2vhf Citations

The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B box module.

Mol Cell 29 451-64 (2008)
Cited: 182 times
EuropePMC logo PMID: 18313383

Abstract

The tumor suppressor CYLD antagonizes NF-kappaB and JNK signaling by disassembly of Lys63-linked ubiquitin chains synthesized in response to cytokine stimulation. Here we describe the crystal structure of the CYLD USP domain, revealing a distinctive architecture that provides molecular insights into its specificity toward Lys63-linked polyubiquitin. We identify regions of the USP domain responsible for this specificity and demonstrate endodeubiquitinase activity toward such chains. Pathogenic truncations of the CYLD C terminus, associated with the hypertrophic skin tumor cylindromatosis, disrupt the USP domain, accounting for loss of CYLD catalytic activity. A small zinc-binding B box domain, similar in structure to other crossbrace Zn-binding folds--including the RING domain found in E3 ubiquitin ligases--is inserted within the globular core of the USP domain. Biochemical and functional characterization of the B box suggests a role as a protein-interaction module that contributes to determining the subcellular localization of CYLD.

Reviews - 2vhf mentioned but not cited (4)

  1. Structural studies of NF-κB signaling. Zheng C, Yin Q, Wu H. Cell Res. 21 183-195 (2011)
  2. Versatile roles of k63-linked ubiquitin chains in trafficking. Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Cells 3 1027-1088 (2014)
  3. Substrate specificity of the ubiquitin and Ubl proteases. Ronau JA, Beckmann JF, Hochstrasser M. Cell Res. 26 441-456 (2016)
  4. Molecular basis for specificity of the Met1-linked polyubiquitin signal. Elliott PR. Biochem. Soc. Trans. 44 1581-1602 (2016)

Articles - 2vhf mentioned but not cited (10)

  1. SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, McLaughlin SH, Wagstaff J, Volkmar N, Christianson JC, Kessler BM, Freund SM, Komander D, Gyrd-Hansen M. Mol. Cell 63 990-1005 (2016)
  2. Complex structure of OspI and Ubc13: the molecular basis of Ubc13 deamidation and convergence of bacterial and host E2 recognition. Fu P, Zhang X, Jin M, Xu L, Wang C, Xia Z, Zhu Y. PLoS Pathog. 9 e1003322 (2013)
  3. Homoharringtonine targets Smad3 and TGF-β pathway to inhibit the proliferation of acute myeloid leukemia cells. Chen J, Mu Q, Li X, Yin X, Yu M, Jin J, Li C, Zhou Y, Zhou J, Suo S, Lu D, Jin J. Oncotarget 8 40318-40326 (2017)
  4. Lansoprazole Upregulates Polyubiquitination of the TNF Receptor-Associated Factor 6 and Facilitates Runx2-mediated Osteoblastogenesis. Mishima K, Kitoh H, Ohkawara B, Okuno T, Ito M, Masuda A, Ishiguro N, Ohno K. EBioMedicine 2 2046-2061 (2015)
  5. Ubiquitin-Specific Proteases as Druggable Targets. Davis MI, Simeonov A. Drug Target Rev 2 60-64 (2015)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. Exaptation of Inactivated Host Enzymes for Structural Roles in Orthopoxviruses and Novel Folds of Virus Proteins Revealed by Protein Structure Modeling. Mutz P, Resch W, Faure G, Senkevich TG, Koonin EV, Moss B. mBio 14 e0040823 (2023)
  8. CHIP promotes Wnt signaling and regulates Arc stability by recruiting and polyubiquitinating LEF1 or Arc. Liu Y, Sun Y, Huang Y, Cheng K, Xu Y, Tian Q, Zhang S. Cell Death Discov 7 5 (2021)
  9. The structure of the deubiquitinase USP15 reveals a misaligned catalytic triad and an open ubiquitin-binding channel. Ward SJ, Gratton HE, Indrayudha P, Michavila C, Mukhopadhyay R, Maurer SK, Caulton SG, Emsley J, Dreveny I. J. Biol. Chem. 293 17362-17374 (2018)
  10. Ubiquitin-specific protease 11 structure in complex with an engineered substrate mimetic reveals a molecular feature for deubiquitination selectivity. Maurer SK, Mayer MP, Ward SJ, Boudjema S, Halawa M, Zhang J, Caulton SG, Emsley J, Dreveny I. J Biol Chem 299 105300 (2023)


Reviews citing this publication (66)

  1. The ubiquitin code. Komander D, Rape M. Annu. Rev. Biochem. 81 203-229 (2012)
  2. Breaking the chains: structure and function of the deubiquitinases. Komander D, Clague MJ, Urbé S. Nat. Rev. Mol. Cell Biol. 10 550-563 (2009)
  3. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Reyes-Turcu FE, Ventii KH, Wilkinson KD. Annu. Rev. Biochem. 78 363-397 (2009)
  4. Nonproteolytic functions of ubiquitin in cell signaling. Chen ZJ, Sun LJ. Mol. Cell 33 275-286 (2009)
  5. Ubiquitin-binding domains - from structures to functions. Dikic I, Wakatsuki S, Walters KJ. Nat. Rev. Mol. Cell Biol. 10 659-671 (2009)
  6. Molecular basis of NF-κB signaling. Napetschnig J, Wu H. Annu Rev Biophys 42 443-468 (2013)
  7. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Bedford L, Lowe J, Dick LR, Mayer RJ, Brownell JE. Nat Rev Drug Discov 10 29-46 (2011)
  8. Deubiquitylation and regulation of the immune response. Sun SC. Nat. Rev. Immunol. 8 501-511 (2008)
  9. CYLD: a tumor suppressor deubiquitinase regulating NF-kappaB activation and diverse biological processes. Sun SC. Cell Death Differ. 17 25-34 (2010)
  10. Deubiquitinases in cancer: new functions and therapeutic options. Fraile JM, Quesada V, Rodríguez D, Freije JM, López-Otín C. Oncogene 31 2373-2388 (2012)
  11. Breaking the chains: deubiquitylating enzyme specificity begets function. Clague MJ, Urbé S, Komander D. Nat Rev Mol Cell Biol 20 338-352 (2019)
  12. Deubiquitylases from genes to organism. Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Physiol. Rev. 93 1289-1315 (2013)
  13. Deubiquitinases in the regulation of NF-κB signaling. Harhaj EW, Dixit VM. Cell Res. 21 22-39 (2011)
  14. The ubiquitous role of ubiquitin in the DNA damage response. Al-Hakim A, Escribano-Diaz C, Landry MC, O'Donnell L, Panier S, Szilard RK, Durocher D. DNA Repair (Amst.) 9 1229-1240 (2010)
  15. Emerging roles of deubiquitinases in cancer-associated pathways. Sacco JJ, Coulson JM, Clague MJ, Urbé S. IUBMB Life 62 140-157 (2010)
  16. Polyubiquitin binding and disassembly by deubiquitinating enzymes. Reyes-Turcu FE, Wilkinson KD. Chem. Rev. 109 1495-1508 (2009)
  17. Mechanisms of Deubiquitinase Specificity and Regulation. Mevissen TET, Komander D. Annu. Rev. Biochem. 86 159-192 (2017)
  18. Update of cylindromatosis gene (CYLD) mutations in Brooke-Spiegler syndrome: novel insights into the role of deubiquitination in cell signaling. Blake PW, Toro JR. Hum. Mutat. 30 1025-1036 (2009)
  19. CYLD: a deubiquitination enzyme with multiple roles in cancer. Massoumi R. Future Oncol 7 285-297 (2011)
  20. Linear ubiquitination in immunity. Shimizu Y, Taraborrelli L, Walczak H. Immunol. Rev. 266 190-207 (2015)
  21. Chemistry and biology of the ubiquitin signal. Spasser L, Brik A. Angew. Chem. Int. Ed. Engl. 51 6840-6862 (2012)
  22. Deubiquitinases and the new therapeutic opportunities offered to cancer. Pfoh R, Lacdao IK, Saridakis V. Endocr. Relat. Cancer 22 T35-54 (2015)
  23. The various roles of ubiquitin in Wnt pathway regulation. Tauriello DV, Maurice MM. Cell Cycle 9 3700-3709 (2010)
  24. Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Shi D, Grossman SR. Cancer Biol. Ther. 10 737-747 (2010)
  25. Ubiquitin in NF-kappaB signaling. Chiu YH, Zhao M, Chen ZJ. Chem. Rev. 109 1549-1560 (2009)
  26. Gene expression control by protein deubiquitinases. Frappier L, Verrijzer CP. Curr. Opin. Genet. Dev. 21 207-213 (2011)
  27. Ubiquitin in inflammation: the right linkage makes all the difference. Corn JE, Vucic D. Nat. Struct. Mol. Biol. 21 297-300 (2014)
  28. CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Lork M, Verhelst K, Beyaert R. Cell Death Differ. 24 1172-1183 (2017)
  29. DUBs, the regulation of cell identity and disease. Heideker J, Wertz IE. Biochem. J. 465 1-26 (2015)
  30. CYLD-mediated signaling and diseases. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. Curr Drug Targets 16 284-294 (2015)
  31. Ubiquitin-specific proteases as cancer drug targets. Sippl W, Collura V, Colland F. Future Oncol 7 619-632 (2011)
  32. "Without Ub I am nothing": NEMO as a multifunctional player in ubiquitin-mediated control of NF-kappaB activation. Gautheron J, Courtois G. Cell. Mol. Life Sci. 67 3101-3113 (2010)
  33. The emerging roles of deubiquitylating enzymes (DUBs) in the TGFβ and BMP pathways. Herhaus L, Sapkota GP. Cell. Signal. 26 2186-2192 (2014)
  34. Inherited cylindromas: lessons from a rare tumour. Rajan N, Ashworth A. Lancet Oncol. 16 e460-e469 (2015)
  35. Chemical and semisynthetic approaches to study and target deubiquitinases. Gopinath P, Ohayon S, Nawatha M, Brik A. Chem Soc Rev 45 4171-4198 (2016)
  36. Linear ubiquitin chains: enzymes, mechanisms and biology. Rittinger K, Ikeda F. Open Biol 7 (2017)
  37. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. Elliott PR, Komander D. FEBS J. 283 39-53 (2016)
  38. TGF-β signaling pathway mediated by deubiquitinating enzymes. Kim SY, Baek KH. Cell Mol Life Sci 76 653-665 (2019)
  39. Phenotype-genotype correlations for clinical variants caused by CYLD mutations. Nagy N, Farkas K, Kemény L, Széll M. Eur J Med Genet 58 271-278 (2015)
  40. When ubiquitin meets NF-κB: a trove for anti-cancer drug development. Wu ZH, Shi Y. Curr. Pharm. Des. 19 3263-3275 (2013)
  41. CYLD - a deubiquitylase that acts to fine-tune microtubule properties and functions. Yang Y, Zhou J. J. Cell. Sci. 129 2289-2295 (2016)
  42. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. Cell Biosci 6 62 (2016)
  43. USP7: Structure, substrate specificity, and inhibition. Pozhidaeva A, Bezsonova I. DNA Repair (Amst) 76 30-39 (2019)
  44. Modulating inflammation through the negative regulation of NF-κB signaling. Rothschild DE, McDaniel DK, Ringel-Scaia VM, Allen IC. J. Leukoc. Biol. (2018)
  45. Cylindromatosis--A Protective Molecule against Liver Diseases. Hellerbrand C, Massoumi R. Med Res Rev 36 342-359 (2016)
  46. Proteasome-independent functions of lysine-63 polyubiquitination in plants. Romero-Barrios N, Vert G. New Phytol. 217 995-1011 (2018)
  47. Spotlight on USP4: Structure, Function, and Regulation. Hu B, Zhang D, Zhao K, Wang Y, Pei L, Fu Q, Ma X. Front Cell Dev Biol 9 595159 (2021)
  48. Ubiquitin-Mediated Regulation of Cell Death, Inflammation, and Defense of Homeostasis. Meier P, Morris O, Broemer M. Curr. Top. Dev. Biol. 114 209-239 (2015)
  49. Emerging Role of Ubiquitin-Specific Protease 19 in Oncogenesis and Cancer Development. Rossi FA, Rossi M. Front Cell Dev Biol 10 889166 (2022)
  50. Putative role of SUMOylation in controlling the activity of deubiquitinating enzymes in cancer. Masoumi KC, Marfany G, Wu Y, Massoumi R. Future Oncol 12 565-574 (2016)
  51. Targeting deubiquitinase USP28 for cancer therapy. Wang X, Liu Z, Zhang L, Yang Z, Chen X, Luo J, Zhou Z, Mei X, Yu X, Shao Z, Feng Y, Fu S, Zhang Z, Wei D, Jia L, Ma J, Guo X. Cell Death Dis 9 186 (2018)
  52. Emergence of Members of TRAF and DUB of Ubiquitin Proteasome System in the Regulation of Hypertrophic Cardiomyopathy. Gupta I, Varshney NK, Khan S. Front Genet 9 336 (2018)
  53. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Cells 7 (2018)
  54. Roles of ubiquitin in autophagy and cell death. Gómez-Díaz C, Ikeda F. Semin. Cell Dev. Biol. 93 125-135 (2019)
  55. Ubiquitination in the regulation of inflammatory cell death and cancer. Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE, Vucic D. Cell Death Differ 28 591-605 (2021)
  56. Zooming into plant ubiquitin-mediated endocytosis. Dubeaux G, Vert G. Curr. Opin. Plant Biol. 40 56-62 (2017)
  57. CYLD in health and disease. Marín-Rubio JL, Raote I, Inns J, Dobson-Stone C, Rajan N. Dis Model Mech 16 dmm050093 (2023)
  58. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Front Microbiol 12 805223 (2021)
  59. Deubiquitinating Enzyme: A Potential Secondary Checkpoint of Cancer Immunity. Huang X, Zhang X, Xu J, Wang X, Zhang G, Tang T, Shen X, Liang T, Bai X. Front Oncol 10 1289 (2020)
  60. Monoubiquitination in Homeostasis and Cancer. Chen Y, Zhou D, Yao Y, Sun Y, Yao F, Ma L. Int J Mol Sci 23 5925 (2022)
  61. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Choi HS, Baek KH. Cell Mol Life Sci 79 117 (2022)
  62. Regulation of the Hippo signaling pathway by deubiquitinating enzymes in cancer. Mussell A, Frangou C, Zhang J. Genes Dis 6 335-341 (2019)
  63. Remodeling without destruction: non-proteolytic ubiquitin chains in neural function and brain disorders. Zajicek A, Yao WD. Mol Psychiatry 26 247-264 (2021)
  64. The Potential of Cylindromatosis (CYLD) as a Therapeutic Target in Oxidative Stress-Associated Pathologies: A Comprehensive Evaluation. Huang Z, Tan Y. Int J Mol Sci 24 8368 (2023)
  65. The cylindromatosis (CYLD) gene and head and neck tumorigenesis. Verhoeft KR, Ngan HL, Lui VWY. Cancers Head Neck 1 10 (2016)
  66. Ubiquitin-specific proteases in inflammatory bowel disease-related signalling pathway regulation. Chen R, Pang X, Li L, Zeng Z, Chen M, Zhang S. Cell Death Dis 13 139 (2022)

Articles citing this publication (102)

  1. Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Rahighi S, Ikeda F, Kawasaki M, Akutsu M, Suzuki N, Kato R, Kensche T, Uejima T, Bloor S, Komander D, Randow F, Wakatsuki S, Dikic I. Cell 136 1098-1109 (2009)
  2. Direct activation of protein kinases by unanchored polyubiquitin chains. Xia ZP, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ. Nature 461 114-119 (2009)
  3. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. EMBO Rep. 10 466-473 (2009)
  4. Engineered diubiquitin synthesis reveals Lys29-isopeptide specificity of an OTU deubiquitinase. Virdee S, Ye Y, Nguyen DP, Komander D, Chin JW. Nat. Chem. Biol. 6 750-757 (2010)
  5. Lys11-linked ubiquitin chains adopt compact conformations and are preferentially hydrolyzed by the deubiquitinase Cezanne. Bremm A, Freund SM, Komander D. Nat. Struct. Mol. Biol. 17 939-947 (2010)
  6. The deubiquitinating enzyme ataxin-3, a polyglutamine disease protein, edits Lys63 linkages in mixed linkage ubiquitin chains. Winborn BJ, Travis SM, Todi SV, Scaglione KM, Xu P, Williams AJ, Cohen RE, Peng J, Paulson HL. J. Biol. Chem. 283 26436-26443 (2008)
  7. K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE. EMBO J. 28 621-631 (2009)
  8. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by tandem UIMs of RAP80. Sato Y, Yoshikawa A, Mimura H, Yamashita M, Yamagata A, Fukai S. EMBO J. 28 2461-2468 (2009)
  9. The Prp19 complex and the Usp4Sart3 deubiquitinating enzyme control reversible ubiquitination at the spliceosome. Song EJ, Werner SL, Neubauer J, Stegmeier F, Aspden J, Rio D, Harper JW, Elledge SJ, Kirschner MW, Rape M. Genes Dev. 24 1434-1447 (2010)
  10. Mechanism of USP7/HAUSP activation by its C-terminal ubiquitin-like domain and allosteric regulation by GMP-synthetase. Faesen AC, Dirac AM, Shanmugham A, Ovaa H, Perrakis A, Sixma TK. Mol. Cell 44 147-159 (2011)
  11. Loss of the tumor suppressor CYLD enhances Wnt/beta-catenin signaling through K63-linked ubiquitination of Dvl. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM. Mol. Cell 37 607-619 (2010)
  12. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. Verhelst K, Carpentier I, Kreike M, Meloni L, Verstrepen L, Kensche T, Dikic I, Beyaert R. EMBO J. 31 3845-3855 (2012)
  13. Specific recognition of linear polyubiquitin by A20 zinc finger 7 is involved in NF-κB regulation. Tokunaga F, Nishimasu H, Ishitani R, Goto E, Noguchi T, Mio K, Kamei K, Ma A, Iwai K, Nureki O. EMBO J. 31 3856-3870 (2012)
  14. The differential modulation of USP activity by internal regulatory domains, interactors and eight ubiquitin chain types. Faesen AC, Luna-Vargas MP, Geurink PP, Clerici M, Merkx R, van Dijk WJ, Hameed DS, El Oualid F, Ovaa H, Sixma TK. Chem. Biol. 18 1550-1561 (2011)
  15. Structural basis for assembly and activation of the heterotetrameric SAGA histone H2B deubiquitinase module. Köhler A, Zimmerman E, Schneider M, Hurt E, Zheng N. Cell 141 606-617 (2010)
  16. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Duong BH, Onizawa M, Oses-Prieto JA, Advincula R, Burlingame A, Malynn BA, Ma A. Immunity 42 55-67 (2015)
  17. Structural basis for specific recognition of Lys 63-linked polyubiquitin chains by NZF domains of TAB2 and TAB3. Sato Y, Yoshikawa A, Yamashita M, Yamagata A, Fukai S. EMBO J. 28 3903-3909 (2009)
  18. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H. Cell Rep 13 2258-2272 (2015)
  19. Dissection of USP catalytic domains reveals five common insertion points. Ye Y, Scheel H, Hofmann K, Komander D. Mol Biosyst 5 1797-1808 (2009)
  20. Recognition of polyubiquitin isoforms by the multiple ubiquitin binding modules of isopeptidase T. Reyes-Turcu FE, Shanks JR, Komander D, Wilkinson KD. J. Biol. Chem. 283 19581-19592 (2008)
  21. LUBAC regulates NF-κB activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Niu J, Shi Y, Iwai K, Wu ZH. EMBO J. 30 3741-3753 (2011)
  22. Assembly, analysis and architecture of atypical ubiquitin chains. Hospenthal MK, Freund SM, Komander D. Nat. Struct. Mol. Biol. 20 555-565 (2013)
  23. Ubiquitin-like sequence in ASK1 plays critical roles in the recognition and stabilization by USP9X and oxidative stress-induced cell death. Nagai H, Noguchi T, Homma K, Katagiri K, Takeda K, Matsuzawa A, Ichijo H. Mol. Cell 36 805-818 (2009)
  24. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes. Abdul Rehman SA, Kristariyanto YA, Choi SY, Nkosi PJ, Weidlich S, Labib K, Hofmann K, Kulathu Y. Mol. Cell 63 146-155 (2016)
  25. Analysis of nuclear factor-κB (NF-κB) essential modulator (NEMO) binding to linear and lysine-linked ubiquitin chains and its role in the activation of NF-κB. Kensche T, Tokunaga F, Ikeda F, Goto E, Iwai K, Dikic I. J. Biol. Chem. 287 23626-23634 (2012)
  26. Suppression of LUBAC-mediated linear ubiquitination by a specific interaction between LUBAC and the deubiquitinases CYLD and OTULIN. Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T, Buchberger A, Kimura T, Iwai K. Genes Cells 19 254-272 (2014)
  27. Analysis of nondegradative protein ubiquitylation with a monoclonal antibody specific for lysine-63-linked polyubiquitin. Wang H, Matsuzawa A, Brown SA, Zhou J, Guy CS, Tseng PH, Forbes K, Nicholson TP, Sheppard PW, Häcker H, Karin M, Vignali DA. Proc. Natl. Acad. Sci. U.S.A. 105 20197-20202 (2008)
  28. Structure and recognition of polyubiquitin chains of different lengths and linkage. Fushman D, Wilkinson KD. F1000 Biol Rep 3 26 (2011)
  29. Structures of CYLD USP with Met1- or Lys63-linked diubiquitin reveal mechanisms for dual specificity. Sato Y, Goto E, Shibata Y, Kubota Y, Yamagata A, Goto-Ito S, Kubota K, Inoue J, Takekawa M, Tokunaga F, Fukai S. Nat. Struct. Mol. Biol. 22 222-229 (2015)
  30. A global census of fission yeast deubiquitinating enzyme localization and interaction networks reveals distinct compartmentalization profiles and overlapping functions in endocytosis and polarity. Kouranti I, McLean JR, Feoktistova A, Liang P, Johnson AE, Roberts-Galbraith RH, Gould KL. PLoS Biol. 8 (2010)
  31. Protein-linked ubiquitin chain structure restricts activity of deubiquitinating enzymes. Schaefer JB, Morgan DO. J. Biol. Chem. 286 45186-45196 (2011)
  32. Structure of Rpn10 and its interactions with polyubiquitin chains and the proteasome subunit Rpn12. Riedinger C, Boehringer J, Trempe JF, Lowe ED, Brown NR, Gehring K, Noble ME, Gordon C, Endicott JA. J. Biol. Chem. 285 33992-34003 (2010)
  33. Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. Cooper EM, Boeke JD, Cohen RE. J. Biol. Chem. 285 10344-10352 (2010)
  34. Preparation of distinct ubiquitin chain reagents of high purity and yield. Dong KC, Helgason E, Yu C, Phu L, Arnott DP, Bosanac I, Compaan DM, Huang OW, Fedorova AV, Kirkpatrick DS, Hymowitz SG, Dueber EC. Structure 19 1053-1063 (2011)
  35. Structural Basis for the Ubiquitin-Linkage Specificity and deISGylating activity of SARS-CoV papain-like protease. Ratia K, Kilianski A, Baez-Santos YM, Baker SC, Mesecar A. PLoS Pathog. 10 e1004113 (2014)
  36. SPATA2 promotes CYLD activity and regulates TNF-induced NF-κB signaling and cell death. Schlicher L, Wissler M, Preiss F, Brauns-Schubert P, Jakob C, Dumit V, Borner C, Dengjel J, Maurer U. EMBO Rep. 17 1485-1497 (2016)
  37. Dysregulated TRK signalling is a therapeutic target in CYLD defective tumours. Rajan N, Elliott R, Clewes O, Mackay A, Reis-Filho JS, Burn J, Langtry J, Sieber-Blum M, Lord CJ, Ashworth A. Oncogene 30 4243-4260 (2011)
  38. The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Clerici M, Luna-Vargas MP, Faesen AC, Sixma TK. Nat Commun 5 5399 (2014)
  39. A global survey of CRM1-dependent nuclear export sequences in the human deubiquitinase family. García-Santisteban I, Bañuelos S, Rodríguez JA. Biochem. J. 441 209-217 (2012)
  40. CYLD coordinates with EB1 to regulate microtubule dynamics and cell migration. Li D, Gao J, Yang Y, Sun L, Suo S, Luo Y, Shui W, Zhou J, Liu M. Cell Cycle 13 974-983 (2014)
  41. Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Gersch M, Gladkova C, Schubert AF, Michel MA, Maslen S, Komander D. Nat. Struct. Mol. Biol. 24 920-930 (2017)
  42. Ubiquitination of the Dishevelled DIX domain blocks its head-to-tail polymerization. Madrzak J, Fiedler M, Johnson CM, Ewan R, Knebel A, Bienz M, Chin JW. Nat Commun 6 6718 (2015)
  43. Identification of a large rearrangement in CYLD as a cause of familial cylindromatosis. van den Ouweland AM, Elfferich P, Lamping R, van de Graaf R, van Veghel-Plandsoen MM, Franken SM, Houweling AC. Fam. Cancer 10 127-132 (2011)
  44. Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A. J. Exp. Med. 212 525-538 (2015)
  45. The cylindromatosis gene product, CYLD, interacts with MIB2 to regulate notch signalling. Rajan N, Elliott RJ, Smith A, Sinclair N, Swift S, Lord CJ, Ashworth A. Oncotarget 5 12126-12140 (2014)
  46. The deubiquitinating enzyme CYLD controls apical docking of basal bodies in ciliated epithelial cells. Eguether T, Ermolaeva MA, Zhao Y, Bonnet MC, Jain A, Pasparakis M, Courtois G, Tassin AM. Nat Commun 5 4585 (2014)
  47. A Structural View of Negative Regulation of the Toll-like Receptor-Mediated Inflammatory Pathway. Guven-Maiorov E, Keskin O, Gursoy A, Nussinov R. Biophys. J. 109 1214-1226 (2015)
  48. Deubiquitinating activity of CYLD is impaired by SUMOylation in neuroblastoma cells. Kobayashi T, Masoumi KC, Massoumi R. Oncogene 34 2251-2260 (2015)
  49. Mutual regulation between deubiquitinase CYLD and retroviral oncoprotein Tax. Wu X, Zhang M, Sun SC. Cell Biosci 1 27 (2011)
  50. A20 and CYLD do not share significant overlapping functions during B cell development and activation. Chu Y, Soberon V, Glockner L, Beyaert R, Massoumi R, van Loo G, Krappmann D, Schmidt-Supprian M. J Immunol 189 4437-4443 (2012)
  51. Thiopurine analogue inhibitors of severe acute respiratory syndrome-coronavirus papain-like protease, a deubiquitinating and deISGylating enzyme. Chen X, Chou CY, Chang GG. Antivir. Chem. Chemother. 19 151-156 (2009)
  52. Isoform-specific localization of the deubiquitinase USP33 to the Golgi apparatus. Thorne C, Eccles RL, Coulson JM, Urbé S, Clague MJ. Traffic 12 1563-1574 (2011)
  53. Regulation of USP28 deubiquitinating activity by SUMO conjugation. Zhen Y, Knobel PA, Stracker TH, Reverter D. J. Biol. Chem. 289 34838-34850 (2014)
  54. Transition from cylindroma to spiradenoma in CYLD-defective tumours is associated with reduced DKK2 expression. Rajan N, Burn J, Langtry J, Sieber-Blum M, Lord CJ, Ashworth A. J. Pathol. 224 309-321 (2011)
  55. Tumor Suppressor Function of CYLD in Nonmelanoma Skin Cancer. Masoumi KC, Shaw-Hallgren G, Massoumi R. J Skin Cancer 2011 614097 (2011)
  56. A single MIU motif of MINDY-1 recognizes K48-linked polyubiquitin chains. Kristariyanto YA, Abdul Rehman SA, Weidlich S, Knebel A, Kulathu Y. EMBO Rep. 18 392-402 (2017)
  57. CYLD Deubiquitinates Nicotinamide Adenine Dinucleotide Phosphate Oxidase 4 Contributing to Adventitial Remodeling. Yu B, Liu Z, Fu Y, Wang Y, Zhang L, Cai Z, Yu F, Wang X, Zhou J, Kong W. Arterioscler. Thromb. Vasc. Biol. 37 1698-1709 (2017)
  58. The tumour suppressor CYLD regulates the p53 DNA damage response. Fernández-Majada V, Welz PS, Ermolaeva MA, Schell M, Adam A, Dietlein F, Komander D, Büttner R, Thomas RK, Schumacher B, Pasparakis M. Nat Commun 7 12508 (2016)
  59. Ubiquitin chain specific auto-ubiquitination triggers sustained oscillation, bistable switches and excitable firing. Nguyen LK, Zhao Q, Varusai TM, Kholodenko BN. IET Syst Biol 8 282-292 (2014)
  60. Ubiquitin-interacting motifs confer full catalytic activity, but not ubiquitin chain substrate specificity, to deubiquitinating enzyme USP37. Tanno H, Shigematsu T, Nishikawa S, Hayakawa A, Denda K, Tanaka T, Komada M. J. Biol. Chem. 289 2415-2423 (2014)
  61. A Linear Diubiquitin-Based Probe for Efficient and Selective Detection of the Deubiquitinating Enzyme OTULIN. Weber A, Elliott PR, Pinto-Fernandez A, Bonham S, Kessler BM, Komander D, El Oualid F, Krappmann D. Cell Chem Biol 24 1299-1313.e7 (2017)
  62. Stabilization of the methyl-CpG binding protein ZBTB38 by the deubiquitinase USP9X limits the occurrence and toxicity of oxidative stress in human cells. Miotto B, Marchal C, Adelmant G, Guinot N, Xie P, Marto JA, Zhang L, Defossez PA. Nucleic Acids Res. 46 4392-4404 (2018)
  63. Two-sided ubiquitin binding of NF-κB essential modulator (NEMO) zinc finger unveiled by a mutation associated with anhidrotic ectodermal dysplasia with immunodeficiency syndrome. Ngadjeua F, Chiaravalli J, Traincard F, Raynal B, Fontan E, Agou F. J. Biol. Chem. 288 33722-33737 (2013)
  64. CYLD is a causative gene for frontotemporal dementia - amyotrophic lateral sclerosis. Dobson-Stone C, Hallupp M, Shahheydari H, Ragagnin AMG, Chatterton Z, Carew-Jones F, Shepherd CE, Stefen H, Paric E, Fath T, Thompson EM, Blumbergs P, Short CL, Field CD, Panegyres PK, Hecker J, Nicholson G, Shaw AD, Fullerton JM, Luty AA, Schofield PR, Brooks WS, Rajan N, Bennett MF, Bahlo M, Landers JE, Piguet O, Hodges JR, Halliday GM, Topp SD, Smith BN, Shaw CE, McCann E, Fifita JA, Williams KL, Atkin JD, Blair IP, Kwok JB. Brain 143 783-799 (2020)
  65. Identifying and studying ubiquitin receptors by NMR. Chen X, Walters KJ. Methods Mol. Biol. 832 279-303 (2012)
  66. Mode of substrate recognition by the Josephin domain of ataxin-3, which has an endo-type deubiquitinase activity. Satoh T, Sumiyoshi A, Yagi-Utsumi M, Sakata E, Sasakawa H, Kurimoto E, Yamaguchi Y, Li W, Joazeiro CA, Hirokawa T, Kato K. FEBS Lett. 588 4422-4430 (2014)
  67. Nuclear expression of the deubiquitinase CYLD is associated with improved survival in human hepatocellular carcinoma. Welte S, Urbanik T, Elßner C, Kautz N, Koehler BC, Waldburger N, Bermejo JL, Pinna F, Weiss KH, Schemmer P, Jaeger D, Longerich T, Breuhahn K, Schulze-Bergkamen H. PLoS ONE 9 e110591 (2014)
  68. Thin film depth profiling by ion beam analysis. Jeynes C, Colaux JL. Analyst 141 5944-5985 (2016)
  69. CYLD Promotes Apoptosis of Nasopharyngeal Carcinoma Cells by Regulating NDRG1. Lin Y, Wang L, Luo W, Zhou X, Chen Y, Yang K, Liao J, Wu D, Cai L. Cancer Manag Res 12 10639-10649 (2020)
  70. CYLD deficiency promotes pancreatic cancer development by causing mitotic defects. Xie S, Wu Y, Hao H, Li J, Guo S, Xie W, Li D, Zhou J, Gao J, Liu M. J Cell Physiol 234 9723-9732 (2019)
  71. Cylindromatosis Tumor Suppressor Protein (CYLD) Deubiquitinase is Necessary for Proper Ubiquitination and Degradation of the Epidermal Growth Factor Receptor. Sanchez-Quiles V, Akimov V, Osinalde N, Francavilla C, Puglia M, Barrio-Hernandez I, Kratchmarova I, Olsen JV, Blagoev B. Mol. Cell Proteomics 16 1433-1446 (2017)
  72. Deubiquitination of NLRP6 inflammasome by Cyld critically regulates intestinal inflammation. Mukherjee S, Kumar R, Tsakem Lenou E, Basrur V, Kontoyiannis DL, Ioakeimidis F, Mosialos G, Theiss AL, Flavell RA, Venuprasad K. Nat Immunol 21 626-635 (2020)
  73. Dissenting degradation: Deubiquitinases in cell cycle and cancer. Bonacci T, Emanuele MJ. Semin Cancer Biol 67 145-158 (2020)
  74. Dynamics of ubiquitin-mediated signalling: insights from mathematical modelling and experimental studies. Nguyen LK. Brief. Bioinformatics 17 479-493 (2016)
  75. Regulation of CYLD activity and specificity by phosphorylation and ubiquitin-binding CAP-Gly domains. Elliott PR, Leske D, Wagstaff J, Schlicher L, Berridge G, Maslen S, Timmermann F, Ma B, Fischer R, Freund SMV, Komander D, Gyrd-Hansen M. Cell Rep 37 109777 (2021)
  76. Tandem UIMs confer Lys48 ubiquitin chain substrate preference to deubiquitinase USP25. Kawaguchi K, Uo K, Tanaka T, Komada M. Sci Rep 7 45037 (2017)
  77. News Deubiquitination of Lys63-linkage by a CYLD UBP. Shi Y. Structure 16 338-340 (2008)
  78. Divergence in Ubiquitin Interaction and Catalysis among the Ubiquitin-Specific Protease Family Deubiquitinating Enzymes. Tencer AH, Liang Q, Zhuang Z. Biochemistry 55 4708-4719 (2016)
  79. Functional analysis of the C. elegans cyld-1 gene reveals extensive similarity with its human homolog. Hadweh P, Chaitoglou I, Gravato-Nobre MJ, Ligoxygakis P, Mosialos G, Hatzivassiliou E. PLoS ONE 13 e0191864 (2018)
  80. Loss of CYLD promotes cell invasion via ALK5 stabilization in oral squamous cell carcinoma. Shinriki S, Jono H, Maeshiro M, Nakamura T, Guo J, Li JD, Ueda M, Yoshida R, Shinohara M, Nakayama H, Matsui H, Ando Y. J. Pathol. 244 367-379 (2018)
  81. Mechanism of activation and regulation of deubiquitinase activity in MINDY1 and MINDY2. Abdul Rehman SA, Armstrong LA, Lange SM, Kristariyanto YA, Gräwert TW, Knebel A, Svergun DI, Kulathu Y. Mol Cell 81 4176-4190.e6 (2021)
  82. Novel role of macrophage TXNIP-mediated CYLD-NRF2-OASL1 axis in stress-induced liver inflammation and cell death. Zhan Y, Xu D, Tian Y, Qu X, Sheng M, Lin Y, Ke M, Jiang L, Xia Q, Kaldas FM, Farmer DG, Ke B. JHEP Rep 4 100532 (2022)
  83. The B-box module of CYLD is responsible for its intermolecular interaction and cytoplasmic localization. Xie S, Chen M, Gao S, Zhong T, Zhou P, Li D, Zhou J, Gao J, Liu M. Oncotarget 8 50889-50895 (2017)
  84. Letter The RING domain of RING Finger 11 (RNF11) protein binds Ubc13 and inhibits formation of polyubiquitin chains. Budhidarmo R, Zhu J, Middleton AJ, Day CL. FEBS Lett. 592 1434-1444 (2018)
  85. A Human DUB Protein Array for Clarification of Linkage Specificity of Polyubiquitin Chain and Application to Evaluation of Its Inhibitors. Takahashi H, Yamanaka S, Kuwada S, Higaki K, Kido K, Sato Y, Fukai S, Tokunaga F, Sawasaki T. Biomedicines 8 (2020)
  86. An siRNA library screen identifies CYLD and USP34 as deubiquitinases that regulate GPCR-p38 MAPK signaling and distinct inflammatory responses. Cheng N, Trejo J. J Biol Chem 299 105370 (2023)
  87. Analysis of the Zn-Binding Domains of TRIM32, the E3 Ubiquitin Ligase Mutated in Limb Girdle Muscular Dystrophy 2H. Lazzari E, El-Halawany MS, De March M, Valentino F, Cantatore F, Migliore C, Onesti S, Meroni G. Cells 8 (2019)
  88. CYLD variants identified in Alzheimer's disease and frontotemporal dementia patients. Xiao X, Xu T, Liu H, Liu X, Liao X, Zhou Y, Zhou L, Wang X, Zhu Y, Yang Q, Hao X, Liu Y, Jiang H, Guo J, Wang J, Tang B, Li J, Shen L, Jiao B. Ann Clin Transl Neurol 9 1596-1601 (2022)
  89. Crystal structure and activity-based labeling reveal the mechanisms for linkage-specific substrate recognition by deubiquitinase USP9X. Paudel P, Zhang Q, Leung C, Greenberg HC, Guo Y, Chern YH, Dong A, Li Y, Vedadi M, Zhuang Z, Tong Y. Proc. Natl. Acad. Sci. U.S.A. 116 7288-7297 (2019)
  90. Cylindromatosis drives synapse pruning and weakening by promoting macroautophagy through Akt-mTOR signaling. Zajicek AS, Ruan H, Dai H, Skolfield MC, Phillips HL, Burnette WJ, Javidfar B, Sun SC, Akbarian S, Yao WD. Mol Psychiatry 27 2414-2424 (2022)
  91. Frequent and differential mutations of the CYLD gene in basal cell salivary neoplasms: linkage to tumor development and progression. Rito M, Mitani Y, Bell D, Mariano FV, Almalki ST, Pytynia KB, Fonseca I, El-Naggar AK. Mod. Pathol. 31 1064-1072 (2018)
  92. HOIL-1 ubiquitin ligase activity targets unbranched glucosaccharides and is required to prevent polyglucosan accumulation. Kelsall IR, McCrory EH, Xu Y, Scudamore CL, Nanda SK, Mancebo-Gamella P, Wood NT, Knebel A, Matthews SJ, Cohen P. EMBO J 41 e109700 (2022)
  93. ISGylation-independent protection of cell growth by USP18 following interferon stimulation. Clancy A, Rusilowicz-Jones EV, Wallace I, Swatek KN, Urbé S, Clague MJ. Biochem J 480 1571-1581 (2023)
  94. Insights into ubiquitin chain architecture using Ub-clipping. Swatek KN, Usher JL, Kueck AF, Gladkova C, Mevissen TET, Pruneda JN, Skern T, Komander D. Nature 572 533-537 (2019)
  95. Native Semisynthesis of Isopeptide-Linked Substrates for Specificity Analysis of Deubiquitinases and Ubl Proteases. Zhao Z, O'Dea R, Wendrich K, Kazi N, Gersch M. J Am Chem Soc 145 20801-20812 (2023)
  96. Rare CYLD Variants in Chinese Patients With Amyotrophic Lateral Sclerosis. Gu X, Chen Y, Wei Q, Hou Y, Cao B, Zhang L, Ou R, Lin J, Liu K, Zhao B, Shang H. Front Genet 12 740052 (2021)
  97. Structural Insights into the Phosphorylation-Enhanced Deubiquitinating Activity of UCHL3 and Ubiquitin Chain Cleavage Preference Analysis. Ren Y, Yu B, Zhou L, Wang F, Wang Y. Int J Mol Sci 23 10789 (2022)
  98. The Novel Tetra-Specific Drug C-192, Conjugated Using UniStac, Alleviates Non-Alcoholic Steatohepatitis in an MCD Diet-Induced Mouse Model. Kim J, Chang N, Kim Y, Lee J, Oh D, Choi J, Kim O, Kim S, Choi M, Lee J, Lee J, Kim J, Cho M, Kim M, Lee K, Hwang D, Sa JK, Park S, Baek S, Im D. Pharmaceuticals (Basel) 16 1601 (2023)
  99. The deubiquitinase CYLD is a specific checkpoint of the STING antiviral signaling pathway. Zhang L, Wei N, Cui Y, Hong Z, Liu X, Wang Q, Li S, Liu H, Yu H, Cai Y, Wang Q, Zhu J, Meng W, Chen Z, Wang C. PLoS Pathog. 14 e1007435 (2018)
  100. The structural basis for deubiquitination by the fingerless USP-type effector TssM. Hermanns T, Uthoff M, Baumann U, Hofmann K. Life Sci Alliance 7 e202302422 (2024)
  101. The ubiquitin-associated (UBA) 1 domain of Schizosaccharomyces pombe Rhp23 is essential for the recognition of ubiquitin-proteasome system substrates both in vitro and in vivo. Medina B, Paraskevopoulos K, Boehringer J, Sznajder A, Robertson M, Endicott J, Gordon C. J. Biol. Chem. 287 42344-42351 (2012)
  102. YTHDC2 Retards Cell Proliferation and Triggers Apoptosis in Papillary Thyroid Cancer by Regulating CYLD-Mediated Inactivation of Akt Signaling. Zhou G, Wang S. Appl Biochem Biotechnol (2023)