2vva Citations

Structural study of X-ray induced activation of carbonic anhydrase.

Proc Natl Acad Sci U S A 106 10609-13 (2009)
Cited: 43 times
EuropePMC logo PMID: 19520834

Abstract

Carbonic anhydrase, a zinc metalloenzyme, catalyzes the reversible hydration of carbon dioxide to bicarbonate. It is involved in processes connected with acid-base homeostasis, respiration, and photosynthesis. More than 100 distinct human carbonic anhydrase II (HCAII) 3D structures have been generated in last 3 decades [Liljas A, et al. (1972) Nat New Biol 235:131-137], but a structure of an HCAII in complex with CO(2) or HCO(3)(-) has remained elusive. Here, we report previously undescribed structures of HCAII:CO(2) and HCAII:HCO(3)(-) complexes, together with a 3D molecular film of the enzymatic reaction observed successively in the same crystal after extended exposure to X-ray. We demonstrate that the unexpected enzyme activation was caused in an X-ray dose-dependent manner. Although X-ray damage to macromolecular samples has long been recognized [Ravelli RB, Garman EF (2006) Curr Opin Struct Biol 16:624-629], the detailed structural analysis reports on X-ray-driven reactions have been very rare in literature to date. Here, we report on enzyme activation and the associated chemical reaction in a crystal at 100 K. We propose mechanisms based on water photoradiolysis and/or electron radiolysis as the main cause of enzyme activation.

Reviews - 2vva mentioned but not cited (3)

  1. Reconsidering anion inhibitors in the general context of drug design studies of modulators of activity of the classical enzyme carbonic anhydrase. Nocentini A, Angeli A, Carta F, Winum JY, Zalubovskis R, Carradori S, Capasso C, Donald WA, Supuran CT. J Enzyme Inhib Med Chem 36 561-580 (2021)
  2. Carbonic Anhydrase Inhibitors and Epilepsy: State of the Art and Future Perspectives. Ciccone L, Cerri C, Nencetti S, Orlandini E. Molecules 26 6380 (2021)
  3. Carbonic Anhydrase Activators for Neurodegeneration: An Overview. Poggetti V, Salerno S, Baglini E, Barresi E, Da Settimo F, Taliani S. Molecules 27 2544 (2022)

Articles - 2vva mentioned but not cited (7)

  1. Structural study of X-ray induced activation of carbonic anhydrase. Sjöblom B, Polentarutti M, Djinovic-Carugo K. Proc Natl Acad Sci U S A 106 10609-10613 (2009)
  2. Structural mechanism of RuBisCO activation by carbamylation of the active site lysine. Stec B. Proc Natl Acad Sci U S A 109 18785-18790 (2012)
  3. Structural Basis for the Inhibition of Helicobacter pylori α-Carbonic Anhydrase by Sulfonamides. Modak JK, Liu YC, Machuca MA, Supuran CT, Roujeinikova A. PLoS One 10 e0127149 (2015)
  4. Mechanism of Action of Non-Synonymous Single Nucleotide Variations Associated with α-Carbonic Anhydrase II Deficiency. Sanyanga TA, Nizami B, Bishop ÖT. Molecules 24 E3987 (2019)
  5. Azobenzene-based inhibitors of human carbonic anhydrase II. Runtsch LS, Barber DM, Mayer P, Groll M, Trauner D, Broichhagen J. Beilstein J Org Chem 11 1129-1135 (2015)
  6. Zeta-carbonic anhydrases show CS2 hydrolase activity: A new metabolic carbon acquisition pathway in diatoms? Alterio V, Langella E, Buonanno M, Esposito D, Nocentini A, Berrino E, Bua S, Polentarutti M, Supuran CT, Monti SM, De Simone G. Comput Struct Biotechnol J 19 3427-3436 (2021)
  7. Plant carbonic anhydrase-like enzymes in neuroactive alkaloid biosynthesis. Nett RS, Dho Y, Tsai C, Passow D, Martinez Grundman J, Low YY, Sattely ES. Nature 624 182-191 (2023)


Reviews citing this publication (4)

  1. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJ, Kerfeld CA, Morris RH, Peden CH, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JN, Seefeldt LC, Thauer RK, Waldrop GL. Chem Rev 113 6621-6658 (2013)
  2. Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Linkuvienė V, Zubrienė A, Manakova E, Petrauskas V, Baranauskienė L, Zakšauskas A, Smirnov A, Gražulis S, Ladbury JE, Matulis D. Q Rev Biophys 51 e10 (2018)
  3. Sequestration of carbon dioxide by the hydrophobic pocket of the carbonic anhydrases. Domsic JF, McKenna R. Biochim Biophys Acta 1804 326-331 (2010)
  4. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Tuieng RJ, Cartmell SH, Kirwan CC, Sherratt MJ. Cells 10 3041 (2021)

Articles citing this publication (29)

  1. A short, strong hydrogen bond in the active site of human carbonic anhydrase II. Avvaru BS, Kim CU, Sippel KH, Gruner SM, Agbandje-McKenna M, Silverman DN, McKenna R. Biochemistry 49 249-251 (2010)
  2. X-ray structure of the first `extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Di Fiore A, Capasso C, De Luca V, Monti SM, Carginale V, Supuran CT, Scozzafava A, Pedone C, Rossi M, De Simone G. Acta Crystallogr D Biol Crystallogr 69 1150-1159 (2013)
  3. Carbonic anhydrase inhibitors. X-ray crystal studies of the carbonic anhydrase II-trithiocarbonate adduct--an inhibitor mimicking the sulfonamide and urea binding to the enzyme. Temperini C, Scozzafava A, Supuran CT. Bioorg Med Chem Lett 20 474-478 (2010)
  4. Synthesis and carbonic anhydrase isoenzymes I and II inhibitory effects of novel benzylamine derivatives. Çetinkaya Y, Göçer H, Göksu S, Gülçin İ. J Enzyme Inhib Med Chem 29 168-174 (2014)
  5. Interactions between Hofmeister anions and the binding pocket of a protein. Fox JM, Kang K, Sherman W, Héroux A, Sastry GM, Baghbanzadeh M, Lockett MR, Whitesides GM. J Am Chem Soc 137 3859-3866 (2015)
  6. Neutron structure of human carbonic anhydrase II: implications for proton transfer. Fisher SZ, Kovalevsky AY, Domsic JF, Mustyakimov M, McKenna R, Silverman DN, Langan PA. Biochemistry 49 415-421 (2010)
  7. Proton transfer in catalysis and the role of proton shuttles in carbonic anhydrase. Mikulski RL, Silverman DN. Biochim Biophys Acta 1804 422-426 (2010)
  8. Carbonic anhydrase inhibitors: X-ray crystallographic studies for the binding of N-substituted benzenesulfonamides to human isoform II. Di Fiore A, Maresca A, Alterio V, Supuran CT, De Simone G. Chem Commun (Camb) 47 11636-11638 (2011)
  9. The structural comparison between membrane-associated human carbonic anhydrases provides insights into drug design of selective inhibitors. Alterio V, Pan P, Parkkila S, Buonanno M, Supuran CT, Monti SM, De Simone G. Biopolymers 101 769-778 (2014)
  10. Radiosensitization of Adenoid Cystic Carcinoma with MDM2 Inhibition. Prabakaran PJ, Javaid AM, Swick AD, Werner LR, Nickel KP, Sampene E, Hu R, Ong IM, Bruce JY, Hartig GK, Wieland AM, Canon J, Harari PM, Kimple RJ. Clin Cancer Res 23 6044-6053 (2017)
  11. Picomolar inhibitors of carbonic anhydrase: Importance of inhibition and binding assays. Smirnovienė J, Smirnovas V, Matulis D. Anal Biochem 522 61-72 (2017)
  12. Raman-assisted crystallography suggests a mechanism of X-ray-induced disulfide radical formation and reparation. Carpentier P, Royant A, Weik M, Bourgeois D. Structure 18 1410-1419 (2010)
  13. Azidopropylvinylsulfonamide as a New Bifunctional Click Reagent for Bioorthogonal Conjugations: Application for DNA-Protein Cross-Linking. Dadová J, Vrábel M, Adámik M, Brázdová M, Pohl R, Fojta M, Hocek M. Chemistry 21 16091-16102 (2015)
  14. Comparison of helical scan and standard rotation methods in single-crystal X-ray data collection strategies. Polsinelli I, Savko M, Rouanet-Mehouas C, Ciccone L, Nencetti S, Orlandini E, Stura EA, Shepard W. J Synchrotron Radiat 24 42-52 (2017)
  15. Carbon Dioxide "Trapped" in a β-Carbonic Anhydrase. Aggarwal M, Chua TK, Pinard MA, Szebenyi DM, McKenna R. Biochemistry 54 6631-6638 (2015)
  16. Complexes of CO₂ with the Azoles: Tetrel Bonds, Hydrogen Bonds and Other Secondary Interactions. Del Bene JE, Elguero J, Alkorta I. Molecules 23 E906 (2018)
  17. Structural and kinetic effects on changes in the CO(2) binding pocket of human carbonic anhydrase II. West D, Kim CU, Tu C, Robbins AH, Gruner SM, Silverman DN, McKenna R. Biochemistry 51 9156-9163 (2012)
  18. Experimental determination of the bioluminescence resonance energy transfer (BRET) Förster distances of NanoBRET and red-shifted BRET pairs. Weihs F, Wang J, Pfleger KDG, Dacres H. Anal Chim Acta X 6 100059 (2020)
  19. Evaluating the impact of X-ray damage on conformational heterogeneity in room-temperature (277 K) and cryo-cooled protein crystals. Yabukarski F, Doukov T, Mokhtari DA, Du S, Herschlag D. Acta Crystallogr D Struct Biol 78 945-963 (2022)
  20. Inhibition of carbonic anhydrases by a substrate analog: benzyl carbamate directly coordinates the catalytic zinc ion mimicking bicarbonate binding. De Simone G, Angeli A, Bozdag M, Supuran CT, Winum JY, Monti SM, Alterio V. Chem Commun (Camb) 54 10312-10315 (2018)
  21. Inhibitory effects of nitrite on the reactions of bovine carbonic anhydrase II with CO2 and bicarbonate consistent with zinc-bound nitrite. Nielsen PM, Fago A. J Inorg Biochem 149 6-11 (2015)
  22. Engineered Carbonic Anhydrase VI-Mimic Enzyme Switched the Structure and Affinities of Inhibitors. Kazokaitė J, Kairys V, Smirnovienė J, Smirnov A, Manakova E, Tolvanen M, Parkkila S, Matulis D. Sci Rep 9 12710 (2019)
  23. Enhanced enzymatic activity exerted by a packed assembly of a single type of enzyme. Dinh H, Nakata E, Mutsuda-Zapater K, Saimura M, Kinoshita M, Morii T. Chem Sci 11 9088-9100 (2020)
  24. Biochemical, structural, and computational studies of a γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei. Di Fiore A, De Luca V, Langella E, Nocentini A, Buonanno M, Monti SM, Supuran CT, Capasso C, De Simone G. Comput Struct Biotechnol J 20 4185-4194 (2022)
  25. Crystallographic snapshot of an arrested intermediate in the biomimetic activation of CO2. Ackermann SL, Wolstenholme DJ, Frazee C, Deslongchamps G, Riley SH, Decken A, McGrady GS. Angew Chem Int Ed Engl 54 164-168 (2015)
  26. Theoretical investigation on the restoring step of the carbonic anhydrase catalytic cycle for natural and promiscuous substrates. Piazzetta P, Marino T, Russo N. Arch Biochem Biophys 582 101-106 (2015)
  27. Structural insights into the effect of active-site mutation on the catalytic mechanism of carbonic anhydrase. Kim JK, Lee C, Lim SW, Andring JT, Adhikari A, McKenna R, Kim CU. IUCrJ 7 985-994 (2020)
  28. Diversely N-substituted benzenesulfonamides dissimilarly bind to human carbonic anhydrases: crystallographic investigations of N-nitrosulfonamides. Angeli A, Ferraroni M, Bonardi A, Supuran CT, Nocentini A. J Enzyme Inhib Med Chem 38 2178430 (2023)
  29. Synthesis, Biological Evaluation, and In Silico Studies of Novel Coumarin-Based 4H,5H-pyrano[3,2-c]chromenes as Potent β-Glucuronidase and Carbonic Anhydrase Inhibitors. Arif N, Shafiq Z, Mahmood K, Rafiq M, Naz S, Shahzad SA, Farooq U, Bahkali AH, Elgorban AM, Yaqub M, El-Gokha A. ACS Omega 7 28605-28617 (2022)