sakka K, Fontes CM, Najmudin S. Acta Crystallogr F Struct Biol Commun 70 754-757 (2014)
  16. Production, purification, and characterization of a cellulase-free thermostable endo-xylanase from Thermoanaerobacterium thermosaccharolyticum DSM 571. Li X, Shi H, Ding H, Zhang Y, Wang F. Appl. Biochem. Biotechnol. 174 2392-2402 (2014)
  17. Crystallization and preliminary crystallographic studies of a novel noncatalytic carbohydrate-binding module from the Ruminococcus flavefaciens cellulosome. Venditto I, Goyal A, Thompson A, Ferreira LM, Fontes CM, Najmudin S. Acta Crystallogr F Struct Biol Commun 71 45-48 (2015)
  18. The extracellular endo-β-1,4-xylanase with multidomain from the extreme thermophile Caldicellulosiruptor lactoaceticus is specific for insoluble xylan degradation. Jia X, Han Y. Biotechnol Biofuels 12 143 (2019)


Related citations provided by authors (1)

  1. Purification, crystallization and crystallographic analysis of Clostridium thermocellum endo-1,4-beta-D-xylanase 10B in complex with xylohexaose.. Najmudin S, Pinheiro BA, Romão MJ, Prates JA, Fontes CM Acta Crystallogr Sect F Struct Biol Cryst Commun 64 715-8 (2008)